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On the indicatrix of orbits of 1-parameter subgroups 
in a homogeneous space 

P. T. NAGY 

§ 1. Preliminaries 

In the following H, Kc: G denote Lie groups, g, I), I the corresponding Lie 
algebras, which can be identified with the tangent spaces TeG, TeH, TeK at the 
unity ef G, H, K, respectively. 

Let be L(M) the bundle of linear frames on the manifold M and p: Z,(M) — M 
the natural projection in this bundle. 

The isotropy group H of the homogeneous space M=GIH leaves the origin 
o£M of the space M=G/H fixed. Hence the differential z*0 of the map z: M-+M 
(z£H) is a linear transformation on the tangent space T0M. This representation 
Zh-*Z*0 of the isotropy group on the tangent space T0M is called the linear 
isotropy group. The action a: GxM—M of the group G on M induces an action 
a: GXL(M)-+L(M) of the group G on the linear frame bundle L(M). It is clear 
that the action a is effective if and only if the linear representation of the isotropy 
group is faithful, i.e. the map z^z¥o (z£H) is one-to-one. 

It is well-known that the faithfulness of the linear representation of the isotropy 
group is a necessary condition for the existence of invariant connections in a homo-
geneous space. Therefore in the following this condition will be supposed. 

Let be given a frame u0(iLoM at the point o£M. The action a of G on L(M) 
yields an embedding of G in L(M) so that to the unity e£G corresponds the frame 
u0. In the following we use this embedding and we will regard the principal bundle 
{G, n, G/H} as a subbundle of {L(M), p, M). 

We recall Wang's theorem on invariant connections, cf. [2], 186—190. 
Let be M—G/H a homogeneous space. There exists a one-to-one correspond-' 

ence between the set of (/-invariant connections in L(M) and the set of linear maps 
A: g—gl(n) satisfying the conditions 

(i) A(X) - ;.(*) if Z€f), ' V. , •,.••. 
(ii) A([Z, X])-= [¿(Z), A(X)] if Z £ f ) , * € g , 
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where A denotes the homomorphism of the Lie algebras f)^gl(n) induced by the 
linear representation of the isotropy group. 

Let (p denote a G-invariant connection form on L(M), than the corresponding 
linear map A: g—gl(w) satisfies 

A(X) = <p(X) if 
where £ denotes the vector field on L(M), defined by the tangent vectors of orbits 
in L(M) of the one-parameter subgroup exp tXczG. 

Let m denote a complementary subspace to the subalgebra i> in g that is 
g = l)©m. 

Let be given a leftinvariant coframe {co1, ..., a>", con+1, ..., a>n+k} on the group 
G such that the equations a>1=...=con=0 define the subalgebra f) and the equa-
tions Q)n + 1=.. .= A)N+/C=0 define the subspace m. In the following the indices have 
thevalues: a, b, c=l,r..., n; a, P, y=n+1, ..., n+k, where w=dimM and n+k = 
=dim G. The structure equations of the group G have the form 

da>° = - 2 tfcoShcoc -4- 2 cSeflMo)6, 
P,c b,c 

d a f = - i ^ a / A ^ - ^ o / A ^ - i 2 clc<»b A<«c. 
P,y p,c £ b,c 

The connection form <p can be expressed by 

<p{X) = 2 <PacVt)Ec
a = 2 ( 2 ctt

pco/(X) + ^2clccob(X)+^2labcCo"(X))E^ . 

o, c a, c 0 b A b 

where /{¡c are constant and {££} denotes the canonical basis of the linear Lie algebra 
8K»). 

§ 2. The indicatrix of orbits of 1-parameter subgroups 

Let be M a differentiable manifold and suppose that there is linear connection 
on M. Let y(t) be given a differentiable curve in M. The operator of the parallel 
translation along the curve y(t) will be denoted by xt<t\ T ^ M — I j ^ M . 

The indicatrix of the curve y(t) at the point y(t0) is the curve Y(t) in the tangent 
space ry(,o)Af, defined by the parallel translation of the tangent vector y(t) of the 
curve to the point >>(i0) : 

Theorem 1. Let M—G/H be a homogeneous space, and let a G-invariant con-
nection on M be given by a map A: g—gl(n), according to Wang's theorem. The 
indicatrix of the orbit y ( 0 = a ( e x P tX, °) at the origin o£M (A^g) is the curve 

Y(t) = x_1(exp tA(X))xY0, where x: T0M — R" is the coordinate map 
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defined by the frame u and Y0=Tt)t:(X)£ TaM is the tangent vector to the curve >>(/) 
at the initial point o. 

