The function model of a contraction and the space L^{1} / H_{0}^{1}

BÉLA SZ.-NAGY and CIPRIAN FOIAŞ

Recently, new techniques were invented for obtaining invariant subspaces for rather general classes of operators on Hilbert space, see [2]- [5]. The present note constitutes a first step to exploit similar techniques in the understanding of the fine structure of the functional model, in the sense of [1], of completely nonunitary contractions.

1. Recalling the canonical model of a completely non-unitary contraction on a separable Hilbert space we consider a contractive analytic function $\left\{\mathcal{E}_{\boldsymbol{E}} \mathfrak{E}_{*}, \Theta(\lambda)\right\}$ on the unit disc $D=\{\lambda:|\lambda|<1\} ; \mathfrak{E}$ and \mathfrak{E}_{*} being separable Hilbert spaces. Setting $\Delta=\Delta\left(e^{i t}\right)=\left(I-\Theta\left(e^{i t}\right)^{*} \Theta\left(e^{i t}\right)\right)^{1 / 2}$ we define the Hilbert function spaces

$$
\begin{equation*}
\Omega_{+}=H^{2}\left(\mathfrak{E}_{*}\right) \oplus \overline{\Delta L^{2}(\mathfrak{C})}, \quad \mathfrak{G}=\Omega_{+} \Theta\left\{\Theta w \oplus \Delta w: w \in H^{2}(\mathfrak{F})\right\} \tag{1.1}
\end{equation*}
$$

(see [1], Chapter VI). P_{5} will denote orthogonal projection of Ω_{+}onto $\mathfrak{5}$.
We shall also have to do with spaces $L^{1}, H^{1}, H_{0}^{1}, H^{\infty}$, all with respect to normalized Lebesgue measure $d m=d t /(2 \pi)$ on the unit circle $\left\{e^{i t}: 0 \leqq t<2 \pi\right\}$. Recall that H^{∞} is the Banach dual of the factor space L^{1} / H_{0}^{1}, through the bilinear form

$$
\left\langle f^{\cdot}, u\right\rangle=\int f u d m \quad\left(f \in L^{1}, u \in H^{\infty}\right)
$$

$f \mapsto f^{*}$ denoting the natural map of L^{1} onto L^{1} / H_{0}^{1} (see e.g. [6]).
With any (ordered) pair $\{h, k\}$ of elements of H we associate the element $h k^{*}$ of L^{1} defined by

$$
\begin{equation*}
h k^{*}\left(e^{i t}\right)=\left(h\left(e^{i t}\right), k\left(e^{i t}\right)\right)_{\mathbb{E}_{*} \oplus \mathscr{E}} \quad(0 \leqq t<2 \pi) . \tag{1.2}
\end{equation*}
$$

For sake of simplicity we shall also write, for any $f \in L^{1}$,

$$
\|f\|_{L^{1} / H_{0}^{1}} \text { instead of }\left\|f^{-}\right\|_{L^{1} / H_{0}^{1}},
$$

and scalar product and norm of vectors without subscript will always mean those in the space \mathfrak{H}.

Received July 20, 1978, and in revised form August 20, 1979.
2. With the operator valued function $\left\{\mathcal{E}_{\boldsymbol{E}}, \mathfrak{E}_{*}, \Theta(\lambda)\right\}$ we associate the multiplication operator

$$
\begin{equation*}
\Theta_{\times}: H^{2}(\mathfrak{E}) \rightarrow H^{2}\left(\mathfrak{E}_{*}\right) \text { defined by }\left(\Theta_{\times} u\right)\left(e^{i t}\right)=\Theta\left(e^{i t}\right) u\left(e^{i t}\right) \quad\left(u \in H^{2}(\mathbb{E})\right) \tag{2.1}
\end{equation*}
$$ and its adjoint Θ_{\times}^{*} (i.e. the coanalytic Toeplitz operator denoted in [6] by $T\left(\Theta^{\sim}\right)$); we have

$$
\begin{equation*}
\left(\Theta_{\times}^{*} u\right)\left(e^{i t}\right)=\left[\Theta\left(e^{i t}\right)^{*} u\left(e^{i t}\right)\right]_{+} \quad\left(u \in H^{2}(\mathcal{E})\right), \tag{2.2}
\end{equation*}
$$

where $[\cdot]_{+}$denotes the natural orthogonal projection of any (scalar or vector valued function space) L^{2} onto its subspace H^{2}.

