On the tensor product of weights on W^* -algebras

ŞERBAN STRĂTILĂ

1. Let φ and ψ be normal semifinite weights on the W^* -algebras \mathcal{M} and \mathcal{N} , respectively. Using the Tomita—Takesaki theory ([13]) and the Pedersen—Takesaki theorem on the equality of weights ([10]), CONNES ([3], 1.1.3) (see also [9]) proved that there exists a unique normal semifinite weight $\varphi \otimes \psi$ on $\mathcal{M} \otimes \mathcal{N}$ such that

(1)
$$a \in \mathfrak{M}_{\varphi}^{+}, b \in \mathfrak{M}_{\psi}^{+} \Rightarrow a \otimes b \in \mathfrak{M}_{\varphi \otimes \psi}^{+} \text{ and } (\varphi \otimes \psi)(a \otimes b) = \varphi(a)\psi(b),$$

(2)
$$\mathbf{s}(\varphi \,\overline{\otimes} \,\psi) = \mathbf{s}(\varphi) \,\overline{\otimes} \,\mathbf{s}(\psi),$$

(3)
$$\sigma_t^{\varphi \bar{\otimes} \psi}(x \bar{\otimes} y) = \sigma_t^{\varphi}(x) \bar{\otimes} \sigma_t^{\psi}(y) \quad \text{for} \quad t \in \mathbf{R}, x \in \mathbf{s}(\varphi) \mathcal{M} \mathbf{s}(\varphi), y \in \mathbf{s}(\psi) \mathcal{N} \mathbf{s}(\psi).$$

Here and in the sequel we use the standard notations in the Tomita—Takesaki theory ([12], [13]). In particular, $\mathbf{s}(\varphi)$ is the support projection of φ and $\mathfrak{M}_{\varphi}^{+} = \{x \in \mathcal{M}^{+}; \varphi(x) < +\infty\}$. If φ is not faithful, then $\{\sigma_{t}^{\varphi}\}_{t \in \mathbb{R}}$ means, of course, the modular automorphism group associated with the restriction of φ to $\mathbf{s}(\varphi)$. $\mathcal{Ms}(\varphi)$.

If φ and ψ are normal positive functionals, then condition (1) alone is sufficient to insure the uniqueness in the definition of $\varphi \otimes \psi$. However, in the general case it is often difficult to check condition (3) above for some candidates for $\varphi \otimes \psi$.

The aim of this Note is to offer alternative equivalent definitions for $\varphi \overline{\otimes} \psi$ and to prove some very natural properties of the tensor product of weights.

2. From the works of COMBES ([1]), HAAGERUP ([7]) and PEDERSEN and TAKESAKI ([10]) (see also [6]) we know that for every normal weight φ on \mathcal{M} there exists a family $\{\varphi_i\}_{i \in I}$ of normal positive functionals on \mathcal{M} such that $\varphi = \sum_{i=1}^{N} \varphi_i$, i.e.;

(4)
$$\varphi(x) = \sum_{i \in I} \varphi_i(x) \quad \text{for all} \quad x \in \mathcal{M}^+.$$

In particular, there is an increasing net $\{\varphi_i\}_{i \in I}$ of normal positive functionals on \mathcal{M} such that $\varphi_i \dagger \varphi$, i.e.:

(5)
$$\varphi(x) = \sup \varphi_i(x) = \lim \varphi_i(x) \text{ for all } x \in \mathcal{M}^+.$$

Received August 14, 1978.

On the other hand, and this is the main technical tool we shall use, from the recent work of CONNES ([4]) it follows that

(6) if φ is a normal semifinite weight on M and {φ_i}_{i∈I} is an increasing net of normal weights on M such that φ_i†φ, then

$$\sigma_t^{\varphi_t}(x) \xrightarrow{s} \sigma_t^{\varphi}(x) \quad (t \in \mathbf{R})$$

for every $x \in \bigcup_{i \in I} s(\varphi_i) \mathcal{M} s(\varphi_i)$.

Here \xrightarrow{s} means convergence in the ultra-strong topology on \mathcal{M} of some section $\{i \in I: i \ge i_0\}$ of the net involved.