Proof. Since we regard the group G as a submanifold of L(M), the 1-parameter 
subgroup x(t)=exp tX(X£ g) is a curve in L(M) with tangent vectors TmL(M). 
The equations of x(t) in G<zL(M) are 

-^co°(X-(t)) = 0 (a = l, . . . ,n), ^(o°{X(t)) = 0 (a = n + 1, ..., n+k), 

with respect to the given G-left invariant coframe {to1, ..., con+k}. Hence the equa-
tions of the orbit y(t)=a(exptX,o)=p-x(t) are 

= 0 (a = 1 , . . . , n). 

On the other hand, using the following lemma, the components of the covariant 
derivative Vty=Vj>_y of the tangent vector y(t) of the orbit y{t) can be expressed as 

It 

ua(V,y) = ^ co°(X)+Z (p°c(X)<oc(X). 

Lemma. Let M be a manifold equipped with a connection form <p on L(M). 
Let y(t) be a curve in M, X(t) a vector field along y(t). The components co1, ...,©" 
of the R"-valued canonical form co on the covariant derivative vector VtX=V d_X 
along the curve y(t) satisfy dt 

a>a(ytX) = ^to>°(X) + Z.cpUh<oc(X) 

where y and ft denote the horizontal lifts of the vectors y and X, and cp° are the com-
ponents of connection form cp. 

This lemma is a version of Theorem 11 in §6.4 [1]. A(X)=q>(£) and 
d , 

-^a>"(X) =0, we get Vty=x 1A(X)xy, where x:T0M->-R" is the coordinate 

map defined by the chosen frame field, or equivalently, we get the equation of the 
indicatrix Y(t) of y(t) in the form 

^-Y{t) = x~iA(X)xY(t). 

It is well-known that the solution of this ordinary differential equation with constant 
coefficients is y ( f ) = „ - i ( e x p tA(X))xY0, 

where Y0= Y(0)—nMX. The theorem is proved. 

Corol lary . The k-th covariant derivative of tangents of the orbit y(t)= 
=a(exp tX, o) at the initial point o£M is (A(X))k Y0, where Y0=n^Y. 
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§ 3. The indicatrix of orbits in a reductive space 

If there is given a reductive complement m e g to the subalgebra i) in the 
Lie algebra g, characterized by 

9 = i)ffim and (T), m ] c m , 
then it is clear that the map A: g—gl(n) defined by 

A(JQ = A(X) if /1(20 = 0 if X£m 
satisfies the assumptions of Wang's theorem. The corresponding G-invariant con-
nection is called the canonical connection of the reductive space {M=G/H> m}. 
From Theorem 1 it follows immediately: 

Theorem 2. Let {M=G/H,m} be a reductive homogeneous space. The curve 
y(t) in M is the orbit of a l-parameter subgroup of G if and only if its indicatrix with 
respect to the canonical connection is an orbit of a \-parameter subgroup of linear 
isotropy group. In detail, the indicatrix of the orbit a(exp tX, o) at the origin o£M 
is the curve y(/) = (exp t ad Z)Y0, where Z=X^ and Y0=Xm are the components 
of the vector X in the sub spaces i) and m, respectively, and the tangent space T0M is 
identified with the reductive complement m. 

Proof . From the property [f), m]cm of the reductive complement m fol-
lows that the homomorphism X: f) — gl(n) induced by the linear representation of 
isotropy group has the form: X(Z) —ad Z: m-«-m (Z£t>). The theorem is proved. 

Corol lary. The k-th covariant derivative V ^ y of the tangents of the orbit 
j ( i ) = «(exp tX, o) at the initial point o£M is (ad Z)kY0. 

§ 4. Geodesies in a fibering of reductive space 

Let {M—G/H, m} be a reductive homogeneous space. Let be given a sub-
group K(zH and a reductive complementum f on the homogeneous space F—H/K. 
The homogeneous space N=G/K has a structure of a fibre bundle \N,n, M, F}, 
where N, M and F are the total, basic and the fiber type manifolds, respectively. 
We have the decompositions of Lie algebras 

g - f ) © m , i) = f © f , g = f © f © m 
satisfying 

[{), m ] c m , [ f , f ] c = f , [ f , f © u > ] c f © m . 