Observe that for any fixed $\mu \in D$ the function

$$
\begin{equation*}
p_{\mu}(\lambda)=(1-\bar{\mu} \lambda)^{-1} \tag{2.3}
\end{equation*}
$$

belongs to H^{2}, and has norm

$$
\left\|p_{\mu}\right\|_{H^{2}}=\left(\mathrm{I}-|\mu|^{2}\right)^{-1 / 2}
$$

It is easy to deduce from (2.2) that

$$
\begin{equation*}
\Theta_{\times}^{*}\left(p_{\mu} a\right)=p_{\mu} \Theta(\mu)^{*} a \text { for any } a \in \mathfrak{E}_{*} . \tag{2.4}
\end{equation*}
$$

The following functional η_{θ} on H^{2} will play an important part:
(2.5) $\quad \eta_{\boldsymbol{\theta}}(\varphi)=\inf _{\mathbb{U} \in \Phi} \sup _{a \in \mathscr{U}} s(\varphi, a), \quad$ where $\quad s(\varphi, a)=\frac{\left\|\Theta_{\times}^{*} \varphi a\right\|_{H^{2}(\mathbb{E})}}{\|\varphi a\|_{H^{2}(\mathbb{E} *)}}(=0$ if $\varphi a=0)$ and Φ denotes the family of subspaces of \mathfrak{E}_{*} with finite codimension.

Obviously, $\eta_{\theta}(c \varphi)=\eta_{\theta}(\varphi)$ for any complex number $c \neq 0$. By virtue of (2.4) we have, in particular,

$$
\begin{equation*}
\eta_{\theta}\left(p_{\mu}\right)=\inf _{\mathscr{Q} \in \Phi a \in \mathbb{I}} \sup \frac{\left\|\Theta(\mu)^{*} a\right\|_{\mathbb{E}}}{\|a\|_{\mathbb{C}_{*}}} \tag{2.6}
\end{equation*}
$$

In what follows we shall assume that \mathfrak{E}_{*} is infinite dimensional.
Lemma 1. Given any sequence $\left\{\varphi_{j}\right\}_{1}^{\infty}$ of elements of H^{2} there exists an orthonormal sequence $\left\{a_{n}\right\}_{1}^{\infty}$ in \mathfrak{E}_{*} such that,

$$
\begin{equation*}
s\left(\varphi_{j}, a_{n}\right) \leqq \eta_{\theta}\left(\varphi_{j}\right)+\frac{1}{n} \quad \text { for } \quad j=1,2, \ldots, n ; n=1,2, \ldots \tag{2.7}
\end{equation*}
$$

Proof. By virtue of the definition (2.5) there exist $\mathfrak{U}_{j, n} \in \Phi(j=1,2, \ldots ; n=1,2, \ldots)$ such that

$$
\sup _{a \in \mathscr{Y}_{j, n}} s\left(\varphi_{j}, a\right) \leqq \eta_{\theta}\left(\varphi_{j}\right)+\frac{1}{n} .
$$

Set

$$
\mathfrak{A}_{n}=\left(\underset{\substack{1 \leqq j \leq n \\ 1 \leqq m \leqq n}}{\bigvee} \mathfrak{A}_{j, m}^{\perp}\right)^{\perp} \quad(n=1,2, \ldots) .
$$

Clearly, $\mathfrak{H}_{n} \in \Phi, \mathfrak{N}_{n} \subset \mathfrak{H}_{n-1}$ and $\mathfrak{N}_{n} \subset \mathfrak{H}_{j, m}(1 \leqq j \leqq n, 1 \leqq m \leqq n)$. From the last inclusion we infer

$$
\sup _{a \in \mathscr{M}_{n}} s\left(\varphi_{j}, a\right) \leqq \sup _{a \in \mathscr{Q}_{j, n}} s\left(\varphi_{j}, a\right) \leqq \eta_{\theta}\left(\varphi_{j}\right)+\frac{1}{n}
$$

Choose inductively a sequence $\left\{a_{n}\right\}_{1}^{\infty}$ of unit vectors in \mathfrak{E}_{*} such that $a_{n} \in \mathfrak{Y}_{n}$ and that a_{n} be orthogonal to $a_{1}, \ldots, a_{n-1}(n=2,3, \ldots)$. Then we shall have (2.7.)