Finally, from the proof of ([10], Lemma 5.2) it is easy to infer the following improvement of ([10], Lemma 5.2):

(7) if φ_1 , φ_2 are normal semifinite weights on \mathcal{M} such that $\mathbf{s}(\varphi_1) \leq \mathbf{s}(\varphi_2)$ and there exists an s-dense σ^{φ_2} -invariant *-subalgebra \mathcal{A} of \mathfrak{M}_{φ_2} such that

$$\varphi_1(a^*a) \leq \varphi_2(a^*a)$$
 for all $a \in \mathcal{A}$,

then $\varphi_1 \leq \varphi_2$, i.e. $\varphi_1(x) \leq \varphi_2(x)$ for all $x \in \mathcal{M}^+$.

In all this paper \mathcal{M} and \mathcal{N} will denote two W^* -algebras.

3. Lemma. Let φ_1 , φ_2 be normal semifinite weights on \mathcal{M} and ψ a normal semifinite weight on \mathcal{N} . If $\varphi_1 \leq \varphi_2$, then $\varphi_1 \otimes \psi \leq \varphi_2 \otimes \psi$.

Proof. If $\varphi_1 \leq \varphi_2$, then $\mathbf{s}(\varphi_1) \leq \mathbf{s}(\varphi_2)$, whence, by (2), $\mathbf{s}(\varphi_1 \otimes \psi) = \mathbf{s}(\varphi_1) \otimes \mathbf{s}(\psi) \leq \leq \mathbf{s}(\varphi_2) \otimes \mathbf{s}(\psi) = \mathbf{s}(\varphi_2 \otimes \psi)$. Moreover, by (1) and (3), the algebraic tensor product $\mathscr{A} = \mathfrak{M}_{\varphi_2} \otimes \mathfrak{M}_{\psi}$ is an s-dense $\sigma^{\varphi_2 \otimes \psi}$ -invariant *-subalgebra of $\mathfrak{M}_{\varphi_2 \otimes \psi}$. Since $\varphi_1 \leq \varphi_2$ are positive linear functionals on the *-algebra \mathfrak{M}_{φ_2} and $\psi \geq 0$ on the *-algebra \mathfrak{M}_{ψ} , it follows that $\varphi_1 \otimes \psi \leq \varphi_2 \otimes \psi$ on the *-algebra \mathscr{A} . Thus $\varphi_1 \otimes \psi \leq \varphi_2 \otimes \psi$, by (7).

4. Theorem. Let φ , ψ be normal semifinite weights and $\{\varphi_i\}_{i \in I}$, $\{\psi_j\}_{j \in J}$ be increasing nets of normal weights on \mathcal{M} , \mathcal{N} , respectively. If $\varphi_i \dagger \varphi$ and $\psi_j \dagger \psi$, then $\varphi_i \overline{\otimes} \psi_i \dagger \varphi \overline{\otimes} \psi$.

Proof. By Lemma 3, $\{\varphi_i \overline{\otimes} \psi_j\}_{i \in I, j \in J}$ is an increasing net of normal weights on $\mathcal{M} \overline{\otimes} \mathcal{N}$ and $\varphi_i \overline{\otimes} \psi_j \leq \varphi \overline{\otimes} \psi$ for all $i \in I$, $j \in J$. Consequently, the formula

$$\omega(z) = \sup_{ij} (\varphi_i \overline{\otimes} \psi_j)(z) = \lim_{ij} (\varphi_i \overline{\otimes} \psi_j)(z), \quad (z \in (\mathcal{M} \overline{\otimes} \mathcal{N})^+)$$

defines a normal semifinite weight ω on $\mathscr{M} \otimes \mathscr{N}$. For $a \in \mathfrak{M}_{\omega}^{+}$, $b \in \mathfrak{M}_{\omega}^{+}$, we have

$$\omega(a \overline{\otimes} b) = \sup_{ij} \varphi_i(a) \psi_j(b) = \sup_i \varphi_i(a) \sup_j \psi_j(b) = \varphi(a) \psi(b)$$

On the other hand, it is easy to see that $s(\varphi_i)\dagger s(\varphi)$, $s(\psi_j)\dagger s(\psi)$ and $s(\varphi_i \otimes \psi_j)\dagger s(\omega)$, hence

$$\mathbf{s}(\omega) = \mathbf{s}(\varphi) \overline{\otimes} \mathbf{s}(\psi).$$

