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On the very strong and mixed approximations 

V. TOTIK 

1. Let / be a continuous and 27r-pcriodic function. Denote by En(f), a>(/; d) 
and sk(x)=sk(f; x) its best uniform approximation by trigonometric polynomials 
of degree at most n, its modulus of continuity, and the £-th partial sum of its Fourier 
series, respectively. 

If co is a modulus of continuity and is an integer we define WrHm to be: 
the class of those functions / f o r which co(/ ( r ); 5)^KFCO(D) (¿€[0, 2N]) holds with, 
some constant Kf. 

In [3], following works of ALEXITS, KRALIK and LEINDLER, we proved 

Theorem A. If p, y>0 and /£ WrHa then ice have 
i 

K ( f , P, P; x) = (x)-f(x)I'}p KHf;£* *) 

and 
2_ 

< I / , P; X\ = {^JT/R-L k ( * ) - / ( * ) l p } P ^ [AI = ( M + r ) | , 

where 
I 

Moreover, there are functions /6 Wr H" for which 

K ( f , P, P; 0) S cH?:tn and <rj |/, p; 0| S cH?:y (n = 1,2,. . .) 

for some c>0. 
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*) K, c with or without subscripts denote constants not necessarily the same at each occur-
rence. \ 
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LEINDLER [ 2 ] raised the question: What can we say about the order of the strong 
approximation if we replace the sequence of the partial sums by a subsequence 
•(very strong approximation) or by a permutation of such a subsequence (mixed 
-approximation). In this paper we shall deal with these questions. 

Our main result is 

Theorem 1. Let E„(f)^Kgn («=1,2, ...), where the sequence {e„} satisfies 
the condition 

< i . i ) i Q 2 , n ^ K e n ( / , « = 1 , 2 , . . . ) . 

There exists a constant Kp, independent of n and of the sequence v= for 
which 

\ \ 2 M*)-/«!'}" ^ KpQn (p > o). 
I n k=n+1 } 

We shall use Theorem 1 to prove 

Theorem 2. Let us suppose that /£ Wr H™ where either rS 1 or r — 0, and 
<o satisfies the condition 

< 1 . 2 ) icq ( ^ Y =g Km ( 1 ) ( / , «¡ = 1 , 2 , . . . ) . 

We have for any y, 0 and for an arbitrary sequence v= {vfc} 

.and 

•(1-4) {4? 2 Alzl\sVk(x)-f(x)Y\'^ KH^l'" 

where K is independent of n and v. 
I f , moreover, for every function f£ Wr H1' and for every sequence {vfc} we have 

i 

O-5» I V J . ^ « - ^ ' - " ^ " ^ ) 
•then either r^l or r=0, and (1.2) is true. 

If a>(8)=8" ( 0 < a s l ) then (1.2) is satisfied and Theorem 2 shows that there 
is no difference with respect to the approximation order between the strong and the 
very strong approximation of functions in the classes W L i p a ( r = 0 , 1 , ...; 1). 
This is an answer to one of Leindler's problems (see the last two question of [2]). 
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We mention that the assumption "either 1 or r—0 and (1.2)" is also 
necessary that (1.3) and (1.4) should be satisfied, namely for /?>(/•+ l)p we obtain 
by Corollary of [3, Theorem 1] 

R J L " = « W ^ r w , 1 " " l K ' x > - f U , " \ ' \ = 

» i m ^ I I . 

so the second part of Theorem 2 is applicable. 
Finally we turn to the mixed approximation. Let N be the collection of the 

natural numbers. 

T h e o r e m 3. Let n: N—N be an injection, p>0 and /£ WrH"', where either 
1 or r=0, and (1.2) is true for co. 

(i) If 0<jSs=l then 

hn(f, p, p, n; x) = {(^ny 1 + 1)""1 Kv(*)-/W1P}" ^ KH№". 

(ii) If j3>l and J «({))" = - ^en hn(f,p, p, Tr; x) S KH>£\ 

(iii) If P> 1 and J c o < - then hn(f p, p, = o{H^% 

uniformly in x. 

(iv) 7 f 0 < p < l and ¿"(fc+iy-^-^ro^-jyj =°° then 

k=l 

d \ f , p, 7i; x\ = {—k2AyzlK(k)(x)-f(x)\jP ^ KHf;£\ 

(v) If 0 < P < 1 and 
J M T ) ) ' 

: oo then 

ol\f,P,n; x\ = o(HW), 

uniformly in x. 

(vi) If y s l then al\f,p,n- x\^KH?£n. 

The above constant K is independent of it, n and x. 
These estimations are best possible, namely if Q„~*0 arbitrarily, then there 

exist f£WrHm and c > 0 such that, according to the cases (i)—(vi) separately, there 
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V1J r, <o 0) 
cH'%» (¡0 

(iii) 

'r, a> (iv) 
CO Hp'y'n 
i fl F, O) (V) 

cHp'1'" r, 0} (vi) 

are permutations n of N for which 

(1.8) h„(J, p, p, n; x) = 

and 

(1-9) al\f,p,n;0\^ 

are satisfied for infinitely many n. 