Notice, for further use, that each infinite orthonormal sequence weakly converges to 0 .
3. A subset \mathscr{S} of the (open) unit ball \mathscr{D} of H^{2} will be called dominant if

$$
\begin{equation*}
\sup _{\varphi \in \mathscr{S}}\left\|[\bar{u} \varphi]_{+}\right\|_{H^{2}}=\|u\|_{H^{\infty}} \quad \text { for every } \quad u \in H^{\infty} \tag{3.1}
\end{equation*}
$$

This is an obvious analogue of that a subset S of the unit disc D be dominant in the sense of [8], namely that

$$
\begin{equation*}
\sup _{\mu \in S}|u(\mu)|=\|u\|_{H^{\infty}} \quad \text { holds for every } \quad u \in H^{\infty} \tag{3.2}
\end{equation*}
$$

Moreover, if S is dominant in D in the sense (3.2) then

$$
\begin{equation*}
\left.\mathscr{S}_{S}=\left\{1-|\mu|^{2}\right)^{1 / 2} p_{\mu}: \mu \in S\right\} \tag{3.3}
\end{equation*}
$$

is dominant in \mathscr{D} in the sense (3.1). Indeed, $\mathscr{\mathscr { S }}_{S} \subset \mathscr{D}$ is obvious and in analogy with (2.4) we easily obtain

$$
\left[\bar{u} p_{\mu}\right]_{+}=p_{\mu} \overline{u(\mu)} \quad \text { for } \quad u \in H^{\infty} \quad \text { and } \quad \mu \in D
$$

Hence,

$$
\begin{equation*}
\left\|\left[\bar{u}\left(1-|\mu|^{2}\right)^{1 / 2} p_{\mu}\right]_{+}\right\|_{H^{2}}=|u(\mu)| \tag{3.4}
\end{equation*}
$$

so validity of (3.2) for S implies that of (3.1) for \mathscr{S}_{S}.
Lemma 2. If \mathscr{S} is dominant in the unit ball \mathscr{D} of H^{2} then the convex hull of the set

$$
\begin{equation*}
\left\{(\psi \bar{\varphi})^{\prime}: \varphi \in \mathscr{S}, \psi \in \mathscr{D}\right\} \tag{3.5}
\end{equation*}
$$

is dense in the unit ball of L^{1} / H_{0}^{1}.

Proof. If not, there exist in the Banach dual H^{∞} of L^{1} / H_{0}^{1} an element u and a unit vector f in L^{1} / H_{0}^{1} such that

$$
\begin{align*}
\operatorname{Re}\left\langle f^{\cdot}, u\right\rangle & >\sup _{\substack{\varphi \in \mathscr{S} \\
\psi \in \mathscr{S}}} \operatorname{Re}\left\langle(\psi \bar{\varphi})^{\cdot}, u\right\rangle=\sup _{\varphi \in \mathscr{S}} \sup _{\psi \in \mathscr{S}}\left|\int \overline{\bar{u} \varphi} \psi d m\right|= \tag{3.6}\\
& =\sup _{\varphi \in \mathscr{S}} \sup _{\psi \in \mathscr{S}}\left|\int \overline{[\bar{u} \varphi]_{+}} \psi d m\right|=\sup _{\varphi \in \mathscr{S}}\left\|[\bar{u} \varphi]_{+}\right\|_{H^{2}} .
\end{align*}
$$

\mathscr{S} being dominant in \mathscr{D} the last member equals $\|u\|_{H^{\infty}}$, and hence is $\geqq \operatorname{Re}\left\langle f^{\cdot}, u\right\rangle$, in contradiction with the strict inequality in (3.6).
4. For fixed $\varphi \in H^{2}$ and $a \in \mathfrak{E}_{*}$ we denote

$$
\begin{equation*}
\varphi \circ a=P_{\mathfrak{5}}(\varphi a \oplus 0) \tag{4.1}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
\varphi \circ a=\left(\varphi a-\Theta\left[\Theta^{*} \varphi a\right]_{+}\right) \oplus\left(-\Delta\left[\Theta^{*} \varphi a\right]_{+}\right) . \tag{4.2}
\end{equation*}
$$

For any $h=h_{0} \oplus h_{1} \in \mathfrak{H}\left(h_{0} \in H^{2}\left(\mathfrak{C}_{*}\right), h_{1} \in \overline{\Delta L^{2}(\mathcal{E})}\right)$ we have therefore

$$
\begin{align*}
(\varphi \circ a) \dot{h}^{*} & =\varphi\left(a, h_{0}\right)_{\mathfrak{C}_{*}}-\left(\Theta\left[\Theta^{*} \varphi a\right]_{+}, h_{0}\right)_{\mathfrak{C}_{*}}-\left(\Delta\left[\Theta^{*} \varphi a\right]_{+}, h_{1}\right)_{\mathfrak{E}}= \tag{4.3}\\
& =\varphi(a, h)_{\mathfrak{E}_{*}}-\left(\left[\Theta^{*} \varphi a\right]_{+}, \Theta^{*} h_{0}+\Delta h_{1}\right)_{\mathfrak{E}}
\end{align*}
$$

