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Almost all algebras with triply transitive automorphism 
groups are functionally complete 

LÁSZLÓ SZABÓ and ÁGNES SZENDREI 

1. Introduction 

The present work is a continuation of a series of results on the functional com-
pleteness of algebras with high symmetry. It is also a contribution to the solution 
of Problem 2 0 in GRÀTZER [4]. WERNER [14] proved that every finite algebra (A; t) 
where t is Pixley's ternary discriminator function on A is functionally complete. 
Recently, FRIED and PIXLEY [2] showed that for 3 S | / L | < N 0 , the algebra <A;d) 
with d the dual discriminator function on A is also functionally complete. A con-
siderable generalization of these results was found by CSÁKÁNY [1] who proved 
that, up to equivalence, except for six algebras every non-trivial finite algebra whose 
automorphism group is the full symmetric group is functionally complete. Our 
contribution to this topic is the following theorem: an at least four element non-
trivial finite algebra whose automorphism group is triply transitive is either func-
tionally complete or equivalent to an affine space over the two element field. In the 
proof our main tool is Rosenberg's completeness critérium which provides a powerful 
method for checking functional completeness. 

There is an interesting phenomenon which is worth being referred to in con-
nection with our result. This is the connection of our theorem to the Slupecki type 
criteria for completeness due to SALOMAA [10] and SCHOFIELD [11], saying that any 
set F of functions over a finite set A (|/4|^4) which contains a function satisfying 
the Slupecki condition and a triply transitive group of permutations of A, generates 
the set of all functions on A, except for the case when all functions in F are linear 
in each variable, relative to some representation of A as a vector space over the two 
element field. Making use of Rosenberg's completeness critérium, this theorem can 
be further improved to doubly transitive permutation groups and then the excep-
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tions are exactly those sets of functions that are linear with respect to a vector space 
over an arbitrary prime field (see ROSENBERG [8], also KNOEBEL [5]). It would be 
worthwhile to find out whether our theorem could be generalized for finite algebras 
with doubly transitive automorphism groups. 

2. Preliminaries 

Let A be a non-empty set. By an operation we always mean a finitary opera-
tion. The set of «-ary operations on A will be denoted by O^0 (n = l). Furthermore, 

oo 
we set O a = (J O^0. An operation / 6 O ^ is said to depend on its z'th variable 

n = 1 

(lS/'S/z) if there exist elements al, ..., a„, a'-(a;) in A such that 

/(«i, •••,«„) i, ...,ai_1,a'i,al+1, ...,an). 

f is called essentially k-ary, if it depends on exactly k of its variables. / is termed 
idempotent, if for every a£A, we have f(a, ..., a)=a. f is called non-trivial if it is 
not a projection. 

We adopt the terminology of [4] except that polynomials and algebraic func-
tions are called term functions and polynomial functions, respectively. Accordingly, 
the set of polynomial functions and the set of term functions of an algebra 9t are 
denoted by P(9l) and T(9l), respectively. Two algebras (with a common base set) 
are said to be equivalent if they have the same term functions. By a clone we mean 
a subset C of O^ for some set A(?±0), which contains the projections and is closed 
with respect to superposition. In particular, both P(2l) and T(Sl) are clones for any 
algebra 91. An algebra 11 = (A; F) is called functionally complete if P(5I )=O x 

and trivial if T(9l) contains projections only. An algebra is said to be idempotent if 
its fundamental operations (and hence all term functions) are idempotent. For a 
field K, an affine space over K is defined to be an algebra {A; I ) where I is the set 
of all idempotent term functions of a vector space over K with base set A. 

The automorphism group of an algebra 91 is denoted by Aut 91. If Aut 91 is 
the full symmetric group then 21 is called homogeneous. 

' Now we are going to formulate Rosenberg's Theorem [6, 7] which is our main 
tool in proving our theorem. First, however, we need some further definitions. 

