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Multiparameter strong laws of large numbers. II 
(Higher order moment restrictions) 

F. MÓRICZ 

§ 1. Introduction 

We use the notations introduced in [5] with the exceptions that at present 
(i) it is more convenient to write £k into the form £k=ffk<pk(x), where {ak}= 

= {ak: k£Zd
+} is a set of numbers (coefficients) and {<pk(x) = {cpk(x): kÇZl} is 

a set of measurable functions defined on a positive measure space (X , A, ¡i) ; 
(ii) by m = (m1, ...,md) — o° we always mean that only max(m1 , ...,md)— °° 

(and min (m1, ..., wd)4-°=> may also occur). 
We consider the ¿/-multiple series 

d ©o 
(i-i) 2ak<pk(x)= Z Zak kd<pkl kd(x), 

k^l j = 1 kj = l 

where the multiindex k = (Â ,̂ ..., kd) belongs to Z\, the partially ordered set of 
the ¿/-tuples of positive integers, d being a fixed positive integer. The set of ^-tuples 
of non-negative integers is denoted by Zd. For bÇZd and m£Zd

+ write 

d bj + mj 
S(b,m;x) = 2 akcpk(x) = 2 Z akx,...,kAx) <Pk *„(*) 

b+l^ksb+m j=1 kj=bj+l 
and 

M(b, m; x ) = m a x |S(b, k ; x ) | =» m a x m a x . . . , bd; fcl5 ..., kd; x) | . 

In case b=0 write 5(0, m; x) = S(m; x) (rectangular partial sums of (1.1)) and 
M(0, m; x) = M(m; x). 

Throughout the paper we assume that there exist a number 2 and a con-
stant C such that the inequality 

"(1.2) / > ( b , m ; x ) | ' 4 u ( x ) s C ( 2 «k)"/2 
J b + l s k s b + m 
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holds for all b£Zd and m£Zd
+, and either for all sets {ak} (in §§ 1—2) or for only 

the single set {a k=l} of coefficients (in §§ 3—4). 
Here and in the sequel the integrals, unless stated otherwise, are taken over X; 

C, Q , C2, ... denote positive constants, not necessarily the same at different 
occurrences. 

Example 1. Let r be an integer, rS2. The set (<pk(x)} is said to be multi-
plicative of order r if for all systems of pairwise distinct k l5 k2, ..., kr from Z i 
we have 

(1 .3) / ( I < M * ) ) ^ ( * ) = O. 

This definition for d= 1 is due to ALEXITS [1, p. 186]. 
The arguments of GAPOSKIN [2], KOMLÓS and RÉVÉSZ [3] in the case d= 1 obvi-

ously apply to the case d^2 and lead to the following result: Let r be an even integer, 
/•a4. If {<pk(x)} is multiplicative of order r and 

(1.4) J<p'k(x)dKx)^C 

for all then we have (1.2) for all {ab}. 

Example 2. The vanishing of the integrals in (1.3) is of no relevance, only 
their "smallness" in a certain sense is needed. 

In case d= 1, according to GAPOSKIN [2], a sequence {<P;(*)},°li is said to be 
weakly multiplicative of order r, where r is an even positive integer, if there exists 
a non-negative function h(l) such that for every l ^ / 1 < / 2 < . . . < i r we have 

f i n V i p ( x ) ] d ^ x ) 

with /=min (/2—j 'i, 1*4—/3, ..., ír—ir-i) and 

2 Z< r-2> /2/j(/) < 

^ h { l ) 

/=1 

Now it is proved in [2] (and announced in [3]) that if 4, {<?;(*)}" 1 is a weakly 
multiplicative sequence of order r, which satisfies (1.4), then we have (1.2) for all 

In case d ^ 2 , let ( X j , Aj, f i j ) be a positive measure space, {(p<f)(xj)}';°=1 a 
sequence of measurable functions on Xj for each j= 1, 2 , . . . , d. Let 

(X,A,p)= X ^ X j , Aj, nj) 
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he the product measure space and let 

d 
<PkO) = II <Pk?(*;)> w h e r e k = (fcl5 ..., kd) and x = (xx, ..., xd). 1 

The following statement holds: If for some r ^ 2 each sequence {9>i') (•*/)}£ i 
(j= 1,2, ..., d) satisfies the inequality 