where the last term belongs to H_{0}^{1} since

$$
\begin{equation*}
h_{2} \stackrel{\text { def }}{=} \Theta^{*} h_{0}+\Delta h_{1} \in L^{2}(\mathcal{E}) \ominus H^{2}(\mathfrak{E}) \tag{4.4}
\end{equation*}
$$

because of the definition (1.1) of $\mathfrak{5}$.
Therefore,

$$
\begin{equation*}
(\varphi \circ a) h^{*} \equiv \varphi\left(a, h_{0}\right)_{\mathfrak{E}_{*}} \bmod H_{0}^{1} \tag{4.5}
\end{equation*}
$$

It also follows from (4.3) and (4.4) that

$$
\begin{equation*}
h(\varphi \circ a)^{*}=\overline{(\varphi \circ a) h^{*}}=\bar{\varphi}\left(h_{0}, a\right)_{\mathfrak{C}_{*}}-\left(h_{2},\left[\Theta^{*} \varphi a\right]_{+}\right)_{\mathbb{E}} . \tag{4.6}
\end{equation*}
$$

Suppose $\left\{a_{n}\right\}$ is a sequence of vectors in \mathfrak{E}_{*}, tending weakly to 0 . Then by (4.5) and by the Lebesgue dominated convergence theorem,

$$
\left\|\left(\varphi \circ a_{n}\right) h^{*}\right\|_{L^{1} / H_{0}^{1}} \leqq\left\|\varphi\left(a_{n}, h_{0}\right)_{\mathfrak{E}_{*}}\right\|_{L^{1}} \leqq\|\varphi\|_{A^{2}}\left[\int\left|\left(a_{n}, h_{0}\left(e^{i t}\right)\right)\right|^{2} d m\right]^{1 / 2} \rightarrow 0 \quad(n \rightarrow 0)
$$

We shall also show that $\left\|h\left(\varphi \circ a_{n}^{*}\right)\right\|_{L^{1} / H_{0}^{1} \rightarrow 0}$. Since $\left\|\bar{\varphi}\left(h_{0}, a_{n}\right)_{\mathscr{E}_{*}}\right\|_{L^{1}} \rightarrow 0$ by part of the preceding argument, by (4.6) it suffices to prove that

$$
\begin{equation*}
\left\|\left(h_{2},\left[\Theta^{*} \varphi a_{n}\right]_{+}\right)_{\mathcal{E}}\right\|_{L^{1}} \rightarrow 0 \quad \text { as } \quad n \rightarrow 0 \tag{4.7}
\end{equation*}
$$

It even suffices to prove (4.7) for $\varphi=e^{i r t}(r=0,1, \ldots)$. Indeed, (4.7) then holds
for all partial sums $\varphi_{N}\left(e^{i t}\right)$ of the L^{2}-expansion $\varphi\left(e^{i t}\right)=\sum_{0}^{\infty} c_{r} e^{i r t}$, and since $\left\{a_{n}\right\}$ is bounded, say $\left\|a_{n}\right\|_{\mathfrak{c}_{*}} \leqq A$, we have, setting $\psi_{N}=\varphi-\varphi_{N}$,

$$
\begin{align*}
&\left\|\left(h_{2},\left[\Theta^{*} \psi_{N} a_{n}\right]_{+}\right)_{\mathbb{E}}\right\|_{L_{1}}=\int\left\|h_{2}\right\|_{\mathbb{E}}\left\|\left[\Theta^{*} \psi_{N} a_{n}\right]_{+}\right\|_{\mathbb{E}} d m= \tag{4.8}\\
& \leqq\left\|h_{2}\right\|_{L^{2}(\mathscr{E})}^{\mathcal{E}^{2}}\left\|\left[\Theta^{*} \psi_{N} a_{n}\right]_{+}\right\|_{L^{2}(\mathbb{E})}^{2} \leqq\left\|h_{2}\right\|_{L^{2}(\mathfrak{E})}\left\|\psi_{N}\right\|_{\boldsymbol{H}^{2}} A
\end{align*}
$$

and this bound is independent of n and as small as we wish upon choosing N large enough.

