# On the indicatrix of orbits of 1-parameter subgroups in a homogeneous space 

P. T. NAGY

## § 1. Preliminaries

In the following $H, K \subset G$ denote Lie groups, $\mathfrak{g}, \mathfrak{h}$, $\mathfrak{f}$ the corresponding Lie algebras, which can be identified with the tangent spaces $T_{e} G, T_{e} H, T_{e} K$ at the unity $e \in G, H, K$, respectively.

Let be $L(M)$ the bundle of linear frames on the manifold $M$ and $p: L(M) \rightarrow M$ the natural projection in this bundle.

The isotropy group $H$ of the homogeneous space $M=G / H$ leaves the origin $o \in M$ of the space $M=G / H$ fixed. Hence the differential $z_{*_{0}}$ of the map $z: M \rightarrow M$ $(z \in H)$ is a linear transformation on the tangent space $T_{o} M$. This representation $z \mapsto z_{* 0}(z \in H)$ of the isotropy group on the tangent space $T_{o} M$ is called the linear isotropy group. The action $\alpha: G \times M \rightarrow M$ of the group $\dot{G}$ on $M$ induces an action $\dot{\tilde{\alpha}}: G \times L(M) \rightarrow L(M)$ of the group $G$ on the linear frame bundle $L(M)$. It is clear that the action $\tilde{\alpha}$ is effective if and only if the linear representation of the isotropy group is faithful, i.e. the map $z \mapsto z_{* o}(z \in H)$ is one-to-one.

It is well-known that the faithfulness of the linear representation of the isotropy group is a necessary condition for the existence of invariant connections in a homogeneous space. Therefore in the following this condition will be supposed.

Let be given a frame $u_{0} \in L_{o} M$ at the point $o \in M$. The action $\tilde{\alpha}$ of $G$ on $L(M)$ yields an embedding of $G$ in $L(M)$ so that to the unity $e \in G$ corresponds the frame $u_{0}$. In the following we use this embedding and we will regard the principal bundle $\{G, \pi, G / H\}$ as a subbundle of $\{L(M), p, M\}$.

We recall Wang's theorem on invariant connections, cf. [2], 186-190.
Let be $M=G / H$ a homogeneous space. There exists a one-to-one correspondence between the set of $G$-invariant connections in $L(M)$ and the set of linear maps $\Lambda: \mathfrak{g} \rightarrow \mathfrak{g l}(n)$ satisfying the conditions
(i) $\Lambda(X)=\lambda(X)$ if $X \in \mathfrak{h}$,
(ii) $\Lambda([Z, X]):=[\lambda(Z), \Lambda(X)]$ if $Z \in \mathfrak{h}, X \in \mathfrak{g}$,

[^0]where $\lambda$ denotes the homomorphism of the Lie algebras $\mathfrak{h} \rightarrow \mathfrak{g l}(n)$ induced by the linear representation of the isotropy group.

Let $\varphi$ denote a $G$-invariant connection form on $L(M)$, than the corresponding linear map $\Lambda: g \rightarrow \operatorname{gl}(n)$ satisfies

$$
\Lambda(X)=\varphi(\hat{X}) \quad \text { if } \quad X \in \mathfrak{g}
$$

where $\widehat{X}$ denotes the vector field on $L(M)$, defined by the tangent vectors of orbits in $L(M)$ of the one-parameter subgroup $\exp t X \subset G$.

Let $\mathfrak{m}$ denote a complementary subspace to the subalgebra $\mathfrak{b}$ in $\mathfrak{g}$ that is

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}
$$

Let be given a leftinvariant coframe $\left\{\omega^{1}, \ldots, \omega^{n}, \omega^{n+1}, \ldots, \omega^{n+k}\right\}$ on the group $G$ such that the equations $\omega^{1}=\ldots=\omega^{n}=0$ define the subalgebra $\mathfrak{h}$ and the equations $\omega^{n+1}=\ldots=\omega^{n+k}=0$ define the subspace $m$. In the following the indices have the values: $a, b, c=1, \ldots, n ; \alpha, \beta, \gamma=n+1, \ldots, n+k$, where $n=\operatorname{dim} M$ and $n+k=$ $=\operatorname{dim} G$. The structure equations of the group $G$ have the form

