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The function model of a contraction and the space L'/H]

BELA SZ.-NAGY and CIPRIAN FOIAS

Recently, new techniques were invented for obtaining invariant subspaces for
rather general classes of operators on Hilbert space, see [2}—[5]. The present note
constitutes a first step to exploit similar techniques in the understanding of the
fine structure of the functional model, in the sense of [1], of completely non-
unitary contractions.

1. Recalling the canonical model of a completely non-unitary contraction on
a separable Hilbert space we consider a contractive analytic function {€, €, @ (1)}
on the unit disc D={4: |A|<1}; € and €, being separable Hilbert spaces. Setting
A=A4(e")=(I—0(e")*O(e"))"/* we define the Hilbert function spaces

(1.1) R, = HYE )AL} G), $=K,0{Owddw: we HX(E))

(see [1], Chapter VI). P4 will denote orthogonal projection of &, onto $.

We shall also have to do with spaces L', HY, H,, H>, all with respect to nor-
malized Lebesgue measure dm=dt/(2r) on the unit circle {e": 0=¢<2n}. Recall
that H* is the Banach dual of the factor space L!/H,, through the bilinear form

(fuy= [fudm (fel',ucH"),

f—f" denoting the natural map of L! onto L'/H, (see e.g. [6]).

With any (ordered) pair {i, k} of elements of H we associate the element Ak*
of L! defined by
(1.2) hic*(e™) = (h(e™), k(e™))e,0e (0 =1 < 2m).

For sake of simplicity we shall also write, for any f€L!,

|l instead of (£ sy

and scalar product and norm of vectors without subscript will always mean those
in the space $.
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2. With the operator valued function {€, €, ©(1)} we associate the multi-
plication operator

@1  6,: HG) ~ HX(,) defined by (0, u)(e") = O(eMu(e") (uecH(E))

and its adjoint @% (i.e. the coanalytic Toeplitz operator denoted in [6] by T ©@7));
we have

22 (@%u)(e") = [0(e")*u(e)], (u€ HY(E)),

where [ -], denotes the natural orthogonal projection of any (scalar or vector valued
function space) L? onto its subspace H?2.
Observe that for any fixed p€D the function

2.3 () = (1—ah™

belongs to H2, and has norm
1Dullr: = (1 =[u[®»-*2

It is easy to deduce from (2.2) that
2.4 0% (p,a) = p,O®()*a for any acC,.
The following functional #¢ on H? will play an important part:

*

(2.5) ne(p) = infsups(e,a), where s(@,a) = M‘M (=0 if pa=0)
AcPacA “‘Pallm(m)

and & denotes the family of subspaces of €, with finite codimension.

Obviously, ng(cp)=ne(¢) for any complex number ¢=0. By virtue of (2.4)
we have, in particular,

2.6) Ne(p,) = inf sup 12 dle

AcPacy lale,

In what follows we shall assume that €_ is infinite dimensional.
Lemma 1. Given any sequence {goj};“’ of elements of H? there exists an ortho-
normal sequence {a,}y in €, such that,

1 .
(27) s((pjs an) = '18((01)'!_'; for J= 15 2a sy N= 132: sere

Proof. By virtue of the definition (2.5) there exist U; ,c # (j=1,2,...;n=1,2,...)
such that

1
sup s(p;,a) = rze(<p,-)+;-

aeilh,,
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Set .
Wy=( V Ut)t (=12, ..)

1=j=n
1=m=n

Clearly, W, c®, U,cU,_;, and A,CU; , (1=j=n, | =m=n). From the last inclu-
sion we infer

1
Sélg[l) s(pj,a) = sup s(¢;,a) = ne((p,-)+—n—.

a€y,

Choose inductively a sequence {a,};” of unit vectors in €, such that ,£U, and
that g, be orthogonal to ay, ..., a,_, (n=2, 3, ...). Then we shall have (2.7.)

Notice, for further use, that each infinite orthonormal sequence weakly con-
verges to 0.

3. A subset & of the (open) unit ball 2 of H? will be called dominant if

3.1 sup (@) g2 = lulg- for every ucH=.
L4

This' is an obvious analogue of that a subset S of the unit disc D be dominant
in the sense of [8], namely that

3.2) sup lu(p)| = ullg- holds for every ucH™.
neES

Moreover, if S is dominant in D in the sense (3.2) then
(3.3) Fs={1—|uP"p,: pes}

‘\
is dominant in 2 in the sense (3.1). Indeed, %2 is obvious and in analogy with
(2.4) we easily obtain

fup,ly = p‘,m for uc¢H> and pcD.
Hence,

(3.4 MEE(L — k2 py) s e = lu(
so validity of (3.2) for S implies that of (3.1) for &%.