Now to prove (4.7) for $\varphi=e^{i r t}(r \geqq 0)$ observe that if $\Theta(\lambda)=\Theta_{0}+\lambda \Theta_{1}+\lambda^{2} \Theta_{2}+\ldots$ then we have

$$
\left[\Theta\left(e^{i t}\right)^{*} e^{i r t} a_{n}\right]_{+}=\sum_{j=0}^{r} \Theta_{r-j} e^{i j t} a_{n}
$$

and hence,

$$
\left\|\left(h_{2},\left[\Theta^{*} e^{i r t} a_{n}\right]_{+}\right)_{\mathbb{E}}\right\|_{L^{1}}=\int\left|\sum_{j=0}^{r}\left(e^{-i j t} \Theta_{r-j}^{*} h_{2}, a_{n}\right)_{\mathfrak{E}_{*}}\right| d m
$$

which tends to 0 as $n \rightarrow 0$, again by the weak convergence of $\left\{a_{n}\right\}$ to 0 and by the Lebesgue dominated convergence theorem.

So we have proved, in particular,
Lemma 3. If $\left\{a_{n}\right\}$ converges to 0 weakly in \mathfrak{F}_{*} then for any $\varphi \in H^{2}$ and $h \in \mathfrak{G}$ we have

$$
\left\|\left(\varphi \circ a_{n}\right) h^{*}\right\|_{L^{1} / H_{0}^{1}} \rightarrow 0, \quad\left\|h\left(\varphi \circ a_{n}\right)^{*}\right\|_{L^{1} / H_{0}^{1}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
$$

We shall also need the following
Lemma 4. For all $\varphi, \psi \in H^{2}$ and $a \in \mathfrak{E}_{*}$ we have

$$
\begin{equation*}
\left\|(\psi \circ a)(\varphi \circ a)^{*}-\psi \bar{\varphi}\right\| a\left\|_{\mathbb{E}_{*}}^{2^{2}}\right\|_{L^{1} / H_{0}^{1}} \leqq\|\psi\|_{H^{2}}\left\|\boldsymbol{\Theta}_{x}^{*} \varphi a\right\|_{H^{2}(\mathfrak{E})}\|a\|_{\mathbb{E}_{*}} . \tag{4.9}
\end{equation*}
$$

Proof. By virtue of (4.5) and (4.2) we have

$$
(\psi \circ \varphi)(\varphi \circ a)^{*}=\varphi\left(a, \varphi a-\Theta\left[\Theta^{*} \varphi a\right]_{+}\right)_{\mathbb{E}_{*}} \bmod H_{0}^{1}
$$

Because

$$
\left\|\psi\left(a, \Theta\left[\Theta^{*} \varphi a\right]_{+}\right)_{\mathfrak{E}_{*}}\right\|_{L^{1}}=\|\psi\|_{\boldsymbol{H}^{2}}\|a\|_{E_{*}}\left\|\Theta_{\times}^{*} \varphi a\right\|_{L^{2}(\mathfrak{E})}
$$

(in analogy to (4.8)) we conclude to (4.9).
5. Next we prove the following

Lemma 5. Suppose \mathfrak{E}_{*} is (countably) infinite dimensional and suppose $h, k \in \mathfrak{S}$; $\varphi_{1}, \ldots, \varphi_{r}, \psi_{1}, \ldots, \psi_{r} \in H^{2}$, and $\varepsilon>0$ are given. Then there exist $h^{\prime}, k^{\prime} \in \mathfrak{H}$ such that
(5.1): $\left\|\left(h+h^{\prime}\right)\left(k+k^{\prime}\right)^{*}-h k^{*}-\sum_{1}^{r} \psi_{j} \bar{\varphi}_{j}\right\|_{L^{1} / H_{0}^{1}} \leqq \sum_{1}^{r}\left\|\psi_{j}\right\|_{H^{2}}\left\|\varphi_{j}\right\|_{H^{2}} \eta_{\theta}\left(\varphi_{j}\right)+\varepsilon$,

$$
\begin{equation*}
\left\|h^{\prime}\right\|^{2} \leqq \sum_{1}^{r}\left\|\psi_{j}\right\|_{H^{2}}^{2}, \quad\left\|k^{\prime}\right\|^{2} \leqq \sum_{1}^{r}\left\|\varphi_{j}\right\|_{H^{2}}^{2} \tag{5.2}
\end{equation*}
$$