Coro l l a ry . Under the assumptions of Theorem 3, for 

KiP, P) = sup sup h n ( f , p,P,ii; x) 
f .a(f ;S)S<D(6) 71; x 

and 
vn(p,P)= sup supaf l / , p, n; x\ 

f : co(f; 6) Sm(S) n; jc 
we have 

ClH^*-n S hn(p, P), an(p, p) g (c, > 0 ,n = 1, 2, ...) 

where J?* = min (1, P). 

2. To prove our theorems we require the following two lemmas. 

Lemma 1. [3, Theorem 4] There exists a Kp depending only on p(>0) for 
which 

2_ 

2K-f\PX ^KpEkl{f)\og^, 

l r i=1 j r 

whenever l^i:1<i:2<...<i:rS». 
Lemma 2. [3, Lemma 5] Let co be an arbitrary modulus of continuity. Then 

there are functions f£W0Ha such that 
(2.1) | s n ± x ( f ; 0)—/(0)| > 10~2co ( 1 ) l o g y (A s e~™n) 

is true for infinitely many n. 
We can also require that (2.1) be true for infinitely many n belonging to a given 

sequence. 

3. P r o o f of Theo rem 1. Let k. be the number of those vt for which 

2'n < v( s 2f+1n (n < t ^ 2n, i = 0, 1, ...). 

By Lemma 1 we have 

2 k ( * ) - / ( * ) l p S Kki(E2i„(f))p f l o g ^ X == Kki£?,.„ flog 
2in<v,=S2i + 1n V K; / V K; ) 
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and thus it is enough to show that 

<3.1) n k^o V q„ ) V ki ) -

where K is independent from v and n. 
Now, 

f l 2 2 № ( i o g f ) 1 = 
n k~io \ Qn ) n fc.^o v Q„ ) V kt) J 

(1.1) gives 

A 2 k ^ K , 
n 0 

nt.>o,i>oUi' v kt) n \ kQJ n\ k0J 

(if k0=0 then the last member is missing), where the summation in 521 is extended 
1 n to the / ' s satisfying the condition —log-y~—P- We obtain 
l /Cj 

0 n 

n n ( f l \ p l 71 • In ^ we have log — =>/?/ i.e. — >e?<, and so Jtog—J j—^(pi)p/ep'; hence, 

¡=1 ip e"i 

Finally, {log x)pIx?EkKp(x^\) and so flog n V k0) , 
Collecting the above estimations we obtain (3.1), and the proof is completed. 

Proof of Theorem 2. /€ WrHa implies by the well-known result of Jackson 

that thus we-can apply Theorem 1 with ("""]' anc*' 

obtain 
i 

1 2n l 7 1 ( n 
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Using this, we get for 2 m ° - 1 <«s2 m ° 

i . 

1 m0- l V" l p 
+ j ^ r y j 2 (2mY~1 2 K W - / W I " ^ . . 

which is (1.3). 
(1.4) results by a similar argument using also the Holder inequality (see e.g. 

the proof of [1, Theorem 3]). 
Next we prove the last statement of Theorem 2. We have to show that if (1.2) 

is not satisfied then (1.5) does not hold for some / and v. 
Thus let us suppose that (1.2) is not true. Then for every n there are mn and /„ 

such that 

Since ^ [ ^ n j j ^ T ^ l m ) ' w e m a y s u PP o s e that the sequence {z„}~=1 is increasing 

and that m„+1>2mn ( n= l , 2 , ...). 
Taking into account that surely ia— °° if we have 2'">e100 for all 

sufficiently large n. Now Lemma 2 gives a function / £ W°Ha such that 

(3.2) |s 2 . n m n + x ( f ; 0) —/(0)| > 10-2 (log 2 ' . ) c o ( 0 - < X ̂  mn) 

holds for infinitely many n. Hence, if we construct a sequence {vt} for which 

V,+i = 2'»mn+l, vmn+2 = 2'»m„ + 2, ...,v2mn = 2i»mn + m„ 

for all n (this is clearly possible) then we get for infinitely many n 
i 

2" K ( f ; 0 ) - / ( 0 ) | 4 P > 10"2(log2'")a>i^T" -) ^ 

S -J- 1 0 - 2 i > ( — 1 > 4" 10~2nft) i — ] 2 " U'nmJ 2 KmJ 

i . e . / and {vfc} do not satisfy (1.5). 
We have completed our proof. 
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Proof of Theorem 3. First we prove (i) for j8=l : 