Let A(^0) be a finite set, k,n^l,f€O^0 and g ^ A k an arbitrary fc-ary 
relation. / is said to preserve Q if Q is a subalgebra of the &'th direct power of the 
algebra (A;f); in other words, / preserves Q if for any nXk matrix, with entries in 
A, whose rows belong to Q, the row of column values of / also belongs =to Q. It is 
easy to verify that the set of operations preserving a relation Q forms a clone, which 
will be denoted by Pol Q. 
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A k-ary relation g on A is called central if g?±Ak and there exists a non-void 
proper subset C of A such that 

(a) (alt ..., ak)£g whenever at least one a^C (l^j^k); 
(b) (at, ..., ak)£q implies (aln, ..., ak„)for every permutation it of the 

indices l,...,k; 
(c) <a1; ..., ak)£g if at = aj for some i^j (l^ij^k). 
Let and m=s\. A family T— {0 l 5 ..., &m} of equivalence rela-

tions on A is termed k-regular if 
(d) each &j has k equivalence classes (j= 1, ...,m); 

m 
(e) the intersection H  Et of arbitrary equivalence classes e,. of 0, (7=1, ...,/w)< 

i = 1 
is non-empty. 

The relation Q determined by T consists of all (aj, ..., ak)£Ak having the property 
that for each j (j= 1, ... , m) at least two elements among als ak are equiv-
alent modulo Gj. Notice that Q has properties (b) and (c). 

We shall use the following version of Rosenberg's Theorem (see [9]): 

, Theorem. (ROSENBERG [6, 7]) For a non-empty finite set A, Pol Q is a maximal 
subclone of O^, provided Q is one of the following relations on A: 

(a) a bounded partial order; 
(/?) a binary relation {(a, an)\a£A} where n is a permutation of A with \A\/p-

cycles of the same prime length p; 
(y) a quaternary relation {<(%, a2, a3, a4)£Ai\a1+a2—az + a^ where (A;+) is 

an elementary abelian p-group (p is a prime number); 
(5) a non-trivial equivalence relation; 
(e) a centra^ relation; 
(0 a relation determined by a k-regular family of equivalence relations on A 

(FCS 3). 
Moreover, every proper subclone of O^ is contained in at least one of the clones listed' 
above. 

In the proof of our theorem we need two other results. 

Lemma. (SWIERCZKOWSKI [12]; see also [1; Lemma 4]). If an at least quaternary-
operation turns into projection whenever we identify any two of its varidbles, then it 
always turns into the same projection. 

Theorem. (URBANIK [13; Lemma 9]) Let 91 = (A; F) be an idem-
potent algebra which has essentially ternary term functions but has neither essentially 
binary nor essentially quaternary term functions. Then 91 is equivalent to an algebra: 
(A; /U G) where 

(i) (A; I) is an affine space over the two element field GF (2); 
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(ii) either (7 = 0 or there exists an integer r^5 such that G contains an r-ary 
operation depending on every variable, furthermore, every g£ G depends on at least 
j-variables and satisfies the equation •••, x„) =.x1 whenever the elements x1; ..., x„ 
belong to a subalgebra of (A ; / ) generated by less than r elements. 

3. Results 

Our main theorem was inspired by the following 

THEOREM. (CSÂKÂNY [1]) A non-trivial finite homogeneous algebra is func-
tionally complete unless it is equivalent to one of the following algebras: 

• (2; n) with n(x)=x+\ (mod 2); 
(2; s) with s(x, y, z) = x+y+z (mod 2) (i.e. the two element affine space over 

GF(2)); 
(2; s) with s(x, y, z) = x+y+z+1 (mod 2); 
(2; d) with d(x,y, z)=xy+yz + xz (mod 2); 
(3;o) with xoy=2x + 2y (mod3); 
the four element affine space over GF(2). 

The proof of this result in [1] depends upon the Slupecki critérium. Trying to 
prove it by means of Rosenberg's Theorem, the first author noticed that it suffices 
to require Aut 21 to be quadruply transitive. Moreover, the major part of his proof 
used 3-fold transitivity only. This observation led us to the following 

Theorem. An at least four element non-trivial finite algebra with triply transi-
tive automorphism group is either functionally complete or equivalent to an affine 
space over GF (2). 

Remark . Examining the proof presented in the next section one can observe 
that the hypotheses of this theorem can be slightly weakened so that the conclusion 
still remain valid. Namely, it suffices to assume that the endomorphism monoid be 
weakly triply transitive in the sense that any three distinct elements of the algebra 
•can be sent into any other tree distinct elements by an endomorphism. 