Proof. Let $\delta>0$ be fixed and choose by virtue of Lemma 1 an orthonormal sequence $\left\{a_{n}\right\}$ in \mathbb{E}_{*} such that

$$
\left\|\Theta_{\times}^{*} \varphi_{j} a_{n}\right\|_{H^{2}(\varkappa)} \leqq\left(\eta_{\theta}\left(\varphi_{j}\right)+\frac{1}{n}\right)\left\|\varphi_{j}\right\|_{H^{2}} \quad \text { for } \quad j=1, \ldots, r \quad \text { and } \quad n \geqq r .
$$

Hence, and from Lemma 3 we deduce that for n large enough, say for $n \geqq n_{0}$, and for $j=1, \ldots, r$ we have

$$
\begin{equation*}
\left\|\Theta_{\times}^{*} \varphi_{j} a_{n}\right\|_{\boldsymbol{H}^{2}(\mathfrak{E})} \leqq\left(\eta_{\boldsymbol{\theta}}\left(\varphi_{j}\right)+\delta\right)\left\|\varphi_{j}\right\|_{\boldsymbol{H}^{\mathrm{a}}} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|h\left(\varphi_{j} \circ a_{n}\right)^{*}\right\|_{L^{1} / H_{0}^{1}} \leqq \delta, \quad\left\|\left(\psi_{j} \circ a_{n}\right) k^{*}\right\|_{L^{1} / H_{0}^{1}} \leqq \delta . \tag{5.4}
\end{equation*}
$$

Again by virtue of Lemma 3 we can choose, step by step, the integers ($n_{0} \leqq$) $n_{1}<$ $<n_{2}<\ldots<n_{r}$ such that

$$
\begin{gather*}
\left\|\left(\psi_{i} \circ a_{n_{i}}\right)\left(\varphi_{j} \circ a_{n}\right)^{*}\right\|_{L^{1} / H_{0}^{1}} \leqq \delta, \quad\left\|\left(\psi_{j} \circ a_{n}\right)\left(\varphi_{i} \circ a_{n_{j}}\right)^{*}\right\|_{L^{1} / H_{0}^{1}} \leqq \delta \tag{5.5}\\
\left(j=1, \ldots, r ; i=1, \ldots, j-1 ; n \geqq n_{j}\right) .
\end{gather*}
$$

Rename $a_{n_{j}}$ by $b_{j}(j=1, \ldots, r)$ and set

$$
\begin{equation*}
h^{\prime}=\sum_{1}^{r}\left(\psi_{j} \circ b_{j}\right)^{\prime}, \quad k^{\prime}=\sum_{1}^{r}\left(\varphi_{j} \circ b_{j}\right) \tag{5.6}
\end{equation*}
$$

Then we have

$$
\begin{gathered}
\left(h+h^{\prime}\right)\left(k+k^{\prime}\right)^{*}-h k^{*}-\sum_{1}^{r} \psi_{j} \overline{\varphi_{j}}=h k^{*}+h^{\prime} k^{*}+h^{\prime} k^{*}-\sum_{1}^{r} \psi_{j} \overline{\varphi_{j}}= \\
=\sum_{1}^{r} h\left(\varphi_{j} \circ b_{j}\right)^{*}+\sum_{1}^{r}\left(\psi_{j} \circ b_{j}\right) k^{*}+\sum_{1}^{r}\left[\left(\psi_{j} \circ b_{j}\right)\left(\varphi_{j} \circ b_{j}\right)-\psi_{j} \overline{\varphi_{j}}\right]+ \\
\quad+\sum_{j=1}^{r} \sum_{i=1}^{j=1}\left[\left(\psi_{i} \circ b_{i}\right)\left(\varphi_{j} \circ b_{j}\right)^{*}+\left(\psi_{j} \circ b_{j}\right)\left(\varphi_{i} \circ b_{i}\right)^{*}\right]=\Omega .
\end{gathered}
$$

Taking account of (5.3), (5.4), (5.5), and Lemma 4 we deduce that

$$
\|\Omega\|_{L^{1} / H_{0}^{1}} \leqq r \delta+r \delta+\sum_{1}^{r}\left\|\psi_{j}\right\|_{H^{2}}\left(\eta_{\theta}\left(\varphi_{j}\right)+\delta\right)\left\|\varphi_{j}\right\|_{H^{2}}+\frac{r(r-1)}{2} \delta+\frac{r(r-1)}{2} \delta
$$

so we arrive at the conclusion (5.3) by choosing δ small enough, namely such that

$$
\left[\left(r(r+1)+\sum_{1}^{r}\left\|\psi_{j}\right\|_{\mathbf{H}^{2}}\left\|\varphi_{j}\right\|_{H^{2}}\right] \delta \leqq \varepsilon .\right.
$$