$$
\begin{gathered}
d \omega^{a}=-\sum_{\beta, c} c_{\beta c}^{a} \omega^{\beta} \wedge \omega^{c}-\frac{1}{2} \sum_{b, c} c_{b c}^{a} \omega^{b} \wedge \omega^{c} \\
d \omega^{\alpha}=-\frac{1}{2} \sum_{\beta, \gamma} c_{\beta \gamma}^{\alpha} \omega^{\beta} \wedge \omega^{\gamma}-\sum_{\beta, c} c_{\beta c}^{\alpha} \omega^{\beta} \wedge \omega^{c}-\frac{1}{2} \sum_{b, c} c_{b c}^{\alpha} \omega^{b} \wedge \omega^{c}
\end{gathered}
$$

The connection form $\varphi$ can be expressed by

$$
\varphi(\hat{X})=\sum_{a, c} \varphi_{c}^{a}(\hat{X}) E_{a}^{c} \dot{=} \sum_{a, c}\left(\sum_{\beta} c_{\beta c}^{a} \omega^{\beta}(X)+\frac{1}{2} \sum_{b} c_{b c}^{a} \omega^{b}(X)+\frac{1}{2} \sum_{b} l_{b c}^{a} \omega^{b}(X)\right) E_{a}^{c}
$$

where $l_{b c}^{a}$ are constant and $\left\{E_{a}^{c}\right\}$ denotes the canonical basis of the linear Lie algebra gl( $n$ ).

## § 2. The indicatrix of orbits of 1-parameter subgroups

Let be $\dot{M}$ a differentiable manifold and suppose that there is linear connection on $M$. Let $y(t)$ be given a differentiable curve in $M$. The operator of the parallel translation along the curve $y(t)$ will be denoted by $\tau_{t, t_{0}}: T_{y(t)} M \rightarrow T_{y\left(t_{0}\right)} M$.

The indicatrix of the curve $y(t)$ at the point $y\left(t_{0}\right)$ is the curve $Y(t)$ in the tangent space $T_{y\left(t_{0}\right)} M$, defined by the parallel translation of the tangent vector $\dot{y}(t)$ of the curve to the point $y\left(t_{0}\right)$ :

$$
Y(t)=\tau_{t, t_{0}} \dot{y}(t) .
$$

Theorem 1. Let $M=G / H$ be a homogeneous space, and let a G-invariant connection on $M$ be given by a map $\Lambda: g \rightarrow \operatorname{gl}(n)$, according to Wang's theorem. The indicatrix of the orbit $y(t)=\alpha(\exp t X, o)$ at the origin $o \in M(X \in \mathfrak{g})$ is the curve

$$
Y(t)=x^{-1}(\exp t \Lambda(X)) x Y_{0}, \quad \text { where } \quad x: T_{0} M \rightarrow \mathbf{R}^{n} \quad \text { is the coordinate map }
$$

defined by the frame $u$ and $Y_{0}=\pi_{*}(X) \in T_{o} M$ is the tangent vector to the curve $y(t)$ at the initial point o.

Proof. Since we regard the group $G$ as a submanifold of $L(M)$, the 1-parameter subgroup $x(t)=\exp t X(X \in \mathfrak{g})$ is a curve in $L(M)$ with tangent vectors $\mathscr{X}(t) \in T_{x(t)} L(M)$. The equations of $x(t)$ in $G \subset L(M)$ are

$$
\frac{d}{d t} \omega^{a}(\hat{X}(t))=0(a=1, \ldots, n), \quad \frac{d}{d t} \omega^{a}(\hat{X}(t))=0(\alpha=n+1, \ldots, n+k)
$$

with respect to the given $G$-left invariant coframe $\left\{\omega^{\mathbf{1}}, \ldots, \omega^{n+k}\right\}$. Hence the equations of the orbit $y(t)=\alpha(\exp t X, o)=p \cdot x(t)$ are

$$
\frac{d}{d t} \omega^{a}(\hat{X}(t))=0 \quad(a=1, \ldots, n)
$$

On the other hand, using the following lemma, the components of the covariant derivative $\nabla_{t} \dot{y}=\nabla_{\frac{\partial}{\partial t}} \dot{y}$ of the tangent vector $\dot{y}(t)$ of the orbit $y(t)$ can be expressed as

$$
\omega^{a}\left(\nabla_{t} \dot{y}\right)=\frac{d}{d t} \omega^{a}(\hat{X})+\sum_{c} \varphi_{c}^{a}(\hat{X}) \omega^{c}(X)
$$