It is easy to check that a more than four element affine space over GF (2) has 
a triply but not quadruply transitive automorphism group. Hence we get 

C o r o l l a r y 1. An at least four element non-trivial finite algebra with quadruply 
transitive automorphism group is functionally complete unless it is equivalent to the 
four element affine space over GF (2). 

C o r o l l a r y 2. An at least four element non-trivial finite algebra with triply 
.transitive automorphism group is simple or equivalent to an affine space over GF (2). 
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This is a sharpening of a result of GANTER, PLONKA and WERNER [3] on the 
simplicity of finite homogeneous algebras. 

Coro l l a ry 3. An at least four element finite simple algebra with triply transi-
tive automorphism group is functionally complete. 

4. Proof of the main theorem 

We start with two simple observations. 

P r o p o s i t i o n 1. A finite algebra ^¡l — (A; F) is either functionally complete 
or P (21) ̂  Pol Q for a relation Q (on A) of type (a), (y), (S), (Q or 

(e') an at least binary central relation. 

Proof . Notice that if Q is a unary central relation or a relation of type (/?) 
then Pol Q fails to contain all constant functions on A. Thus the statement follows 
from Rosenberg's Theorem. 

P ropos i t i on 2. Let 21 be an at least four element finite algebra whose auto-
morphism group is triply transitive. Then any non-trivial term function of 21 is at least 
ternary. In particular, 21 is idempotent. 

Proof . Let /£T(2I), /binary, and a^b arbitrary elements in the base set A 
of 21. Then f(a, b)£ {a, b}, else there would exist 7r£Aut2I with an=a, bn=b 
and f(a, b)n = c$ {a, b,f(a, b)}, implying that f(a, b)=f(a%, bn)=c which con-
tradicts the choice of c. Similarly, g(x)£ {x} for any unary g£T(2l) and x£A. 
Thus /(x, x )=x for any x£A. Furthermore, if, say,/(a, b)—a then by the 2-fold 
transitivity of Aut2I, f(x, y)=x for any distinct x,y£A. Hence / is a projection, 
what was to be proved. 

Lemma 1. Let A be a finite set, \A\ ==4, and f a non-trivial ternary operation 
on A such that the algebra ( A ; f ) is functionally incomplete and has a triply transi-
tive automorphism group. Then 

(i) / is a minority function, i.e. f(x, y, y)=f(y, x, y)=f(y, y, x)=x for all 
x, y£A, and for any distinct elements a, b, c£A, f(a, b, c)$ {a, b, c}; 

(ii) Pol q if q is a relation of type (a), (y) with p>2 , (s') or (£). 

Proof . Recall that / turns into projection if we identify any two of its variables. 
Suppose that there exist distinct elements a, b, c£A such that f(a, b, c)£ {a, b, c}, 
say, f(a,b,c)=a. Then the 3-fold transitivity of Aut (A; f ) implies fix, y, z)=x 
for any distinct x, y, z£A. Hence the algebra ( A ; f ) is homogeneous, so that by 
Csakany's Theorem ( A ; f ) must be equivalent to the four element affine space over 

8 
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GF (2), else it would be functionally complete. However, then / is necessarily the 
"parallelogram operation" x+y + z, which does not satisfy our assumption on / . 
This contradiction shows that a, b, c,f(a, b, c) are pairwise different provided the 
first three of them are such. Let a, b, c£A be pairwise different. Then there exists 
an automorphism n of (A; / ) which sends a, b and f(a, b, c) into a, b and c, respec-
tively. Hence f(a, b, en) = c. Consequently, 

( * ) for any distinct elements a, b, c£A there exists d£A such that f(a,b,d)—c. 