Lemma 2. If & is dominant in the unit ball 2 of H?* then the convex hull of
the set

(3.5) ' {Wp): v, ¥ e}

is dense in the unit ball of L'/H}.
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Proof. If not, there exist in the Banach dual H= of LY/H, an element u and
a unit vector fin L!/H; such that

(3.6) Re(f", u > sup Re (), u) = supsup| figy dm| =
zég PEL YED

= supsup | [{ag], Y dm| = sup |[ig] s
PEFYED 134

& being dominant in 2 the last member equals ||#||4~, and hence is =ZRe (f, ),
in contradiction with the strict inequality in (3.6).

4, For fixed o€ H? and ac€, we denote

“.1) poa = Pg(pa®0).
It is easy to show that

(4.2) poa = (pa—O[0%¢a],)D(—4[0* pa],).

For any h=hy@® €S (he€ HX(E,), h€ AL} (€)) we have therefore

@3)  (@od)k* = 9@ hy)e,~ (O10%pal, , ho)e,~ (410*9dl,  hy)e =
= ¢(a, he,—([0* pal ., O hy+ Ahy)e,

where the last term belongs to H} since

4.4) hy &L ©* hy+ ARy € L2 (€) © H(€)
because of the definition (1.1) of H.

Therefore,
@.5) (@oa)h* =tp(a, hy)g, mod Hy.

It also follows from (4.3) and (4.4) that

(4.6) h(poa)* = (poa)h* = @(ho, A)e,— (h2, [O% 9a] ;)¢

Suppose {a,} is a sequence of vectors in €,, tending weakly to 0. Then by (4.5)
and by the Lebesgue dominated convergence theorem,

I(Poa) i 3/3 = 10(@ns ho)e, s = I llge [ [ |20, ho(e)[2 dm]' ~ 0 (2~ 0).

We shall also show that [|h(poa,*)||.1z3—~0. Since [@(ho, a,)¢li;n—~0 by part
of the preceding argument, by (4.6) it suffices to prove that

@7 I(he, [O* 9a,] el -0 as n—0.
It even suffices to prove (4.7) for p=¢™ (r=0,1,...). Indeed, (4.7) then holds
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for all partial sums @y(e”) of the L2-expansion (p(e"‘)zf ¢, €™, and since {a,}
is bounded, say |la,ll¢, =4, we have, setting Yy=¢ — oy, ’ ' -
@.8)  l(he, [0*Ynadele, = [ IholellO* Yinas), e dm =

= ||h2|lL2(e) ||[@*¢Nan]+"L;(CE) = ||h2”L2(<£) "‘/hv”uﬁAa

and this bound is independent of n and as small as we wish upon choosing N large
enough. .

Now to prove (4.7) for p =™ (r=0) observe thatif @(1)=0,+10,+120,+...
then we have

[@ (e"')* e"”a,,]; - Zr' @'_J_eijxa”’
- j=0
and hence,
. N b r
I(hs, [©*e™a,) el = fl .Z(; (™' O;_;hy, ay)g,| dm,
= o

which tends to O as n—’—O, again by the weak convergence of {a,} to 0 and by the
Lebesgue dominated convergence theorem.
So we have proved, in particular,

Lemma 3. If {a,} converges to O weakly in Q?,; then for any @€H? and h€$
we have
I@oa)h*|| g — 0,  |h(@oa)* |y ~ 0 as n—>o.

We shall also need the following
Lemma 4. For all ¢, ¢ H? and ac€, we have.

(4.9) Iwoa)(poa)* ~y@llale) ymy = 1Wn2O% 0a] g lalle, -
Proof. By Qirtue of (4.5) and (4.2) we have

(Wop)(@oa)* = ¢(a, pa—0O[O0*¢d],)e, mod Hy:

(@, @10*al ez = ¥zl s, 9% 0al s
(in:analogy to (4.8)) we conclude to (4.9).

Because

5. Next we prove the following

Lemma 5. Suppose €, is (countably) infinite dimensional and suppose h, k€9,
O1s eors Ops Y1 ..., Y,EH? and =0 are given. Then there exist W, k'€$ such that

G0 e mriy—me =30, . = SWlelotanee) e,

LY/H§

(-2) 17 = 2 le I€)? = Z @ ;ll72 -
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Proof. Let =0 be fixed and choose by virtue of Lemma 1 an orthonormal
sequence {a,} in €, such that

1 .
19% 0elure = (16@) + =) lolus for j=1,.,r and n=zr.

Hence, and from Lemma 3 we deduce that for n large enough, say for n=n,, and
for j=1, ..., r we have '

5.3 1o% Q;llare = (’70(‘Pj)+5) llo;llge
and
G4 lh(@joa) Iy = 6, |(Yj0a)k |y = 6.

