Note on the convergence of Fourier series in the spaces Λ_{ω}^{p}

V. G. KROTOV

In this note we consider the basis problem for the trigonometric system in the spaces Λ_{ω}^{p} defined as follows: Let ω be a modulus of continuity and let $1 \leqq p<\infty$ be a real number. The class Λ_{ω}^{p} consists of all functions $f \in L^{p}$ for which the norm

$$
\|f\|_{p, \omega}=\|f\|_{p}+\|f\|_{p, \omega}^{*}
$$

is finite, where

$$
\|f\|_{p}=\left\{\int_{-\pi}^{\pi}|f(x)|^{p} d x\right\}^{\frac{1}{p}}, \quad\|f\|_{p, \omega}^{*}=\sup _{0<\delta \leq \pi} \frac{\omega_{p}(\delta, f)}{\omega(\delta)} .
$$

(We refer to [1] for $\omega_{p}(f)$ and ω.) With respect to this norm Λ_{ω}^{p} is a nonseparable Banach space.

A sequence $\left\{f_{n}\right\}$ of elements in the Banach space B, which is a basis for its closed span $E\left(\left\{f_{\mathrm{n}}\right\}, B\right)=E(B)$ is called a basic sequence.

Theorem 1. For any ω and $1<p<\infty$ the trigonometric system is a basic sequence in the space Λ_{ω}^{p}.

If T_{n} is a trigonometric polynomial of degree n, then the inequality

$$
\begin{equation*}
\left\|T_{n}^{\prime}\right\|_{p} \leqq n \omega_{p}\left(\frac{\pi}{n}, T_{n}\right) \tag{1}
\end{equation*}
$$

holds [5].
For any $f \in L^{p}$ and $n \geqq 0$ the inequality ${ }^{1}$)

$$
\begin{equation*}
\left\|S_{n} f\right\|_{p} \leqq C_{p}\|f\|_{p} \tag{2}
\end{equation*}
$$

is true [4], where $S_{n} f$ denotes the n-th partial sum of the Fourier series of f.
Received April 26, 1977.
This research was made while the author worked at the Bolyai Institute Szeged as a visiting scientist.
${ }^{1}$) C_{p} will always denote positive constants depending only on p, not necessarily the same at each occurrence.

Proof of Theorem 1. Since for any absolutely continuous function f with $f^{\prime} \in L^{p}$ the inequality

$$
\omega_{p}(\delta, f) \leqq \delta\left\|f^{\prime}\right\|_{p} \quad(0<\delta \leqq \pi)
$$

holds, by (1) we obtain

$$
\begin{equation*}
\omega_{p}\left(\delta, T_{n}\right) \leqq n \delta \omega_{p}\left(\frac{\pi}{n}, T_{n}\right) \tag{3}
\end{equation*}
$$

for any trigonometric polynomial T_{n}. Furthermore, from (2) and a theorem of Jackson type in the space L^{p} (see [6]) for any $f \in L^{p}$ and $n \geqq 1$ the inequality

$$
\begin{equation*}
\left\|f-S_{n} f\right\|_{p} \leqq C_{p} \omega_{p}\left(\frac{\pi}{n}, f\right) \tag{4}
\end{equation*}
$$

follows.
Using the inequality (3) we have

$$
\begin{aligned}
\omega_{p}\left(\delta, S_{n} f\right) \leqq n \delta \omega_{p}\left(\frac{\pi}{n}, S_{n} f\right) & \leqq n \delta\left[\omega_{p}\left(\frac{\pi}{n}, f\right)+\omega_{p}\left(\frac{\pi}{n}, f-S_{n} f\right)\right] \leqq \\
& \leqq n \delta\left[\omega_{p}\left(\frac{\pi}{n}, f\right)+2\left\|f-S_{n} f\right\|_{p}\right]
\end{aligned}
$$

so, by inequality (4),

$$
\begin{equation*}
\omega_{p}\left(\delta, S_{n} f\right) \leqq C_{p} n \delta \omega_{p}\left(\frac{\pi}{n}, f\right) \tag{5}
\end{equation*}
$$

holds. From (5) and by a familiar inequality (see e.g. [8] p. 111)

$$
\omega(\delta) \leqq 2 \delta \eta^{-1} \omega(\eta) \quad(0<\eta \leqq \delta \leqq \pi)
$$

it follows that

$$
\omega_{p}\left(\delta, S_{n} f\right) \leqq C_{p} \omega(\delta)\|f\|_{p, \omega}^{*} \quad\left(0<\delta \leqq \frac{\pi}{n}\right) .
$$

If $\frac{\pi}{n} \leqq \delta \leqq \pi$, then by (4) we have

$$
\begin{gathered}
\omega_{p}\left(\delta, S_{n} f\right) \leqq \omega_{p}(\delta, f)+\omega_{p}\left(\delta, f-S_{n} f\right) \leqq \\
\leqq \omega_{p}(\delta, f)+2\left\|f-S_{n} f\right\|_{p} \leqq C_{p} \omega_{p}(\delta, f)
\end{gathered}
$$

From the last two inequalities we obtain
and by (2)

$$
\left\|S_{n} f\right\|_{p, \omega}^{*} \leqq C_{p}\|f\|_{p, \omega}^{*}
$$

$$
\left\|S_{n} f\right\|_{p, \omega} \leqq \dot{C}_{p}\|f\|_{p, \omega}
$$

Now our statement follows from a known theorem (see e.g. [7], p. 58). The proof is complete.

