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On the very strong and mixed approximations

V. TOTIK

1. Let f be a continuous and 2z-periodic function. Denote by E,(f), w(f; é)
and s5,(x)=s,(f; x) its best uniform approximation by trigonometric polynomials
of degree at most », its modulus of continuity, and the k-th partial sum of its Fourier
series, respectively.

If w is a modulus of continuity and r=0 is an integer we define W” H® to be:
the class of those functions f for which w(f®; 8)=K,w(5) (6€[0, 2n]) holds with
some constant K.

In [3], following works of ALEXITS, KRALIK and LEINDLER, we proved

Theorem A. If p,B,y=0 and f€e W H® then we have

h,(f, b B; x) = {( TP 2 2’(k+1)” llsk(x)—f(x)lp} = KHPSm %)

and
1 .
J1 =z 4 n+
o If,p;xl={7k§ Ax:ilsk(x)—f(x)l"} = KHj " [Az=[ ny]],
where '

mt = (e S (peld)] |

Moreover, there are functions fEe W"H® for which

h,(f, p, B; 0)= cHPS" and o}|f, p; O] = cHPA" (n=1,2,..)

Sor some ¢=0.
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*) K, ¢ with or without subscripts denote constants not necessarily the same at each occur-
rence. \
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LEINDLER [2] raised the question: What can we say about the order of the strong
-approximation if we replace the sequence of the partial sums by a subsequence
«(very strong approximation) or by a permutation of such a subsequence (mixed
.approximation). In this paper we shall deal with these questions.

Our main result is

Theorem 1. Let E,(f)=Ko, (n=1,2,...), where the sequence {o,} satisfies
ithe condition

((1.1) igyi, = Kp, (i,n=1,2,..).

There exists a constant K,, independent of n and of the sequence v={v }—, for
which
1 .
1 2n p
3 s.@s0r =ke 0=0.
N k=nt1

We shall use Theorem 1 to prove

Theorem 2. Let us suppose that fc W' H® where either r=1 or r=0, and
«w satisfies the condition ’

(1.2) i (%) = Ko (%) Gom=1,2,..).

We have for any v, B, p=0 and for an arbitrary sequence v={v,}

1

43 Ay 2 e @ e} = kgt
and : '

1
ay {5 2 4t -rwp} = ez

where K is independent of n and v. _
If,-moreover, for every function fEW'H® and for every sequence {v.} we have

(1.5) {% k=,.22.: JswD~f (")l"}F =0 [‘3‘ @ [%)]

then either r=1 or r=0, and (1.2) is true.

If w(8)=6% (0<a=1) then (1.2) is satisfied and Theorem 2 shows that there
is no difference with respect to the approximation order between the strong and the
very strong approximation of functions in the classes W" Lipax (r=0, 1, ...; 0<a=1).
This is an answer to one of Leindler’s problems (see the last two question of [2]).
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We mention that the assumption “‘either rz=1 or r=0 'and (1.2)” is also
necessary that (1.3) and (1.4) should be satisfied, namely for f=(r41)p we obtain
by Corollary of [3, Theorem 1]

1 , ' 1

{%2’ 184, —f <x)|"}7= 0 [{ Gy 2 2 (k+1)P~ llsvk(x)—f(x>|v} ) =

(0] [ir @ (i]}
n n
so the second part of Theorem 2 is appliéable.

Finally we turn to the mixed approximation. Let N be the collection of the
natural numbers.

" Theorem 3. Let n: N—N be an injection, p=0 and fe W"H®, where either
r=1 or r=0, and (1.2) is true for w.
(i) If 0<B=1 then

1

2By 5 ) = (o S e+ 17 a1 = Keigdn

. oo 14 )
W) If B=1and 2 [Tlr—w[%]] =oo then h,(f,p, B, n; x) = KHL"
k=1

(i) If B>1 and kg[—;,—w(%]] <oo then h,(f, p, B, n; x) = o(HELY,

uniformly in x.
oo p
(iv) If O<p<1 and 2 (k+1)1 [‘]:Tw[’lg]] =oco then
k=1
1

alf, poms =g 2 At @~} = Kepgn.

4
(v) If O0<p<1 and Z(k+1)’“1[ 1 w(llc]] <oo then
a3lf, b, m; x| = o(H2&"),
uniformly in x.
i) If y=1 then ol|f, p, n; x| = KHP>"

The above constant K is independent of =, n and x. :
These estimations are best possible, namely if g,—~0 arbitrarily, then there
exist feW"H® and ¢=0 such that, according to the cases (iy—(vi) separately, there
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are permutations ©n of N for which
Co . cHP B @)
(1.8) ho(f, 05 By 75 x) = qcHEG™ (i)
Aco Hrdm i)
and
' cHPZ™  (iv)
(1.9) alf, p, s 0= e, HEL™ (V)
' cHP " (vi)
are satisfied for infinitely many n. '
Corollary. Under the assumptions of Theorem 3, for

h,(p, )= sup  suph,(f, p, B, n; x)
fro(f;8)=w(d) n; x

and
Un(p’ .B): sup Supaflf, p, 7, xl
Jio(f;N=w(d) n; x
we have

af, HES" = hy(p, B, 04(p, B) = QHPS™" (1> 0,n=1,2,..)
where B*=min (1, ).
2. To prove our theorems we require the following two lemmas.