Finally, by the result (6), for $t \in \mathbf{R}$, $x \in \bigcup_{i \in I} \mathbf{s}(\varphi_i) \mathcal{M} \mathbf{s}(\varphi_i)$, $y \in \bigcup_{i \in J} \mathbf{s}(\psi_i) \mathcal{N} \mathbf{s}(\psi_i)$, we have

 $\sigma_t^{\varphi_i}(x) \xrightarrow{s} \sigma_t^{\varphi}(x), \quad \sigma_t^{\psi_j}(y) \xrightarrow{s} \sigma_t^{\psi}(y)$

and

$$\sigma_t^{\varphi_i \bar{\otimes} \psi_j}(x \bar{\otimes} y) \xrightarrow{s} \sigma_t^{\omega}(x \bar{\otimes} y).$$

Hence,

$$\sigma_t^{\omega}(x \overline{\otimes} y) = \sigma_t^{\varphi}(x) \overline{\otimes} \sigma_t^{\psi}(y).$$

Since $\mathbf{s}(\varphi_i) \dagger \mathbf{s}(\varphi)$, $\mathbf{s}(\psi_j) \dagger \mathbf{s}(\psi)$, the above equality still holds for $x \in \mathbf{s}(\varphi) \mathcal{M}\mathbf{s}(\varphi)$, $y \in \mathbf{s}(\psi) \mathcal{N}\mathbf{s}(\psi)$.

Thus, ω satisfies all conditions (1), (2), (3) which define $\varphi \overline{\otimes} \psi$. Consequently $\omega = \varphi \overline{\otimes} \psi$, i.e. $\varphi_i \overline{\otimes} \psi_j \dagger \varphi \overline{\otimes} \psi$.

5. In particular if the φ_i 's and the ψ_j 's are normal positive functionals such that $\varphi_i \dagger \varphi, \psi_j \dagger \psi$, then

(8)
$$(\varphi \otimes \psi)(z) = \sup_{ij} (\varphi_i \otimes \psi_j)(z) \quad (z \in (\mathcal{M} \otimes \mathcal{N})^+)$$

is an alternative equivalent definition of the weight $\varphi \otimes \psi$, independent of the choice of the families $\{\varphi_i\}, \{\psi_i\}$, whose existence is guaranteed by (5).

6. As a first application we obtain the distributivity of the tensor product with respect to addition:

Corollary. Let φ_1 , φ_2 be normal semifinite weights on \mathcal{M} such that $\varphi_1 + \varphi_2$ is semifinite and ψ is a normal semifinite weight on \mathcal{N} . Then

$$(\varphi_1 + \dot{\varphi}_2) \overline{\otimes} \psi = \varphi_1 \overline{\otimes} \psi + \varphi_2 \overline{\otimes} \psi.$$

Proof. Let $\{\psi_j\}$ be an increasing net of normal positive functionals on \mathcal{N} such that $\psi_i \dagger \psi$.

Assume that φ_1 , φ_2 are normal positive functionals. Since the distributivity property is obvious for normal positive functionals, by Theorem 4 we obtain

$$(\varphi_1+\varphi_2)\overline{\otimes}\psi = \sup_j (\varphi_1+\varphi_2)\overline{\otimes}\psi_j = \sup_j \varphi_1\overline{\otimes}\psi_j + \sup_j \varphi_2\overline{\otimes}\psi_j = \varphi_1\overline{\otimes}\psi + \varphi_2\overline{\otimes}\psi.$$

Now, in the general case, let $\{\varphi_{1i}\}$, $\{\varphi_{2k}\}$ be increasing nets of normal positive functionals on \mathscr{M} such that $\varphi_{1i} \uparrow \varphi_1$, $\varphi_{2k} \dagger \varphi_2$. It is then obvious that $\varphi_{1i} + \varphi_{2k} \dagger \varphi_1 + \varphi_2$. Using Theorem 4 and the first part of the proof, we obtain

$$\begin{aligned} (\varphi_1 + \varphi_2) \bar{\otimes} \psi &= \sup_{ik} (\varphi_{1i} + \varphi_{2k}) \bar{\otimes} \psi = \sup_{ik} (\varphi_{1i} \bar{\otimes} \psi + \varphi_{2k} \bar{\otimes} \psi) = \\ &= \sup \varphi_{1i} \bar{\otimes} \psi + \sup_{k} \varphi_{2k} \bar{\otimes} \psi = \varphi_1 \bar{\otimes} \psi + \varphi_2 \bar{\otimes} \psi. \end{aligned}$$