In order to describe the subspaces $E\left(\Lambda_{\omega}^{p}\right)$ we consider the classes

$$
\lambda_{\omega}^{p}=\left\{f \in \Lambda_{\omega}^{p}: \lim _{\delta \rightarrow 0} \frac{\omega_{p}(\delta, f)}{\omega(\delta)}=0\right\}
$$

which are closed subspaces in Λ_{ω}^{p}.
We show that if the condition

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \frac{\delta}{\omega(\delta)}=0 \tag{6}
\end{equation*}
$$

is fulfilled, then

$$
\begin{equation*}
E\left(\Lambda_{\omega}^{p}\right)=\lambda_{\omega}^{p} \tag{7}
\end{equation*}
$$

In fact, if the function $f \in \lambda_{\omega}^{p}$, then

$$
\omega_{p}(\delta, f) \leqq \varepsilon_{p}(\delta, f) \omega(\delta)
$$

where $\varepsilon_{p}(\delta, f) \nmid 0$ as $\delta \downarrow 0$. We can take for example

$$
\varepsilon_{p}(\delta, f)=\omega_{\infty}\left(\delta, \frac{\omega_{p}(f)}{\omega}\right)
$$

For $\frac{\pi}{n}<\delta \leqq \pi$, by (4), we have

$$
\frac{\omega_{p}\left(\delta, f-S_{n} f\right)}{\omega(\delta)} \leqq \frac{\omega_{p}\left(1, f-S_{n} f\right)}{\omega\left(\frac{\pi}{n}\right)} \leqq C_{p} \varepsilon_{p}^{\cdot}\left(\frac{\pi}{n}, f\right)
$$

and for $0<\delta \leqq \frac{\pi}{n}$ from (5) the inequality

$$
\frac{\omega_{p}\left(\delta, f-S_{n} f\right)}{\omega(\delta)} \leqq \frac{\omega_{p}(\delta, f)}{\omega(\delta)}+C_{p} \frac{n \delta}{\omega(\delta)} \omega_{p}\left(\frac{\pi}{n}, f\right)
$$

follows. As in the proof of Theorem 1, we obtain hence

$$
\left\|f-S_{n} f\right\|_{p} \leqq C_{p,}\left[\omega_{p}\left(\frac{\pi}{n}, f\right)+\left(1+\|f\|_{p, \omega}^{*}\right) \varepsilon_{p}\left(\frac{\pi}{n}, f\right)\right]
$$

and thus $\lambda_{\omega}^{p} \subset E\left(\Lambda_{\omega}^{p}\right)$.
Since by condition (6) $\sin n x, \cos n x \in \lambda_{\omega}^{p}(n \geqq 0)$ and λ_{ω}^{p} is a closed subspace of Λ_{ω}^{p}, thus $E\left(\Lambda_{\omega}^{p}\right) \subset \lambda_{\omega}^{p}$ and (7) is proved.

If the condition (6) is not fulfilled, then Λ_{ω}^{p} contains only the functions which are equivalent to constants. Consequently, by Theorem 1 we have.

Theorem 2. The trigonometric system forms a basis in the space $\lambda_{\omega}^{p}, 1<p<\infty$ if and only if condition (6) holds.

A system, which is a basic sequence for every permutation of its terms, is called an unconditional basic sequence.

For any $f \in L^{2}$ we have by the Parseval formula

$$
\frac{1}{\pi} \int_{-\pi}^{\pi}|f(x+h)-f(x-h)|^{2} d x=4 \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \sin ^{2} n h \quad(h>0)
$$

where a_{n} and b_{n} are Fourier coefficients of n. Hence it is easy to obtain that the trigonometric system is an unconditional basic sequence in Λ_{ω}^{p} for every ω.

On the other hand, if $p \neq 2$, then the trigonometric system does not form an unconditional basic sequence in the space Λ_{ω}^{p}, where $\omega(\delta)=\delta^{\alpha}(0<\alpha \leqq 1)$. This statement follows from Konjushkov [2], Theorems 8 and 10.

In [3] we have given necessary and sufficient conditions that the Haar system should be a basic or unconditional basic sequence in the spaces $\Lambda_{\omega}^{p}, 1 \leqq p<\infty$.

Finally we remark that Theorem 1 is also true for other spaces. So we can consider the spaces defined by the modulus of smoothness of order k of functions; or, for example, we can take the spaces

$$
W^{r} \Lambda_{\omega}^{p}=\left\{f: f^{(r-1)} \in A C, f^{(r)} \in \Lambda_{\omega}^{p}\right\} .
$$

Since the proofs are the same as before, we omit them.

References

[1] Н. К. Бари, Тригонометрические ряды (Москва, 1961).
[2] А. А. Конющков, О классах Лишщица, Известия АН СССР, сер. матем., 21 (1957), 423-448.
[3] В. Г. Кротов, О сходимости рядов Фурье по системе Хаара в пространствах Λ_{ω}^{p}, $М$ атем. заметки (to appear).
[4] M. Riesz, Sur les fonctions conjuguées, Math. Z., 27 (1927), 218-244.
[5] C. М. Никольский, Обобщение одного неравенства С. Н. Бернщтейна, Докладь AH СССР, 60 (1948), 1507—1510.
[6] E. S. Quade, Trigonometric approximation in the mean, Duke Math. J., 3 (1937), 529-543. [7] I. Singer, Bases in Banach Spaces. I, Springer-Verlag (1970).
[8] А. Ф. Тиман, Теория приближсение функции действительного переменого, физматгиз (Москва, 1960).

ОДЕССКИЙ ГОСУДАРСТВЕННЫЙ
УНИВЕРСИТЕТ ИМ. И. И. МЕЧНИКОВА
ПЕТРА ВЕЛИКОГО 2
270000 ОДЕССА, СССР