K(J, p, 1, tt; x) 2 |st(x)-/(x)|4P + { - l - 2 s 
1 Jc=0 J inH-1 0 ̂ k^m J ' 

nQt)>-n 

^ ^ KHP-y, 

where we use Theorem A and Theorem 1. 
This gives 

I M ) ' (3.3) 2 M x ) - f { x ) \ ^ K Z 
k=1 fc=l 

by which we have for 2m°~1<«^2m» and for /?< 1 

n m0-1 2m + l 

2(k+iy-1Kik)(x)-f(x)\"^K 2 (2m)"-1 I W * ) - / ( * ) I P 

k=l m=0 fc = 2m 

m0- l 2"> + l ( 1 /" H i ' 2™o f 1 / 1 " o - 1 

« ' ¿ « " i K r ' i W ? 
I ^ • 

m = logfc — 1 

and this is exactly (i). 
(ii) follows from (3.3) since 

K ( f , P, P, n\ x) S 1 («+1/"1 I W*)-/(*)IP}"^ 

Now let us suppose that 2 <w j < c o - Lemma 1 gives that 

S \sk(x)-f(x)\> 3 K2M CO (1 ) ) " = 0(1) (M - CO). 

k=n 

by which 

k 

Let e>0 be arbitrary and let us choose M so that 

2 k(*)-/(*)lp < e 
k=M 
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<be satisfied for all x. If N^ max n~1(i) then 
osimil 

1 2(k+ly-Ms^W-ZWI'^ 

fAT+iy-1 M i 

II ( H ) I M 

" + 1 k=M /1 + 1 

for all n large enough. Thus we have proved" (iii), too. 
(iv) follows from (i): 

al\f,p, 7t- x\ ^ 2 ('i+l-ky-i\sn(k)(x)-f(x)\>>y = 

i 

= ^{orny 20(k+iy'1Kn-k)(x)-f(x)\jP ¡BKHr";r, 

"where ewe used the inequalities 

Ci(a)kx c2(a)k* (a > - 1 , Cl(a) > 0 , k= 1,2, ...). 

(vi) could be proved similarly with the aid of (ii) and (iii). 

Finally let us suppose that and 2 (fc + l ) y _ 1 < 0 ° - I t ' i s 

known that the last condition implies 

Thus to every e > 0 there exists an M— M(e) for which 

PC)M\ 1 - y 

\ 
are satisfied. It is easy to see that (1.2) implies ca(<5) log <5=o(l) (¿—0). Now the 
Dini—Lipschitz test gives that sk(x)—/(x) = o(l) uniformly in x, and so 

| i , ( » - t ) W - / ( * ) l < ¿ s r p i № = 0 , 1 , . . . , 2M) 

for 
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Using the previous estimations and (3.3) we have for and 2'"° 1-
- n ^ 2m° 

i 
(f 1 2M i 7 

al\f, p, n; x\ 2 ^r1|s«(.-t)(*)-/(*)lp} + 
i i 

r l mo-l 2- + 1 - | 7 Cf 1 2M v 7 
+ H f 2 2 ^ K 2 + l^A m = Af (t = 2m + l J t = 0 > 

1 

i 

• 7 « " f l ' f e + f e l l M i ) ) ' « ' - 1 } 7 

i 

+ 
m = logfc—1 

which was to be proved. 
So far we have proved (i)—(vi). It remains to show that these estimations are 

best possible. 
Let / be the function given in Theorem A. 
The first row of (1.8) immediately follows from Theorem A. 

Let us suppose that 2 CJ = c o anc* that /?>!. We shall define a n 

permutation of N as follows: If 7r(0), ..., n{nmare already known and n(J) = Mm 

(/=0, 1, ...,ram-i), let 
n{nm+\) = 2Mm+\, n(nm+2) = 2Mm + 2, ..., n(nm + nm) = 2Mm + nm, 

where nm will be chosen later. 
However should n be defined between nm_1 and nm we have in any case 

i . JL 

{ i ^ r T n f ^ ' 1 3 I W * ) - / M I P } M ; T T T 2 Mx)-m\'}' l-(Znm + i ) *=«m+l J lnm+i t=2Mm+l J 
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and therefore 
(3.4) 

K J f , P> ß, n;0)^c 
, 2 M O ) - / ( 0 ) 1 * 1 * 

— T 2 k ( o ) - / ( o ) l p - ' = 0
 n , , ^ j U ^ " » l « m + l ) c = 0 

if nm is large enough in comparison with Mm, because 2 a j ' s 

equivalent with [ i - j . 

Let us choose nm so large that the above estimation should be satisfied, and then 
continue the procedure. 

It is clear that the above, partly defined n could be extended to a permutation 
of N, and so (3.4) shows that (ii) cannot be improved. 

Finally, if gn~*0 arbitrarily, we follow the above construction and get 
i 

hnm(f> P, P> o) = c U - Z | s t (0) - / (0) |4 P
 s <-"m + i * = 2Mm + l > 

(at the second inequality we used that for / we have 1^(0)—/(0)|sc — co j 

(5 • 2v-2v~1^k^5 •2V+2V-1) (see the proof of [3, Theorem 1]) if nm is large enough. 
Thus the proof of (1.8) is completed. 
The proof of (1.9) is similar, we omit the details. 
The proof of the Corollary on the basis of the above arguments is easy. The 

right-hand estimations follow from the proof of (i)—(vi), while the left-hand sides 
are easy consequences of Theorem A. 

The proof of Theorem 3 is thus completed. 
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