Finally, (5.2) follows at once from (5.6) and (4.1); e.g.,
$\left\|h^{\prime}\right\|^{2}=\left\|P_{\mathfrak{5}}\left(\sum_{1}^{r} \psi_{j} b_{j} \oplus 0\right)\right\|^{2} \leqq\left\|\sum_{1}^{r} \psi_{j} b_{j}\right\|_{H^{2}\left(\mathbb{E}_{*}\right)}^{2}=\sum_{j, i=1}^{r}\left(\psi_{j}, \psi_{i}\right)_{H^{2}}\left(b_{j}, b_{i}\right)_{\mathbb{E}_{*}}=\sum_{1}^{r}\left\|\psi_{j}\right\|^{2}$ because of orthonormality of $\left\{b_{j}\right\}_{1}$.

Remark. The pair h^{\prime}, k^{\prime} can obviously be replaced by any of the pairs $h^{(n)}, k^{(n)}$ ($n=1,2, \ldots$) defined by

$$
\begin{equation*}
h^{(n)}=\sum_{j=1}^{r}\left(\psi_{j} \circ b_{j+n}\right), \quad k^{(n)}=\sum_{j=1}^{r}\left(\varphi_{j} \circ b_{j+n}\right) \tag{5.7}
\end{equation*}
$$

Then, for every $l \in \mathfrak{H}$,

$$
l \circ h^{(n)^{*}}, h^{(n)} l^{*}, l k^{(n)^{*}}, k^{(n)} l^{*}
$$

tend to 0 in L^{1} / H_{0}^{1} as $n \rightarrow \infty$.
6. Now we are going to establish the main result of this paper.
 able $\mathfrak{E}, \mathfrak{E}_{*}$, and $\operatorname{dim} \mathfrak{E}_{*}=\infty$, and suppose that for some $\vartheta, 0<\vartheta<1$, the set

$$
\mathscr{S}=\left\{\varphi \in H^{2}:\|\varphi\|_{\boldsymbol{H}^{2}}=1, \eta_{\theta}(\varphi) \leqq \vartheta\right\}
$$

is dominant in the unit ball \mathscr{D} of H^{2}. Then

$$
\left\{\left(h k^{*}\right)^{\cdot}: h, k \in \mathfrak{S}\right\}=L^{1} / H_{0}^{1} .
$$

i.e. every $f \in L^{1}$ has a representation

$$
f \equiv h k^{*} \bmod H_{0}^{1} \quad \text { with } \quad h, k \in \mathfrak{H} .
$$

Proof. Consider an $f \in L^{1}$ with $\|f\|_{L^{1} / H_{0}^{1}} \leqq v_{0}$; it does not restrict generality to assume $v_{0}=1$. Choose a number ω such that $\vartheta<\omega<1$ and set $v_{s}=\omega^{s}$, $\varepsilon_{s}=\frac{\omega-\vartheta}{2} \omega^{s}$; then

$$
\begin{equation*}
v_{s+1}=\vartheta v_{s}+2 \varepsilon_{s} \tag{6.1}
\end{equation*}
$$

Setting $h_{0}, h_{-1}, k_{0}, k_{-1}=0($ in $\mathfrak{S})$ we are going to prove that there exist $h_{s}, k_{s} \in \mathfrak{H}$ ($s=1,2, \ldots$) such that

$$
\begin{gather*}
\left\|f-h_{s} k_{s}^{*}\right\|_{L^{1} / H_{0}^{1}} \leqq v_{s} \\
\left\|h_{s}-h_{s-1}\right\|^{2} \leqq v_{s-1}, \quad\left\|k_{s}-k_{s-1}\right\|^{2} \leqq v_{s-1} \quad(s=1,2, \ldots) .
\end{gather*}
$$

This being obvious for $s=0$ we shall proceed by induction. Suppose h_{s}, k_{s} have been already found for $s=0, \ldots, q$, satisfying (6.2), and perform the step $q \rightarrow q+1$ as follows. Set

$$
\begin{equation*}
f^{\prime}=f-h_{q} k_{q}^{*} \tag{6.3}
\end{equation*}
$$

then $\left\|f^{\prime}\right\|_{L^{1} / H_{0}^{1}} \leqq v_{q}$ by (6.2) for $s=q$. It now follows from Lemma 2 that there exist $\varphi_{j} \in \mathscr{P}, \psi_{j} \in \mathscr{D}, c_{j} \geqq 0(j=1, \ldots, r)$, with $\sum_{1}^{r} c_{j}=1$ and

$$
\begin{equation*}
\left\|f^{\prime}-\sum_{j=1}^{r} c_{j} v_{q} \psi_{j} \overline{\varphi_{j}}\right\|_{L^{1} / H_{0}^{1}} \leqq \varepsilon_{q} \tag{6.4}
\end{equation*}
$$