Again by virtue of Lemma 3 we can choose, step by step, the integers (n,=)n, < ‘
<ny=<...<n, such that

(5:5) IWica,)(@j0a) I yr = 6, (Y 0a,)(9i0a,) Iy 1 = 6
=1L ..,rni=1..j-1;n=ny.

Rename a, by b; (j=1,...,r) and set

(5.6) h = ;(dzio ), kM= %’((pjo D]

Then we have

(h+K)(k+ K'Y —hk* — 30,07 = W + KR+ KK — 30,0, =
1 1

= Shlppob)+ 3 Wiobpk + 3 [W10b)(@s00) ~ )] +

r j—1
+ 212; [(‘//iobi)(¢j°bj)*+(¢j° j)(‘Piobi)*] = Q.
j=li=

Taking account of (5.3), (5.4), (5.5), and Lemma 4 we deduce that

r—1D . rir—1)
3 o+ 3 é

r r
1920 22 = r5+’5+%' 1V ;1la2(ne (@) + ) l@;lluz+

so we arrive at the conclusion (5.3) by choosing 4 small enough, namely such that

[0+ ZWtnton]s = e

Finally, (5.2) follows at once from (5.6) and (4.1); e.g.,

2

=

2

= 3 W5 Wus(by, be, = 3 IW,1°

H¥Ey)  Jii=

I#)® = ’ Py [é’ ‘ﬁjbj@o) %"'ijf

because of orthonormality of {b;}].
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Remark. The pair 4, K’ can obviously be replaced by any of the pairs A, k™
(n=1, 2, ...) defined by

&N A = jgl' W;0b;4m), K = ;é'l (@0b;+n)-
Then, for every 1¢ 9,

Toh®* | O [* [l @y J) p*
tend to O in L'/H as n—co.

6. Now we are going to establish the main result of this paper.

Theorem. Suppose {€, €,, O(R)} is a contractive analytic function, with separ-
able €, €, and dim € =<, and suppose that for some 9, 0<9<1, the set
F={pcH?: |olas =1, 10(p) = 9}
is dominant in the unit ball 2 of H®. Then
{(hk*) : h, ke D} = L'/H}.
i.e. every feL' has a representation
f=hk*mod H} with hke$.

Proof. Consider an fe€L' with || f|l,1,a3=ve; it does not restrict generality
to assume vy=1. Choose a number ® such that 3<w<1 and set v,=w"
w.—_

&, = _2L9_ ®; then

6.1 Vepr = v+ 26

Setting Ag, h_y, ko, k_,=0 (in $) we are going to prove that there exist &, k€ H
(s=1,2,...) such that

N f— kSl pymr = vs
6.2) (s=1,2..).

”hs_hs—1”2 = Vi1, ”ks'"ks—lll2 = Vs

This being obvious for s=0 we shall proceed by induction. Suppose 4, k,
have been already found for s5=0, ..., ¢, satisfying (_6.2), and perform the step
g—+q+1 as follows. Set

(6.3) [ =fr—hk;;
then | {2, g3=v, by (6.2) for s=q. It now follows from Lemma 2 that there exist
0,€%, W€D, ¢;=0 (j=1, ...,r), with 3 c,=1 and

1

(64 If'—FZl VP = B0



410 B. Sz.-Nagy—C. Foias: The function model of a contraction and the space LY/ H}

On the other hand, from Lemma 5 it follows that there exist

hq+1=hq+h,, k

q

1=k, +k’€9 such that

(6.5) hysrk i —hok} -jgl cive¥;0; o =
= _21“chvq'»bj”muvcj"q‘l’i“m ne(9)+¢, = 21 Cjved+e, = v, 945
i= j= :
and

66) Mo = = SVervillie = v Mokt = 3 Wervaoflin = v,
Jj= ) . J=L

Because of the relation

f=hgirkgss = (f’— 21 c,-vqtﬁjgo_j] - (hqhk;‘u —hokg — _Zl'cj"q‘/’j‘l’_j) ;
i= ) i=
from (6.4), (6.5) and (6.1) we deduce ’
6.7 If— hq+1kZ+1"L1/H‘l, = v +26 = vgua3

and (6.6), (6.7) yield (6.2) for the A ., k4, just defined. The construction by induc-
tion is thus established for all s.

From (6.2) now follows that 4, k, converge (strongly in $) to some limits 4, k,
and that h.k* converges in L'/H; to f°. Since h,—h, k,—~k obviously also imply
A k* —hk*|| .2 ~0 we conclude that | f— hk*|) tyyu3=0; thus completing the proof
of the theorem.
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