Lemma 1. [3, Theorem 4] There exists a K, depending only on p(=0) for

which
1

{i P l"} = K, B, (f)log 2,

whenever 1=k, <k,<...<k,=n

Lemma 2. [3, Lemma 5] Let @ be an arbitrary -modulus of continuity. Then
there are functions fe WOH® such that :

(eR)) Isws2(f3 0)—f(0)] > 10~ 2w[ ! ] log 7 (1= e1%n)
is true for infinitely many n.

We can also require that (2.1) be true for infinitely many n belonging to a given
sequence.

3. Proof of Theorem 1. Let k; be the number of those v, for which
. 2Zipn<v,=2*n (n<t=2n,i=01,..).

By Lemma 1 we have

2l+l
S 10~ = Kiu(Eun (D) (10

2in<v,=2i+1p .ki

2i+1h 4
)

13

p
n] = Kkz le‘n [lOg
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and thus it is enough to show that

_ Qz* 2"+1n)" —
where K is independent from v and n.
Now, .
1 Qs (,+1)] [9] [ "]]
S=K,{— I[——— —=2 k;{log—| | = Si+S..
P [n kiz?vo ! @ n ké:) n ngi l+ :
(1.1) gives

SléKi 2 k=K

n k>0

1 Pk, n\* o ’
=K— ¥ . Ze =
S - & L (% o O R (9

(if k,=0 then the last member is missing) where the summation in S,, is extended

to the i’s satisfying the condition —log I ‘=p. We obtaln

k.
Sy =K > — =K.
k‘.>0 h
n . n - . n\?/n .
In S,, we have log —k—>pi i.e. F>e?i, and so (logF) /Fé(pi)"/e”i; hence,
= 1 (pi)r _
S22§ Kl_li_p epi :K.

Finally, (log x)?/x=K, (x=1) and so f—-(logk ) =K,.

\
Collecting the above estimations we obtain (3.1), and the proof is completed.

Proof of Theorem 2. JEW™H® implies by the well-known result of Jackson
that E,,(f)éK%;co [%], thus we. can apply Theorem 1 with g,,:-nl—rco [—-’11—] and.

obtain

{n _,,2_ |Svk(X)—f(x)|p} =K ;},w(i]_
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Using this, we get for 2M0~l<p=2m

. -
A ) —f 00l = Ko7 2 a1+

1

k=

Ty 2 @Y 3 s W-fe] =

L
P

1 a5 m\f—19m 1 1 ? - p,B,n
which is (1.3).

(1.4) resuits by a similar argument using also the Holder inequality (see e.g.
the proof of [1, Theorem 3]).

Next we prove the last statement of Theorem 2. We have to show that if (1.2)
1s not satisfied then (1.5) does not hold for some f and v.

Thus let us suppose that (1.2) is not true. Then for every n there are m, and i,

such that ,
R
i,ol=—|> no|—I|.
2iam,, m,

. 1 1
Since w [5%]5—0)[;], we may suppose that the sequence {1 >, Is increasing

and that m,,,>2m, (n=1,2, ...).
Taking into account that surely i,—c if n—>c, we have 2">¢!% for all
sufficiently large n. Now Lemma 2 glves a function fe WOH*® such that

1
G2 |ssemea(f; O—f©O) = 10~ (log z'n)w[m) O<i=m)
holds for infinitely many ». Hence, if we construct a sequence {v;} for which »
. Vmar1 = 2nm, 4+ 1, vy o = 2m,+2, ..., Vg, = 20m,+m,

for all n (this is clearly possible) then we get for infinitely many n

1

{ml” k=n2-2:1 o (f;‘ 0 —f(0)|P}7 > 10"*(log 2") @ (—2'"1_'",.] =

1_2.[1]14(1]
2—2—10 i,w 2, >710 na)m—"

i.e. fand {v} do not satisfy (1.5).
We have completed our proof.
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Proof of Theorem 3. First we prove (i) for f=1:

m ot 95K Zaw—rer) +ils 3 ksww-ror) s
. a)>n

= KH,‘j’,,}’"+K%m[%] = KHP')",
where we use Theorem A and Theorem 1.
This gives

(3-3) ' kgn; ISz () —=f(OIP = Kk;n; [% w[?)] ,

by which we have for 2™~1<n=2" and for f<1

gm+1

;21 (e 1P 5,00 () —f (O = Kmoé_:,l (emp-1 k=22"" 15200 () —f (P =

=k e F (ot =x 2 ko)) F @v=
=25 & ) =T & e\ & =
. . m=logk— N

el ot m g (ol

and this is exactly (i).