On the other hand, from Lemma 5 it follows that there exist
$h_{q+1}=h_{q}+h^{\prime}, k_{q+1}=k_{q}+k^{\prime} \in \mathfrak{S}$ such that

$$
\begin{gather*}
\left\|h_{q+1} k_{q+1}^{*}-h_{q} k_{q}^{*}-\sum_{j=1}^{r} c_{j} v_{q} \psi_{j} \varphi_{j}\right\|_{L^{1} / H_{0}^{1}} \leqq \tag{6.5}\\
\leqq \sum_{j=1}^{r}\left\|\sqrt{c_{j} v_{q}} \psi_{j}\right\|_{H^{2}}\left\|\sqrt{c_{j} v_{q}} \varphi_{j}\right\|_{H^{2}} \eta_{\theta}\left(\varphi_{j}\right)+\varepsilon_{q} \leqq \sum_{j=1}^{r} c_{j} v_{q} \vartheta+\varepsilon_{q}=v_{q} \vartheta+\varepsilon_{q}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|h_{q+1}-h_{q}\right\|^{2} \leqq \sum_{j=1}^{r}\left\|\sqrt{c_{j} v_{q}} \psi_{j}\right\|_{H^{2}}^{2} \leqq v_{q}, \quad\left\|k_{q+1}-k_{q}\right\|^{2} \leqq \sum_{j=1}^{r}\left\|\sqrt{c_{j} v_{q}} \varphi_{j}\right\|_{H^{2}}^{2} \leqq v_{q} . \tag{6.6}
\end{equation*}
$$

Because of the relation

$$
f-h_{q+1} k_{q+1}^{*}=\left(f^{\prime}-\sum_{j=1}^{r} c_{j} v_{q} \psi_{j} \overline{\varphi_{j}}\right)-\left(h_{q+1} k_{q+1}^{*}-h_{q} k_{q}^{*}-\sum_{j=1}^{r} c_{j} v_{q} \psi_{j} \overline{\varphi_{j}}\right),
$$

from (6.4), (6.5) and (6.1) we deduce

$$
\begin{equation*}
\left\|f-h_{q+1} k_{q+1}^{*}\right\|_{L^{1} / H_{0}^{1}} \leqq \vartheta v_{q}+2 \varepsilon_{q}=v_{q+1} \tag{6.7}
\end{equation*}
$$

and (6.6), (6.7) yield (6.2) for the h_{q+1}, k_{q+1} just defined. The construction by induction is thus established for all s.

From (6.2) now follows that h_{s}, k_{s} converge (strongly in \mathfrak{H}) to some limits h, k, and that $h_{s} k_{s}^{*}$ converges in $L^{1 /} H_{0}^{1}$ to f°. Since $h_{s} \rightarrow h, k_{s} \rightarrow k$ obviously also imply $\left\|h_{s} k_{s}^{*}-h k^{*}\right\|_{L^{1} \rightarrow 0}$ we conclude that $\left\|f-h k^{*}\right\|_{L^{1} / H_{0}^{1}}=0$; thus completing the proof of the theorem.

References

[1] B. Sz.-Nagy-C. Folaş, Harmonic Analysis of Operators on Hilbert Space, North Holland/Akadémiai Kiadó (Amsterdam/Budapest, 1970).
[2] S. Brown, Some invariant subspaces for subnormal operators, Integral Equations and Operator Theory, 1 (1978), 310-333.
[3] S. Brown-B. Chevreau-C. Pearcy, Contractions with rich spectrum have invariant subspaces. J. Operator Theory, 1 (1979), 123-136.
[4] C. Aposrol, Ultraweakly closed operator algebras, J. Operator Theory, 1 (1979), to appear.
[5] J. Stampfli, An extension of |Scott Brown's invariant subspace theorem: K-spectral sets, J. Operator Theory, 1 (1979), to appear.

6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall (Englewood Cliffs, N.J., 1962).
[7] B. Sz.-Nagy-C. Foias, On contractions similar to isometries and Toeplitz operators, Ann. Acad. Scient. Fennicae, Ser. A. I. Math., 2 (1976) 553-564.
[8] L. A. Rubel-A. L. Shields, The space of bounded analytic functions on a region, Ann. Inst. Fourier (Grenoble), 16 (1966), 235-277.