It is clear that f ©m is a reductive complement on the homogeneous space N=^G/K. 
We investigate the projection to M of the geodesies in the homogeneous space 

N—G/K with respect to the canonical connection corresponding to the reductive 
complement - f © nt. 
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Theorem 3. The curve y(t) in M=G)H through the origin o£M is a projec-
tion of a geodesic in N=G/K (KaH) with respect to the canonical connection if 
and only if its indicatrix at the origin o£M is an orbit of a l-parameter subgroup 
exp t ad Z of the linear isotropy group, where Z£f. 

(Here and in the following ad Z: g-»g denotes the operator X— [Z, X] on g. 
Since [ f ) , r a ] c m , this operator can be restricted to the subspace m e g ; this restric-
tion is denoted by the same way.) 

Proof . Since N=GIK is a reductive homogeneous space equipped with can-
onical connection, the geodesies in N are the orbits of l-parameter subgroups exp tX 
of the group G, where Z£f©m. From Theorem 2, it follows that the indicatrix 
of the orbit of subgroup exp tX at the point o£M is the curve 7(i) = (exp t ad Z)Y, 
where Z=Xf) and Y=Xm. From X£f ©m follows that Z-X^\. 

On the other hand, if y £ m ( = T0M), Z€f, then it is clear that Y(t) = (exp t ad Z)Y 
is the indicatrix of the orbit of the subgroup exp t{Y+Z). But we know that the 
orbit of a l-parameter subgroup exp t(Y+Z) in the space N=G/K is geodesic. 
The theorem is proved. 

* 

§ 5. Geodesies in the tangent sphere bundle of a 2-transitive 
Riemannian homogeneous space 

We apply our results to the characterization of the projections of geodesies 
of the tangent sphere bundle of a 2-transitive Riemannian homogeneous space with 
respect to the Sasaki metric. We get a generalization of a result ([5], [4], [3]) asserting 
that the projection of a geodesic of the tangent sphere bundle of a space of constant 
curvature is a helix. 

Let be M=G/H a 2-transitive Riemannian homogeneous space, that is the 
group G is supposed to act transitively on the tangent sphere bundle N of the mani-
fold M. It is well-known that from the 2-transitivity of the isometry group G of M 
follows that M is symmetric space (cf. [6], 289). On a Riemannian symmetric space 
M—G\H there is a natural reductive complement m e g whose canonical con-
nection has the same geodesies as the Riemannian connection of the symmetric 
space M [6]. 

From the 2-transitivity of G on M— G/H it follows that there exists a subgroup. 
K<zH such that the tangent sphere bundle N can be written in the fori?) N=G/K. 
The isotropy group H is isomorphic to a .subgroup of the orthogonal group 0(n), 
and hence we have an invariant metric on H. This metric induces on the homogene-
ous space F=H/K a naturally reductive Riemannian metric, which defines on F 
the geometry of «-sphere. Let m and f denote the reductive complements on M 
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and F, respectively, i.e. we have g=I)©m, f)=l©f. Now we can apply Theorem 3 
to this case. 

Theorem 4. Let M=G/H be a 2-transitive Riemannian homogeneous space. 
The curve y(t) in M is a projection of a geodesic in the tangent sphere bundle if and 
only if y(t) is a 3-dimensional helix (i.e. the first two curvatures xz are arbitrary 
constants, and the others zero: x3~ ... = xn^1=0). 

Proof . From Theorem 3 we know that y(t) is a projection of a geodesic 
in N if and only if its indicatrix has the form exp (/ ad Z)Y, where Y£m, Zg fc f ) . 

After identifying an orthogonal frame at odM with the identity of H the 
adjoint representation maps the group H isomorphically on a subgroup of the 
orthogonal group O(n) acting on the unit (n—l)-sphere of the tangent space T0M 
(=m). In the following we identify the group H with the subgroup of 0(n) by 
this isomorphism. The reductive complement f of the subalgebra I in I) corresponds 
to the tangent space at the initial point of the (» — l)-sphere F=H/K. Since the 
reductive complement f on F=H[K is identified with the reductive complement 
on the (« — l)-sphere S"~1=0(n)/0(n— 1), the 1-parameter subgroup exp (/ ad Z) 
(Z€f) of O(n) is a 1-parameter rotation group around the (n—2)-plane in TaM, 
orthogonal to the 2-plane of the geodesic great circle which is the orbit of exp (t ad Z) 
in S"~1 = F through the initial point. It follows that the curve 7 ( 0 = e x p (t ad Z)Y 
(y£m, Z€f) is a circle. The indicatrix of a curve y(t) is a circle if and only if it is a 
3-dimensional helix. Theorem 4 is proved. 
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