Now we are going to show that P ( ( /4 ; / ) ) ^Po l Q if g is a relation of type (a), 
(e') or (0- We do this by constructing matrices with entries in A such that each 
row belongs to Q but the row of column values of / fails to belong to Q. We have to 
construct various matrices according to the various possibilities for the behaviour 
o f / when identifying two of its variables. Consider first a partial order s. with lower 
bound 0 and upper bound 1, further, let 0-=a< 1 (a€A). Owing to (*), we can 
choose d£A such that /(0, a,d)= 1. As regards the behaviour of / when identify-
ing two of its variables, by symmetry, it suffices to deal with the following two 
cases: f(x, y, y)—x for all x, yd A or / is a majority function (i.e. f(x, y, y) = 
=f(y, x, y)=f(y, y, x)=y for all x,y£A). Accordingly, the two matrices dis-
proving P « , 4 ; / » g Pols= are 

0 0 0 a 
a 1 a a 

and d_d 
1 0 l a 

Let Q be a fc-ary central relation (k^2) and select (alt ..., ak)£Ak—g. Further-
more, let c€C, the centre of g. By the definition of a central relation, a1, a2, c are 
pairwise different, so that, by (*), there exists d£A such that f(c, a2,d)=a1. 
Now the matrices 

c a2 as...ak a1 c a3...ak 
a2 a2 a3... ak c c a3...ak 
d d d ...d and c a2 a3...ak 

a1 a2 a3... ak ax a2 a3 ... ak 

show that P«v4 ; / ) ) ^Po l Q whether f(x, x,y) = x for all x, y£A o r / i s a minority 
function. By symmetry, all other cases can be reduced to one of these. Similarly, if 
Q is a k-ary relation of type (£) 3) and {a1,..., ak)dAk—g then, a „ a2, a3 

being pairwise different (by property (c)), there is a d£A with f(a2, a3, d)=at. 
Hence the two matrices 

a2 a2 a3 ai...ak ax a2 a2 ai...ak 
a3 a2 a3 at...ak a2 a2 a2 ai...ak 
d d d d ... d a2 a2 a3 a4...ak 

ax a2 a3 at...ak ax a2 a3 a4 ... ak 
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meet our requirements if f(x,x,y)=x for all x, y£A or / is a minority function, 
respectively. 

Suppose / is not a minority function, say / ( x , x,y)=x for all x,y£A. Then 
P((A;Pol o for any relation of type (y) or (<5). Indeed, assume first g is a 
non-trivial equivalence relation, agb, a?±b and age (i.e. (a, c)£A2 — g), a,b,c£A. 
Then, by (*), there exists d£A such that f(a,b,d) = c, hence the matrix 

a a 
a b 
d d 
a c 

proves P((/i ;/))§= Pol g. If in turn g is a relation of type (y), take into considera-
tion t h a t / i s essentially ternary, hence in particular,/depends on the third variable, 
i.e. there exist elements a,b, c, d£A, c^d such that f(a, b, 0)9^/(0, b, d). Then 
the matrix 

a a a a 
b a b a 
c a d c—d+a 

f(a, b, c) a /(a, b,d) a 

shows that P « , 4 ; / ) ) ^ P o l g, what was to be proved. By Proposition 1, this con-
tradicts the functional incompleteness of (A; f ) . Thus / is a minority function. 

It remains to verify that if / is a minority function and P « y l ; / ) ) g P o l g for 
a relation g of type (y) then p=2. This is done by the following matrix: 

a 0 a 0 
a 0 0 a 
a a a a 
a a 0 0 

where 0 is the zero element of the abelian group (A; +), a£ A is arbitrary and, by 
definition, (a, a, 0, 0)£g iff a+a=0. 

Lemma 2. Consider a finite set A, \A\^4, and an at least quaternary non-
trivial operation f on A such that the algebra (A; f ) has a triply transitive automor-
phism group and f turns into projection whenever we identify any two of its variables. 
Then ( A \ f ) is functionally complete. 

Proof . Suppose/ is w-ary, « s 4 . By 3wierczkowski's Lemma/always turns 
into the same, say the first, projection if we identify any two of its variables. Since 
/ itself is not the first projection, there exist (necessarily distinct) elements et (1 ^isn) 

8 * 
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such that f(e1, ...,e„)^e1. Then f(ex,..., e2 or e3. We can assume without 
loss of generality that f(ex, ...,en)^e2, i.e. ex, e2 and f{ex, ..., en) are pairwise 
different. Hence, 3-fold transitivity of Aut (A; / ) implies 

( * * ) for any distinct elements a,b,c£A there exist elements d3,...,d„ such that 
f(a,b,d3, ...,d„) = c. 