Şerban Strătilă

7. If $\varphi = \sum_{i} \varphi_{i}$ and $\psi = \sum_{j} \psi_{j}$, then from Corollary 6 and Theorem 4 it follows that

(9)
$$(\varphi \bar{\otimes} \psi)(z) = \sum_{ij} (\varphi_i \bar{\otimes} \psi_j)(z) \quad (z \in (\mathcal{M} \bar{\otimes} \mathcal{N})^+).$$

In particular if the φ_i 's and the ψ_j 's are normal positive functionals, then the above relation gives another alternative equivalent definition of $\varphi \otimes \psi$, independent of the choice of the families $\{\varphi_i\}$ and $\{\psi_j\}$, whose existence is guaranteed by (4).

The weight φ is called strictly semifinite ([2]) if there exists a family $\{\varphi_i\}$ of normal positive functionals with mutually orthogonal supports such that $\varphi = \sum_i \varphi_i$. If both φ and ψ are strictly semifinite, then, by (9), $\varphi \otimes \psi$ is again strictly semifinite. This result is originally due to COMBES ([2]).

Other particular cases of (8) and (9) are mentioned in ([11], 0.1.2).

8. Another application concerns the relation between the tensor product and the balanced weight. Let us recall ([3], 1.2.2) that if φ_1 , φ_2 are normal semifinite weights on \mathcal{M} , then the balanced weight $\theta(\varphi_1, \varphi_2)$ on the \mathcal{W}^* -algebra $\operatorname{Mat}_2(\mathcal{M}) \cong \mathcal{M} \otimes \operatorname{Mat}_2(\mathbb{C})$ of 2 by 2 matrices over \mathcal{M} is defined by

$$\theta(\varphi_1, \varphi_2) \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \varphi_1(x_{11}) + \varphi_2(x_{22}).$$

Now let ψ be a normal semifinite weight on \mathcal{N} . Then $\theta(\varphi_1, \varphi_2) \overline{\otimes} \psi$ and $\vartheta(\varphi_1 \overline{\otimes} \psi, \varphi_2 \overline{\otimes} \psi)$ are both normal semifinite weights on the W^* -algebra

 $\operatorname{Mat}_2(\mathscr{M}) \overline{\otimes} \mathscr{N} \cong \mathscr{M} \overline{\otimes} \mathscr{N} \otimes \operatorname{Mat}_2(\mathbf{C}) \cong \operatorname{Mat}_2(\mathscr{M} \overline{\otimes} \mathscr{N})$

and we have the following

Corollary. $\theta(\varphi_1 \overline{\otimes} \psi, \varphi_2 \overline{\otimes} \psi) = \theta(\varphi_1, \varphi_2) \overline{\otimes} \psi$.

Proof. It is obvious that if $\varphi_{1i}^{\dagger} \varphi_1$ and $\varphi_{2k}^{\dagger} \varphi_2$, then $\theta(\varphi_{1i}, \varphi_{2k})^{\dagger} \theta(\varphi_1, \varphi_2)$. Also, the stated equality is obvious for normal positive functionals. Thus the corollary follows using (5) and Theorem 4.

9. Consider again the balanced weight $\theta(\varphi_1, \varphi_2)$ and assume that $\mathbf{s}(\varphi_2) \leq \mathbf{s}(\varphi_1)$. Then the Connes cocycle ([3], 1.2.2) $u_t = [D\varphi_2: D\varphi_1]_t$, $(t \in \mathbb{R})$, is defined by the equality

$$\sigma_t^{\theta(\varphi_1,\varphi_2)} \begin{pmatrix} 0 & 0 \\ \mathbf{s}(\varphi_2) & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ u_t & 0 \end{pmatrix} \quad (t \in \mathbf{R}).$$

Thus, using Corollary 8, for $v_t = [D(\varphi_2 \overline{\otimes} \psi): D(\varphi_1 \overline{\otimes} \psi)]_t$ we get