(ii) follows from (3.3) since
1

W50, 675 9 = sy 3 1P o @S OP) = KAz,

’

Now let us suppose that f [%w [—1—
k=1

, .
k)] <oo, Lemma 1 gives that

Zico-rear=x 3 [Lo(y))
by which .

She-swr=x 3 [Lo(H)] <ow 01w,

Let e=0 be arbitrary and let us choose M so that

2'; Ise () —F (P <&
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be satisfied for all x. If N;orgii)gln*l(i) then

LY Z (k+1)F1 [ 2y () _f(x)Ip =

(n+1)
- (N+1)P-t M _ , 1 . _ »_
= Ty & OO Gy ,.(,fM("H)ﬂ 5200 ()~ ()]
= o)+ = 3 () —fIP = -2

n+l l

for all »n large enough. Thus we have proved- (iii), too.
(iv) follows from (i):

1 n l
a)lfp, m; x| = K{ml—)ykg{) (’H—1‘k)y_1|5n(k)(x)—f(x)|p}p =

= k{1 s n s P] =KHz
where we used the inequalities
a@k* = A = @k (@>-1, c;(@)=0, k=1,2,..):
(vi) could be proved similarly with the aid of (ii) and (iii).
o 14
Finally let us suppose that y<1 and 2 (k+1)"-! [%w(%]] <o, It'is
k=1
known that the last condition implies
>) [l “’[i]]p: o((n+1)-)
Sk Tk ’

‘Thus to every ¢=0 there exists an M =M (¢) for which

3wy |bo(H] <o amd T (Lo(5)] < e
k=93 41 Kk B} % =&

\
-are satisfied. It is easy to see that (1.2) implies w(6) logd=0(1) (§—0). Now the
Dini—Lipschitz test gives that s.(x) —f(x)=0(l) uniformly in x, and so

&P
[$xn—ty () —f(¥)] < g k=01 .., 2M)
for n=n,.
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Using the previous estimations and (3.3) we have for n=n, and 2™ '<
<n=2"
1
2M T

1
a1l b, s 2| = K[{ 2 A @ O]+

{Al; moZI 2}}1 A7 San-19 (%) f(x)l”} = K[{Zlfkg; lsn(n—k)(x)—f(x)lp};+

m=M k=2m-+1
1 1

S e F e n-seor]” )=« (e npie) +

A Eo 3 el ) =l

1
1 2M+1 1 P ml)'_l ; 1 om,
myy—1
+{AV =1 [kr ( ]] mZM(z) } {Ayk 2M+1+1(kr ]
1
3

5 el e el e )

m=logk—1 ' (4
1

2ol o=

(AZ)"
which was to be proved.
So far we have proved (1)—(vi). It remains to show that these estimations are
best possible.
Let f be the function given in Theorem A.
The first row of (1.8) immediately follows from Theorem A.
=(1 1
Let us suppose that k;:: [Fw (75
permutation of N as follows: If =(0), ..., n(n,_,) are already known and n({)=M,,
(i=0,1, ..., n,_y), let
z(n,+1) =2M,+1, n(n,+2) =2M,+2, ..., z(n,+n,) = 2M,+n,,
where n,, will be chosen later. '
However should n be defined between n,,_; and n,, we have in any case

|

|-

T = KeHpP2"

» .
)] =c and that f=>1. We shall define a =

1

{(Zn 1_|_ = Z (k+ 1Y sp09 (%) —f(x)lp} =

1 1

{——(2,, IJFI—),,—(nm)” - Z Is,:(k)(x)—f(x)lp} >{ P llsk(x)—f(x)]l’}p

v

n,+1x
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and therefore

(3.4

l
: . S O-OF)7
b, (D Bim; O)=c 2 Is(0)—f (0)|P — __n+_l— = 5 Hrpc:
if n,, is large enough in comparison with M,, because [ki [E)]

equivalent with (H?»")?=0 (%) .

Let us choose n,, so large that the above estimation should be satisfied, and then
continue the procedure.

It is clear that the above, partly defined = could be extended to a permutation
of N, and so (3.4) shows that (ii) cannot be improved.

Finally, if o,-0 arbitrarily, we follow the above construction and get

1
n

Mp+1 ;=2A;,,"+1 5(0) —f(O){P} =

1 1
e = (5) =
cy— —ol|+ =co, | —| =co,, HP5"
{nmk=21§+1[kr k Qm n, Qm

(at the sccond inequality we used that for f we have |5(0)—f(0)|=c — L (]1(]

thm(f’ p, ﬂ’ T, 0) = C{

v

kr
(5:2V-2""1=k=5-2"4+2""") (see the proof of [3, Theorem 1}) if »,, is large enough.

Thus the proof of (1.8) is completed.

The proof of (1.9) is similar, we omit the details. ‘ :

The proof of the Corollary on the basis of the above arguments is easy. The
right-hand estimations follow from the proof of (i)—(vi), while the left-hand sides
are easy consequences of Theorem A.

The proof of Theorem 3 is thus completed.
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