„ 6 + m r • / 6 + m \ r/2 
(1.5) / ^ aM j )(Xj) d n j ( x j ) ^ C j \ 2 

for all {¡2;}n=i' ¿ = 0 and w S 1, then {<pk(x): k£Zd
+} satisfies inequality (1.2) for 

all {flk: keZd
+}, bfZd and meZd

+ with C= ¡J Cj. 
j= i 

For simplicity, assume that d=2. Then by (1.5), Fubini's theorem, and Min-
kowski's inequality we get that 

6+m c+rt r 
/ 2 2 aik<pln(xI)<P*2,(*2) ^ I ( ^ I ) d/i2(x2) = 

X\ I i=fc + l ft = C + l 

= f { / | J | f [ k 2 \ M 2 ) ( x 2 ) j ^ ( x ^ d n ^ d ^ i x , ) 

Л b+m / c+n \ r / 2 

2 2 aik(pi2)(x2) dn2(x2)^ ¡ = 6+1 U = c + 1 ) i 

(i + m / /.I c+n ,r \2/r-\r/2 

^ Z j / l ^ ^ t t ^ W l ^ 2 ^ ) ] | 3= 

(6+m c+w -vr/2 

¡=6+l*=c+l J 

This is the wanted inequality (1.2). 

The results below will be obtained by adaptation of more or less standard 
arguments well-known in probability theory concerning limit theorems, and by 
making usé of a recent maximal inequality of the author [4, Theorem 7]. It is worth 
stating the special case of this inequality for a=r/2,y = r and / (b , m)= 2 ak 

b + l s k s b + m 
in the form of a separate lemma. 

Lemma 1. Let r>2 and {ak} be given. If inequality (1.2) holds for all b£Z' i 

and m£Zd
+, then 

(1.6) J Mr(b, m; x) dfi(x) ë Cx( 2 4 ) r / 2 

b + l â k s b + m 

also holds for all b€Zd and m£Zd
+. 
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2§. A.e. convergence of series (1.1) 

T h e o r e m 1. Let 2 and let {ak} be such that 

(2.1) 
k s l 

If inequality (1.2) holds for all b£Zd and m € Z d , then 

(2.2) 5 ( b , m ; x ) —0 a.e. as b—® and m £ Z d ; 
furthermore, 
(2.3) / ( s u p s u p |S(b,m; x)\)'dn{x)S C2{ 2 а*)"*. 

b s o m s l k s l 

In particular, from (2.2) it follows that the ¿/-multiple series (1.1) converges 
a.e. in the sense that its rectangular partial sums S^m; x) converge a.e. as 
min (тг, ..., га,,)— (See more detailed in [6].) 

Lemma 2 ([6, Lemma 1]). For all bfZd and m£Zd
+ 

max | 2 ak<pk(x)\s2dM(b,m;x). 
l s p s q s m b+psksb+q 

P r o o f of T h e o r e m 1. Condition (2.1) implies the existence of a sequence 
{т ,=(ш 1 м . . . , mdl)}1°=1 in Zd

+ for which 

(i) 1 ^ mn < mJ2 < . . . for each j — 1,2, ...,d; 

( i i ) i ^ - 2 ( / = 1 , 2 , . . . ) . 
' k e l lsksm,-1 k s l 

It follows from (i) that min (m lh ..., md/)—°° as and from (ii) that 

(2-4) J ( / + D r { 2 " - 2 } 4 s 2 ( 2 a D " 2 (m„ = 0). 

1=0 * k s l l s k s m , ' k s l 

Motivating by the representation S(mi+1; x)-S(m,; x ) = 2 " £ ( m i + 1 - m ( ) + ( l - E ) m , ; x ) , e 

where the summation 2 is extended over all 2d—1 choices of e=(e1, ..., ed) 
с 

with coordinates EJ—0 or 1, the case ex = ...=ed—0 excluded, we introduce the 
following maxima: 

Mul(x) = М(ЕШ,, E ( M / + 1 — M,) + ( 1 — E) M,; x) , 

where /=£ 1 + 2£2+.. .+2d '1£< , . It is clear that l s t ^ 2 d - l . 
We are going to show that 