 $\begin{pmatrix} 0 & 0 \\ v_t & 0 \end{pmatrix} = \sigma_t^{\theta(\varphi_1 \bar{\otimes} \psi, \varphi_2 \bar{\otimes} \psi)} \begin{pmatrix} 0 & 0 \\ \mathbf{s}(\varphi_2 \bar{\otimes} \psi) & 0 \end{pmatrix} = \sigma_t^{\theta(\varphi_1, \varphi_2) \bar{\otimes} \psi} \begin{pmatrix} 0 & 0 \\ \mathbf{s}(\varphi_2) \bar{\otimes} \mathbf{s}(\psi) & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ u_t \bar{\otimes} \mathbf{s}(\psi) & 0 \end{pmatrix}.$ Consequently,

 $[D(\varphi_2 \overline{\otimes} \psi): D(\varphi_1 \overline{\otimes} \psi)]_t = [D\varphi_2: D\varphi_1]_t \overline{\otimes} \mathbf{s}(\psi).$

.388

Using this equality and the chain rule for the Connes cocycle ([3], 1.2.3), we obtain the following

Corollary. Let φ_1, φ_2 be normal semifinite weights on \mathcal{M} with $\mathbf{s}(\varphi_2) \leq \mathbf{s}(\varphi_1)$ and let ψ_1, ψ_2 be normal semifinite weights on \mathcal{N} with $\mathbf{s}(\psi_2) \leq \mathbf{s}(\psi_1)$. Then

$$[D(\varphi_2 \overline{\otimes} \psi_2): D(\varphi_1 \overline{\otimes} \psi_1)]_t = [D\varphi_2: D\varphi_1]_t \overline{\otimes} [D\psi_2: D\psi_1]_t \quad (t \in \mathbf{R}).$$

This result is stated by DIGERNES ([5], 2.4), where the proposed proof consists of checking the KMS conditions insuring the uniqueness of the Connes' cocycle ([5], 2.2), but only for decomposable elements

 $z_1 \in (\mathfrak{N}_{\varphi_2}^* \cap \mathfrak{N}_{\varphi_1}) \otimes (\mathfrak{N}_{\psi_2}^* \cap \mathfrak{N}_{\psi_1}), \quad z_2 \in (\mathfrak{N}_{\varphi_1}^* \cap \mathfrak{N}_{\varphi_2}) \otimes (\mathfrak{N}_{\psi_1}^* \cap \mathfrak{N}_{\psi_2}).$

However, it is not obvious à priori that this entails the KMS condition for all

 $z_1 \in \mathfrak{N}_{\varphi_2 \mathbin{\overline{\otimes}} \psi_2}^* \cap \mathfrak{N}_{\varphi_1 \mathbin{\overline{\otimes}} \psi_1}, \quad z_2 \in \mathfrak{N}_{\varphi_1 \mathbin{\overline{\otimes}} \psi_1}^* \cap \mathfrak{N}_{\varphi_2 \mathbin{\overline{\otimes}} \psi_2},$

which is the real requirement for the uniqueness.

On the other hand, if $\psi_1 = \psi_2 = \psi$, then using Corollary 8 it is easy to show that for the S-operators ([5], (2.6)) we have

$$S_{\varphi_2 \overline{\otimes} \psi, \varphi_1 \overline{\otimes} \psi} = S_{\varphi_2, \varphi_1} \overline{\otimes} S_{\psi}.$$

Once this equality is obtained, the proof in ([5], 2.4) holds indeed.

10. For every normal semifinite weight φ on \mathscr{M} and every positive self-adjoint operator A affiliated with the centralizer \mathscr{M}_{φ} of φ there exists a unique normal semifinite weight φ_A on \mathscr{M} such that $[D\varphi_A: D\varphi]_t = A^{it}$, $t \in \mathbb{R}$, ([10]). From Corollary 9 we infer the following result, originally obtained by KATAYAMA ([9]):

Corollary. Let φ, ψ be normal semifinite weights on \mathcal{M}, \mathcal{N} , respectively, and let A, B be positive self-adjoint operators affiliated to $\mathcal{M}_{\varphi}, \mathcal{N}_{\psi}$, respectively. Then $A \otimes B$ is a positive self-adjoint operator affiliated to $(\mathcal{M} \otimes \mathcal{N})_{\varphi \otimes \psi}$ and

$$(\varphi \,\overline{\otimes} \,\psi)_{A \,\overline{\otimes} \,B} = \varphi_A \,\overline{\otimes} \,\psi_B.$$