Lemma. Let $M$ be a manifold equipped with a connection form $\varphi$ on $L(M)$. Let $y(t)$ be a curve in $M, X(t)$ a vector field along $y(t)$. The components $\omega^{1}, \ldots, \omega^{n}$ of the $R^{n}$-valued canonical form $\omega$ on the covariant derivative vector $\nabla_{t} X=\nabla_{\frac{\partial}{\partial t}} X$ along the curve $y(t)$ satisfy

$$
\omega^{a}\left(\nabla_{t} X\right)=\frac{d}{d t} \omega^{a}(\hat{X})+\sum_{c} \varphi_{c}^{a}(\hat{\dot{y}}) \omega^{c}(\hat{X})
$$

where $\hat{\dot{y}}$ and $\hat{X}$ denote the horizontal lifts of the vectors $\dot{y}$ and $X$, and $\varphi_{c}^{\alpha}$ are the components of connection form $\varphi$.

This lemma is a version of Theorem 11 in $\S 6.4$ [1]. $\Lambda(X)=\varphi(\hat{X})$ and $\frac{d}{d t} \omega^{a}(X)=0$, we get $\nabla_{t} \dot{y}=\chi^{-1} \Lambda(X) \chi \dot{y}$, where $x: T_{0} M \rightarrow \mathbf{R}^{n}$ is the coordinate map defined by the chosen frame field, or equivalently, we get the equation of the indicatrix $Y(t)$ of $y(t)$ in the form

$$
\frac{d}{d t} Y(t)=\varkappa^{-1} \Lambda(X) x Y(t)
$$

It is well-known that the solution of this ordinary differential equation with constant coefficients is

$$
Y(t)=\varkappa^{-1}(\exp t \Lambda(X)) x Y_{0}
$$

where $Y_{0}=Y(0)=\pi_{*} X$. The theorem is proved.
Corollary. The $k$-th covariant derivative $\nabla_{t}^{(k)} \dot{y}$ of tangents of the orbit $\dot{y}(t)=$ $=\alpha(\exp t X, o)$ at the initial point $o \in M$ is $(\Lambda(X))^{k} Y_{0}$, where $Y_{0}=\pi_{*} Y$.

## § 3. The indicatrix of orbits in a reductive space

If there is given a reductive complement $\mathfrak{m} \subset \mathfrak{g}$ to the subalgebra $\mathfrak{h}$ in the Lie algebra g , characterized by

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m} \quad \text { and } \quad[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}
$$

then it is clear that the map $\Lambda: \mathfrak{g} \rightarrow \mathfrak{g l}(n)$ defined by

$$
\Lambda(X)=\lambda(X) \quad \text { if } \quad X \in \mathfrak{h}, \quad \Lambda(X)=0 \quad \text { if } \quad X \in \mathfrak{m}
$$

satisfies the assumptions of Wang's theorem. The corresponding $G$-invariant connection is called the canonical connection of the reductive space $\{M=G / H, \mathfrak{m}\}$. From Theorem 1 it follows immediately:

Theorem 2. Let $\{M=G / H, \mathfrak{m}\}$ be a reductive homogeneous space. The curve $y(t)$ in $M$ is the orbit of a 1-parameter subgroup of $G$ if and only if its indicatrix with respect to the canonical connection is an orbit of a 1-parameter subgroup of linear isotropy group. In detail, the indicatrix of the orbit $\alpha(\exp t X, o)$ at the origin $o \in M$ is the curve $Y(t)=(\exp t$ ad $Z) Y_{0}$, where $Z=X_{\mathfrak{h}}$ and $Y_{0}=X_{m}$ are the components of the vector $X$ in the subspaces $\mathfrak{h}$ and $\mathfrak{m}$, respectively, and the tangent space $T_{o} M$ is identified with the reductive complement m .

Proof. From the property $[\mathfrak{b}, \mathfrak{m}] \subset \mathfrak{m}$ of the reductive complement $m$ follows that the homomorphism $\lambda: \mathfrak{h} \rightarrow \mathfrak{g l}(n)$ induced by the linear representation of isotropy group has the form: $\lambda(Z)=a d Z: m \rightarrow m(Z \in \mathfrak{b})$. The theorem is proved.