(2.5) 2 ( 1 + 1 у { 2 1 Ml,(*)] < » a.e. 
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Inequality (1.2), via Lemma 1, yields 

(2.6) i ( /+1) ' [ 5 7 MUX) == 
/=0 = l J J 

^ Q J (/ + iy {( 2 - 2 K } r / 2 c x ( 2 4 ) r / 2 , 
/=0 l s k s m , + 1 l s k s m , k s l 

the last inequality is owing to (2.4). Hence B. Levi's theorem implies (2.5). 
Let us now estimate SO», m; x) with arbitrary b£Zd and m£Zd

+. Recall 
that iff bJ>mjl for at least one j (l^j^d). In the special case when 
there exists a non-negative integer / such that b ^ m , and b + m S m / + 1 , by Lemma 
2 we obviously have 

|S(b,m; x)\^2i2d£ MtJ(x). 
t=i 

In the general case let us determine non-negative integers u and v such that 

b $ m„ and b ^ m„+1 ; b + m ^ m ^ and b + m « m u + 1 . 

It is clear that such u and v (uniquely) exist, and O^u^v. Again by virtue of Lemma 2 
we have 

|S(b,m; x)\-^2d z i ' z 1 Mul(x)\, 
l = = 1 / 

whence, using Holder's inequality, 

(2.7) \S(b, m; x)| ^ 2" { 2 V + 1)' ( ¿ f M ' . <(*))} ' X 

XiIwl WIth ' " 
By (2.5) we can conclude that |.<?(b, m; x)| is a.e. as small as required if 
max (¿>l5 ..., bd), and consequently u is large enough. Tliis proves (2.2). 

From (2.7) we obtain that 

(sup sup |S(b, m; x)|)' ^ c j (/+1)' f M'ttl (x)]. 
bs» m i l /=o »fcaaMa ' 

Integrating both sides over X, the wanted inequality (2.3) comes from (2.6). This 
completes the proof of Theorem 1. 
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§ 3. Multiparameter SLLN 

In the sequel we assume that all ak= 1 in (1.1), i.e. from now on 

S ( b , m ; x ) = 2 <Pk(x) 
b + l s k s b + m 

and 
M(b,m;x)= max ! 2 < P i ( * ) l (b6Zd and m£Zd), 

l â k s m b + l s l s b + k 

.although our results remain valid in the more general setting when 2 ak=a:' 
k s l 

and {ak} behaves sufficiently "regularly". . 
Our permanent assumption is now that inequality (1.2) holds true only in 

this special ak= 1 case, i.e. there exists a number r > 2 such that 

(3.1) J |5(b, m; x)\rdfi(x) S C|m|r/2 

d 
holds for all b£Z and m £ Z + , where |m| stands for Tlmj- Hence Lemma 1 

i=i 
implies 

(3.2) fMr(b, m; x) dpi (x) Cx |m|'/2. 

Theo rem 2. If inequality (3.1) holds for all b£Zd and m£Zd
+ with an r > 2, 

then for any S > 0 we have 

(3.3) lim ^ = 0 a.e. . 
M 1 / 2 ( 2 log 2mJ)1/r(log log 4|m|)(d+<5,/r 

and 

( } I™ |m|1/2 (log 2|m|)<,/r(log log 4|m|)(1+i)/r _ 

Here and in the sequel,all logarithms are of base 2. Further, S(m; x) = 5(0, m; x). 
This result for d= 1 (in a slightly weaker form) was proved by SERFLING. [7, 

Theorem 3.1]. 

Remark 1. For d= 1 relations (3.3) and (3.4) coincide. For d^2, if 
is such a way that m1=m2=... =md then (3.3) is stronger than (3.4), while if m—o° 
in such a way that e.g. m2=.. • —md = 1 then the situation is converse : (3.4) is stronger 
than (3.3). 
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Both (3.3) and (3.4) improve as r increases. By letting r— <=° we find, for 
any 6 >0, 

.. S(m; JC) 
m™ |m|1/2 (log 2|m|)'i " U a-e-

This result is not far from the part of the law of the iterated logarithm. 