11. Arguing as in the proof of Corollaries 6 and 8, with the help of (5) and Theorem 4 we obtain:

Corollary. Let φ , ψ be normal semifinite weights on M, N, respectively, and let $\pi: \mathcal{M}_1 \rightarrow \mathcal{M}, \varrho: \mathcal{N}_1 \rightarrow \mathcal{N}$ be normal completely positive linear maps. If the weights $\varphi \circ \pi, \psi \circ \varrho$ are semifinite, then

$$(\varphi \overline{\otimes} \psi) \circ (\pi \overline{\otimes} \varrho) = (\varphi \circ \pi) \overline{\otimes} (\psi \circ \varrho).$$

12. A final application concerns some operator valued weights ([8]) called Fubini mappings ([14]). For every normal semifinite weight ψ on \mathcal{N} there is a unique normal semifinite operator valued weight $E^{\psi}_{\mathcal{M}}$ defined on $(\mathcal{M} \otimes \mathcal{N})^+$ with values in

the extended positive part ([8]) $\overline{\mathcal{M}}^+$ of \mathcal{M} , such that

(10)
$$\varphi(E^{\psi}_{\mathcal{M}}(z)) = (\varphi \,\overline{\otimes} \,\psi)(z) \quad (z \in (\mathcal{M} \,\overline{\otimes} \,\mathcal{N})^+)$$

for every normal positive functional φ on \mathcal{M} (cf. also [11], 0.1.6). From Theorem 4 it follows that:

Corollary. If ψ , ψ_i are normal semifinite weights on \mathcal{N} and $\psi_i t \psi$, then

$$E^{\psi}_{\mathcal{M}}(z) = \sup E^{\psi}_{\mathcal{M}}(z) \quad (z \in (\mathcal{M} \otimes \mathcal{N})^+).$$

Also, the equality (10) extends to any normal semifinite weight φ on \mathcal{M} .

Actually, the operator valued weight $E_{\mathcal{M}}^{\psi}$ is nothing but the tensor product. operator valued weight $\iota_{\mathcal{M}} \otimes \psi$ ([8]), where $\iota_{\mathcal{M}}$ stands for the identity mapping: on \mathcal{M} . We remark that Corollary 12 can be extended to an arbitrary normal semifinite operator valued weight instead of $\iota_{\mathcal{M}}$. Moreover, Theorem 4 can be extended to operator valued weights.

References

- [1] F. COMBES, Poids sur une C*-algèbre, J. Math. Pures Appl., 47 (1968), 57-100.
- [2] F. COMBES, Poids et espérences conditionnelles dans les algèbres de von Neumann, Bull. Soc. Math. France, 99 (1971), 73-112.
- [3] A. CONNES, Une classification des facteurs de type III, Ann. Éc. Norm. Sup., 6 (1973), 133-252.
- [4] A. CONNES, On a spatial theory of von Neumann algebras, Preprint IHES Paris, 1977.
- [5] T. DIGERNES, Duality for weights on covariant systems and its applications, *Dissertation UCLA*, 1975.
- [6] G. A. ELLIOTT, On the Radon-Nikodym derivative with a chain rule in von Neumann algebras, Canad. Math. Bull., 18 (1975), 661-669.
- [7] U. HAAGERUP, Normal weights on W*-algebras, J. Func. Anal., 19 (1975), 302-318.
- [8] U. HAAGERUP, Operator valued weights in von Neumann algebras, Preprint, Odense Univ., No. 12/1975.
- [9] Y. KATAYAMA, The tensor product of weights, Proc. Jap. Acad., 50 (1974), 430-432.
- [10] G. K. PEDERSEN-M. TAKESAKI, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973), 53-88.
- [11] Ş. STRĂTILĂ—D. VOICULESCU—L. ZSIDÓ, On crossed products, I, Revue Roum. Math. Pures-Appl., 21 (1976), 1411–1449.
- [12] Ş. STRĂTILĂ—L. ZSIDÓ, Lectures on von Neumann algebras, Editura Academiei & Abacus-Press, 1979.
- [13] M. TAKESAKI, Tomita's theory of modular Hilbert algebras and its applications, Lecture Notes. in Math., No. 128, Springer Verlag (1970).
- [14] J. TOMIYAMA, Applications of Fubini mappings to tensor products of Banach algebras, Lecture-Notes, Copenhagen Univ., 1971.

0

DEPARTMENT OF MATHEMATICS INCREST BD. PĂCII 220 77 538 BUCHAREST 16 R. S. ROMANIA

390