Corollary. The $k$-th covariant derivative $\nabla_{t}^{(k)} \dot{y}$ of the tangents of the orbit $y(t)=\alpha(\exp t X, o)$ at the initial point $o \in M$ is $(\mathrm{ad} Z)^{k} Y_{0}$.

## § 4. Geodesics in a fibering of reductive space

Let $\{M=G / H, m\}$ be a reductive homogeneous space. Let be given a subgroup $K \subset H$ and a reductive complementum $f$ on the homogeneous space $F=H / K$. The homogeneous space $N=G / K$ has a structure of a fibre bundle $\{N, \pi ; M, F\}$, where $N, M$ and $F$ are the total, basic and the fiber type manifolds, respectively. We have the decompositions of Lie algebras

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}, \quad \mathfrak{h}=\mathfrak{f} \oplus \mathfrak{f}, \quad \mathbf{g}=\mathfrak{f} \oplus \mathfrak{f} \oplus \mathfrak{m}
$$

satisfying

$$
[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}, \quad[\mathfrak{f}, \mathfrak{f}] \subset \mathfrak{f}, \quad[\mathfrak{f}, \mathfrak{f} \oplus \mathfrak{w}] \subset \mathfrak{f} \oplus \mathfrak{m}
$$

It is clear that $\mathfrak{f} \oplus \mathfrak{m}$ is a reductive complement on the homogeneous space $N=G / K$.
We investigate the projection to $M$ of the geodesics in the homogeneous space $N=G / K$ with respect to the canonical connection corresponding to the reductive complement $\mathfrak{f} \oplus \mathfrak{m}$.

Theorem 3. The curve $y(t)$ in $M=G / H$ through the origin $o \in M$ is a projection of a geodesic in $N=G / K(K \subset H)$ with respect to the canonical connection if and only if its indicatrix at the origin $o \in M$ is an orbit of a 1-parameter subgroup $\exp t \operatorname{ad} \mathbf{Z}$ of the linear isotropy group, where $Z \in \mathfrak{F}$.
(Here and in the following ad $Z: \mathfrak{g} \rightarrow \mathfrak{g}$ denotes the operator $X \rightarrow[Z, X]$ on $\mathfrak{g}$. Since $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$, this operator can be restricted to the subspace $\mathfrak{m} \subset \mathfrak{g}$; this restriction is denoted by the same way.)

Proof. Since $N=G / K$ is a reductive homogeneous space equipped with canonical connection, the geodesics in $N$ are the orbits of 1-parameter subgroups exp $t X$ of the group $G$, where $X \in f \oplus \mathrm{~m}$. From Theorem 2, it follows that the indicatrix of the orbit of subgroup $\exp t X$ at the point $o \in M$ is the curve $Y(t)=(\exp t$ ad $Z) Y$, where $Z=X_{\mathfrak{h}}$ and $Y=X_{\mathfrak{m}}$. From $X \in \mathfrak{f} \oplus \mathfrak{m}$ follows that $Z=X_{\mathfrak{h}} \in \mathfrak{f}$.

On the other hand, if $Y \in \mathfrak{m}\left(=T_{o} M\right), Z \in \mathfrak{f}$, then it is clear that $Y(t)=(\exp t \operatorname{ad} Z) Y$ is the indicatrix of the orbit of the subgroup $\exp t(Y+Z)$. But we know that the orbit of a 1-parameter subgroup $\exp t(Y+Z)$ in the space $N=G / K$ is geodesic. The theorem is proved.

## § 5. Geodesics in the tangent sphere bundle of a 2-transitive Riemannian homogeneous space

We apply our results to the characterization of the projections of geodesics of the tangent sphere bundle of a 2-transitive Riemannian homogeneous space with respect to the Sasaki metric. We get a generalization of a result ([5], [4], [3]) asserting that the projection of a geodesic of the tangent sphere bundle of a space of constant curvature is a helix.