Lemma 3. For any ¿>0 , we have 

2 | l + k | - 1 { l o g i 2 + i / c , ) } < » 
k s O I V j=1 J> 

and 

ZU+Z*] { l o g ( 2 + i / c J ) } 1 < » . 
ksO J = 1 ' I V j = l / } 

Proof of Lemma 3. For simplicity, we only prove in the case d=2. Then 
the first series can be rewritten and estimated as follows 

~ ~ i °° 1 f ' 1 

- fc(iog(i + 0)2+a + 

1 1 - 1 
+ * J L / c ( l o g ( l + f c ) ) 2 + * J - Q i ( l o g ( l + 0 ) 1 + a < 0 ° ' 

The convergence of the second series can be verified similarly. 

Proof of Theorem 2. Lemma 1 constitutes the basis of the proof. Applying 
Chebyshev's inequality to (3.2) we obtain that 

r Iml'/a 
(3.5) n{M( b, 1 1 1 (b £Zd, m and X > 0). / 
Substituting here 

/ t sVr 
/l(m) = |m|1/2 # l o g 2 m J (loglog4|m|)(<i+'»/' or 

v = i / 

|m|1/2(log 2 ¡m|)d/r (log log 4 |m|)(1+4>/' 
for X, we get that 

H{M(m; x) ^ A(m)} s Cx ^ l o g 2 m J ) 0oglog4|m|)- '-« or 

Cx (log 2|m|)-"(log log 41ml)"1-5. 
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Let m=2 k where k runs over Zd. Then, by Lemma 3, 

2 n { M ( 2 " ; x ) s A ( 2 k ) } < ~ . 
ksO 

Hence, via the Borel—Cantelli lemma, we have 

M(2k; x) < A(2k) a.e., 

with the exception of a finite number (depending on x) of k. 
It is obvious that if 2 k ^ m ^ 2 k + 1 with some k^O, then we have 

I(m) a l(2k) and |S(m; x)\ S A/(2k+1; x). 

Consequently, 
|5(m; x)\ ^ M(2*+'; x) ¿(2k+*) 

( 3 " 6 ) - I c E o ~ " / ( 2 k ) " ^ T a - e " 

provided max (klt ..., kd) is large enough. Since the right-most member in (3.6) is 
bounded as k—oo, it follows that 

(3.7) 5(m;x) = 0{A(m)} a.e. 

Taking into consideration that 8 may be chosen arbitrarily small (but positive), 
we can change "O" to "o" in (3.7), as a result of which we get the wanted (3.3) 
and (3.4). 

§ 4. Rates of convergence 

Turning to the rate of convergence in (3.3) and (3.4), we can state 

T h e o r e m 3. If inequality (3.1) holds for all b£Zd and m £Zd
+ with an r > 2 , 

then for any choices of a and /? satisfying 

(4.1) 0 s i j 3 < a r - l 
and for any e > 0 we have 

( 4 ' 2 )
 m f i | m | ( l o g 2 | m D d - ^ 

\S(k; x)\ 1 
s u p ' A M < o c 

and 

id 
for a t & Z U j . | k | 1 / 2 n ^ g 2 k j \ 

l^jsd V/=l ' 

tAK 1 / IS'O; x)| 1 
m s l |m| ( tf log 2m,J l k s m | k | 2 |k|) j 
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This result for d= 1 was also established by SERFLING [7, Theorem 5.3]. 

Remark 2. Observe that the more restrictive " sup " in (4.2) is 
f . V s ^ • for at least one J. t. 

weakened into " sup " in (4.3). x ~ m i 

kj^mj for every j, lSjSd 
If inequality (3.1) is satisfied for all b£Zd and m£Z+ with arbitrarily large 

exponents r, then (4.2) and (4.3) hold for each choice of a > 0 and /?>0. 

The'proof of Theorem 3 is based on (3.5) and on the following auxiliary result, 
which for the sake of brevity is stated only for d=2. 