By Proposition 1, we are done if we show that F((A;f)) is not contained in 
Pol g for any relation g of type (a), (y), (5), (e') or (0. To this end we have to con-
struct matrices with entries in A whose rows belong to Q but the row of column 
values of / fails to belong to g. The five matrix schemes corresponding to the five 
types are the following: 

(a) 0 0 (y) a a a a (ft a a 
b 1 b a b a b a 
d3 1 ds a a ds d3 d3 

dn i dn a a dn dn d„ 
1 0 c a a a c a 

c a2 • •
 ak (0 «2 °2 a 3 a 4 . .. ak 

a2 a3. .. ak a3 
a2 a3 a 4 . .. ak 

d3 d3 d3. .. d3 d3 d3 d3 d3. .. d3 

dn dn d„. •dn dn d„ d„ dn- -dn 

ax a2 a3...ak (k ^ 2) ax a2 a3 ai...ak ( i c S 3 ) . 

If g is a partial order, 0 and 1 denote the lower and upper bounds, respectively, b 
is another element, b^O, 1. The existence of the elements d3, ...,d„ is ensured 
by (* *). Similar argument can be applied in the other cases, too. In case (y) a, b, c 
are arbitrary distinct elements of A while in case (<5) a, b and c are selected such 
that a^b, agb and age (i.e. (a, c)£A2 — g);d3, ...,dn is chosen according to ( * *). 
Finally, if g is of type (e') or (Q then we fix a &-tuple (a1; ..., ak)£Ak—g. By defini-
tion, its components are necessarily pairwise different, moreover, if g is a central 
relation, none of them belong to the centre C. Thus c(€C), a2, a1} resp. a2, a3, ax 

are pairwise different, hence (* #) implies the existence of the elements d3, ..., dn£A 
completing the first columns of the corresponding matrices. 

Lemma 3. Let <H~{A', F) be a functionally incomplete non-trivial 
finite algebra with a triply transitive automorphism group. Then 

(i) 31 has a unique non-trivial ternary term function m. It is a minority function 
and has the property that for any distinct elements o, b, c£A, m(a, b, c)$ {a, b, c}; 
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(ii) any non-trivial quaternary term function h of 91 satisfies the identities 

(1) h(x, x, y, z) = m{x, y, z), 

(2) h(x,y,x,z)'=m(x,y,z), 

(3) h(x, y, z,x) = m(x, y,z), 

(4) h(x, y, y, z) — z, 

f5) h(x, y, z, z) = y, 

(6) h(x,y,z,y) = z, 

(7) h (m (x, y, z), x, y, z) = m (x, y, z), 

or arises from such a term function by interchanging its variables. 

Proof . Let n denote the minimum of the arities of non-trivial term functions 
of 21. By Proposition 2, «S3. If nS4, arbitrary non-trivial «-ary term function 
/ turns into projection when we identify any two of its variables. Hence, by Lemma 2, 
(A; / ) (consequently, also 21) is functionally complete, contradicting our hypothesis. 
Thus «=3, i.e. 21 has a non-trivial ternary term function. By Lemma 1, every such 
term function enjoys property (i). 

In order to prove uniqueness we first show that for any non-trivial ternary term 
functions f,g£T(2l), the following identity holds: 

(8) f{g(x, y, z), y, z) = x. 

Indeed, f(g(x, y, z), y, z), being a ternary term function of 21, must be a minority 
function or a projection. Since by the identification x=y we get x, the former 
case is excluded. Thus f(g(x, y, z), y,z)—x or y. On the other hand, by the identifica-
tion x=z we also get x, so the proof of (8) is concluded. Taking into considera-
tion that (8) holds for any / , g£T(2I), in particular for g=f too, we get the 
identity 

g(x, y, z) = / ( / ( g ( x , y, z), y, z),y, z) = f{x, y, z). 