Let be $M=G / H$ a 2-transitive Riemannian homogeneous space, that is the group $G$ is supposed to act transitively on the tangent sphere bundle $N$ of the manifold $M$. It is well-known that from the 2-transitivity of the isometry group $G$ of $M$ follows that $M$ is symmetric space (cf. [6], 289). On a Riemannian symmetric space $M=G / H$ there is a natural reductive complement $\mathfrak{m \subset g}$ whose canonical connection has the same geodesics as the Riemannian connection of the symmetric space $M$ [6].

From the 2-transitivity of $G$ on $M=G / H$ it follows that there exists a subgroup, $K \subset H$ such that the tangent sphere bundle $N$ can be written in the forff $N=G / K$. The isotropy group $H$ is isomorphic to a subgroup of the orthogonal group $O(n)$, and hence we have an invariant metric on $H$. This metric induces on the homogeneous space $F=H / K$ a naturally reductive Riemannian metric, which defines on $F$ the geometry of $n$-sphere. Let $\mathfrak{m}$ and $\mathfrak{f}$ denote the reductive complements on $M$
and $F$, respectively, i.e. we have $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}, \mathfrak{h}=\mathfrak{f} \oplus \mathfrak{f}$. Now we can apply Theorem 3 to this case.

Theorem 4. Let $M=G / H$ be a 2-transitive Riemannian homogeneous space. The curve $y(t)$ in $M$ is a projection of a geodesic in the tangent sphere bundle if and only if $y(t)$ is a 3-dimensional helix (i.e. the first two curvatures $\varkappa_{1}, \chi_{2}$ are arbitrary constants, and the others zero: $\chi_{3}=\ldots=x_{n-1}=0$ ).

Proof. From Theorem 3 we know that $y(t)$ is a projection of a geodesic in $N$ if and only if its indicatrix has the form $\exp (t$ ad $Z) Y$, where $Y \in \mathfrak{m}, Z \in \mathfrak{f} \subset \mathfrak{h}$.

After identifying an orthogonal frame at $o \in M$ with the identity of $H$ the adjoint representation maps the group $H$ isomorphically on a subgroup of the orthogonal group $O(n)$ acting on the unit ( $n-1$ )-sphere of the tangent space $T_{0} M$ $(=\mathfrak{m})$. In the following we identify the group $H$ with the subgroup of $O(n)$ by this isomorphism. The reductive complement $\tilde{j}$ of the subalgebra $\mathfrak{f}$ in $\mathfrak{h}$ corresponds to the tangent space at the initial point of the $(n-1)$-sphere $F=H / K$. Since the reductive complement $\uparrow$ on $F=H / K$ is identified with the reductive complement on the $(n-1)$-sphere $S^{n-1}=O(n) / O(n-1)$, the 1-parameter subgroup $\exp (t \operatorname{ad} Z)$ $(Z \in \mathbb{f})$ of $O(n)$ is a 1 -parameter rotation group around the ( $n-2$ )-plane in $T_{o} M$, orthogonal to the 2-plane of the geodesic great circle which is the orbit of $\exp (t \operatorname{ad} Z)$ in $S^{n-1}=F$ through the initial point. It follows that the curve $Y(t)=\exp (t \operatorname{ad} Z) Y$ $(Y \in \mathfrak{m}, Z \in \mathfrak{f})$ is a circle. The indicatrix of a curve $y(t)$ is a circle if and only if it is a 3-dimensional helix. Theorem 4 is proved.

Acknowledgement. The author wishes to express his sincere thanks to Professors A. M. Vasil'ev (Moscow State University) and J. Szenthe (Budapest Technological University), for valuable conversations and suggestions.

## References

[1] R. L. Bishop-R. J. Crittenden, Geometry of manifolds, Academic Press (New York-London, 1964).
[2] S. Kobayashi-K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience Publishers (New York-London-Sidney, 1969).
[3] P. T. Nagy, Geodesics on the tangent sphere bundle of a Riemannian manifold, Geometriae Dedicata, 7 (1978), 233-243.
[4] S. Sasaki, Geodesics on the tangent sphere bundle over space forms, J. reine angew. Math., 288 (1976), 106-120.
[5] A. M. Vesil'ev, Invariant affine connections in a space of linear elements, Mat. Sbornik, 60 (102) (1963) 411-424. (Russian.)

6] J. A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co. (New York-LondonSidney, 1967).


[^0]:    Received July 25, 1978.