Lemma 4. If (4.1) holds, then 

CO oo J 

1?1 k?i ikQog2i/c)2_i (log2i)xr~1 ^ 

Proof of Lemma 4. An easy computation shows that the series in question 
can be estimated from above as follows 

oo - | CO 2 , + 1 — 1 I OO J CO J 

¡ 5 i(log2ifc)2-"(log2ir-1 - k?i~k ,?o (l+loglkf-Hl + ir-1 " 

Now let us deal with the inner series: 

{[log 2fc] ~ 1 1 1 [log 2k] ] 

1?0 + / = M + J a + l o g 2 f c ) 2 - ' , ( / + i r - 1 - ( l o g 2 k f - f M, (l+ir~1 + 

°° i Q + / = [ i o 5 ] + i ( / + i r - " + 1 ~ (log2ky~P ' 
where [.] denotes integral part. Taking into account that by (4.1) we have a/-—/J>1, 
the proof is ready. 

Proof of Theorem 3. We prove for d=2 only. The general case d>2 can 
be handled in the same way, merely the technical details become more complicated. 

In virtue of Lemma 4, for (4.2) it is enough to demonstrate that 

(4.4) n(m,n) = n{ sup k '\ ^ - S e l gi 
UmoiUn (ifc)1/2(log2ilog2fc)" J 

~ C 4 ( l o g 2 i ) w - 1 + ( log2fcr~1) ' 
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To this end, let the non-negative integers p and q be defined by 

2 " s m < 2P+1 and 2« 3= n < 2«+1. 
It is obvious that 

{ 00 00 co Q — 1. p — 1 0 0 

2 2 + 2 2 + 2 2fv(«,o) u = pv=q u = pt>=0 u=0 0=0-' 
with 

, ^ J " fc; *)| 1 
v(u,v)=ui max max . . . . . ' , — . . . gg ef. v ' * ( i f e ) 1 / 2 ( l o g 2 i l o g 2 f c ) 1 J 

By (3.5) it is not hard to check that 

v(w, V) 3= a j { M ( 2 " + 1 , 2 " + 1 ; jc) S e ( w + i y ( ® + 1)«2<U+C>/2} ^ 

sC12f6-r((ii + l )(o+l))- r . -
Since 

' 2 2 v(«, ®) s C7e-'(0> + 1)(?+1))"*'+1 s C8e~' (log 2m log2n)-"+ 1 , , 
u — p v—q * 

J 2 v ( « , 0) ^ C 76- ' (p+ l ) " ^ 1 S C88- r(log2m)-»+1 , 
u— p t?=0 

and similarly, 

2 v (u , ») C e e - ' 0 o g 2 m ) " " + 1 , 
u = 0 u=<7 

from (4.5) we obtain the desired (4.4). This proves (4.2). 
The proof of (4.3) can be executed in a similar manner as that of (4.2). The 

proof of Theorem 3 is complete. 

It is clear that under the conditions of Theorem 2 we have S(m; x)/|m|—0 
a.e. as m— For this SLLN we can prove essentially better convergence rates, 
however, now only with the weaker " sup " instead of " sup ". 

kjSmj , kjsmj 
for every j, for at least one j, 

1 SjSi lsjsd , .. . : 

Theorem 4. If inequality (3.1) holds for all b£Zd and m£Zd
+ with an r > 2 , 

then for any ¿ > 0 and e>0 we have 

^ |m| ( r -2 ) /2 f |S(k; *)| I (4.6) 2 7 - 3 r / T u p iki 
m S l(^log2my .J( loglog4|m|)"+' ' l k s , n |K| J 
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and 

| m | ( r -2) /2 r | S ( k ; x ) | 1 
( 4 - 7 ) J i (log 21m|)d (log log 41mI)1+3 ^ f e |k| ~ 1 " °°' 

Remark 3. Both convergence rates improve as r increases. Letting r-~°° 
results, for any a > 0 and e>0, 

^ | m | V { s u p | 5 ( k ; *)|/ |k| £ e} < 
1 k^m 

The p roo f of Theorem 4 runs along the same lines as that of Theorem 3. 
First we infer that 

H{sup \S(k; x ) | / | k | S e } ^ C 9 e - ' | m | - ' / 2 

ksm l 

(for d= 1 see also in [7, Theorem 5.1]), then (4.6) and (4.7) follow from the fact 
that, for any ¿>0 , 

2 M - 1 { i 7 1 o g 2 m j ) ( loglog4|m|) - d- i < » 
m i l V = 1 / 

and 
2 |m | - 1( log2 |m | ) - d( loglog4 |m|)- 1- a<~. 

msl x 
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