This completes the proof of (i). 
Let h be a non-trivial quaternary term function of 21. If we identify any two of its 

variables, we either get a projection or the (unique) non-trivial ternary term function«?. 
The latter must occur at least once, otherwise, by Lemma 2, the algebra (A; h) (hence 
also 21) would be functionally complete. Suppose e.g. that h(x, x, y, z)=m(x, y, z). 
Thus h(x, x, z, z)=x, so that h(x, y, z, z)—x or y (since neither h(x, y, z, z)=z 
nor /i(x, y, z, z)=m(x, y, z) can hold). We can assume without loss of generality 
that hix, y, z, z)=y. So far, we have (1) and (5). They imply 

(I) h(x, x, x, z) = z, (II) h(x, x, y, x) = y, 
(III) h(x, y, y, y) = y, (IV) h(x, y, x, x) = y. 
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By (II) and (III) h(x,y, z, y)^x,y, m(x,y,z), which proves (6). Similarly, (I) and 
(IV) exclude all possibilities for h(x,y, x, z) but (2). (4) follows from (I) and (III), 
while (3) from (II) and (IV). In order to verify (7) one has to check that 
h(m(x, y, z), x, y, z) is a minority function, which is straightforward by the preceding 
identities. The proof is complete. 

Now we are ready to prove our main result formulated in Section 3. 

P r o o f of the Theo rem. Let 91=(/4; F) be a non-trivial finite 
algebra which is functionally incomplete and has a triply transitive automorphism 
group. By Proposition 2, 91 is idempotent and has no essentially binary term func-
tion. On the other hand, by Lemma 3, 91 has an essentially ternary term function. 
We are going to prove that 91 has no essentially quaternary term function. Suppose 
the contrary and choose an essentially quaternary /jgT(2I) such that it satisfy 
identities (1)—(7) in Lemma 3. Since h depends on its first variable, there exist 
elements a,b,c,d£A such that h{a,b,c,d)7ih{b,b,c,d)=m{b,c,d). Then the 
matrix 

a b a b 
b b b b 
c e b b 
d d b b 

h(a, b, c, d) h(b, b, c, d) b b 

shows that P(9I )^Pol Q if g is a relation of type (y) with p — 2. By Lemma 1, 
P(9I )^ Pol g if Q is a relation of type (a), (y) with />>2, (e') or (£). Thus P ( 9 l ) i 
^ P o l g where g is a non-trivial equivalence relation. Select distinct elements 
a', b', c'€A such that a'gb' but a'gc' (i.e. (a, c')€A2 — g). Assume first h(a, b, c, d)^a. 
Then, by (7) 
(9) h(a, b, c, d) ^ h(m(b, c, d), b, c, m(b, c, d) 

where a, m(b,c,d) and h{a,b,c,d) are pairwise different (a=m(b, c, d) would 
imply equality in (9), contradicting the choice of a, b, c, d). Hence, by the 3-fold 
transitivity of Aut 91 there exists 7i€ Aut 91 which sends m(b, c, d), a, h(a, b, c, d) 
into a', b' and c', respectively. Thus we have the matrix 

a' V 
bn bn 
ck cn 
dn dn 
a' c' 

with its rows belonging to g but a'gc', contradieting the inclusion P ( 9 l ) ^ P o l g . 
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Assume now that h(a, b, c, d)—a. Then, by (1) and (7) 

( 1 0 ) a = h(a, b, c, d) ^ h(b, b, c, d) = m(b, c, d) = h(m(b, c, d), b, c, d). 

Thus a,b,m(b,c,d) are pairwise different. (10) implies immediately that a^b, 
m(b, c, d). If b=m(b, c, d) then by Lemma 3(i), b, c, d are not distinct, so that, 
since m is a minority function, we have c=d. However, then by (5), h(a,b,c,d)~ 
=b=h(b, b, c, d), which is impossible by (10). By the 3-fold transitivity of Aut 21 
there exists an automorphism n sending a, b, m(b, c, d) into, a', b', c', respectively. 
Hence we get the matrix 

a' V 
b' b' 
CN CK 
dn dn 
a' c' , 

again contradicting the inclusion P(2I)^Pol Q. 
It follows from the foregoing argument that 21 has no essentially quaternary 

term function. Thus 21 satisfies the hypotheses of Urbanik's Theorem, so that 21 
is equivalent to an affine space over GF(2) or arises from such a space by adding 
new at least r(&5)-ary fundamental operations among which there is an essentially 
r-ary operation which turns into projection if we identify any two of its variables. 
However, by Lemma 2, the existence of such an operation would imply functional 
completeness. Hence 21 is equivalent to an affine space over GF(2), what was to 
be proved. 
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