On the very strong and mixed approximations

v. TOTIK

1. Let f be a continuous and 2π-periodic function. Denote by $E_{n}(f), \omega(f ; \delta)$ and $s_{k}(x)=s_{k}(f ; x)$ its best uniform approximation by trigonometric polynomials of degree at most n, its modulus of continuity, and the k-th partial sum of its Fourier series, respectively.

If ω is a modulus of continuity and $r \geqq 0$ is an integer we define $W^{r} H^{\omega}$ to be: the class of those functions f for which $\omega\left(f^{(r)} ; \delta\right) \leqq K_{f} \omega(\delta)(\delta \in[0,2 \pi])$ holds with some constant K_{f}.

In [3], following works of Alexits, Králik and Leindler, we proved
Theorem A. If $p, \beta, \gamma>0$ and $f \in W^{r} H^{\omega}$ then we have

$$
\left.h_{n}(f, p, \beta ; x)=\left\{\frac{1}{(n+1)^{\beta}} \sum_{k=0}^{n}(k+1)^{\beta-1}\left|S_{k}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K H_{r, \omega}^{p, \beta, n} *\right)
$$

and

$$
\sigma_{n}^{\gamma}|f, p ; x|=\left\{\frac{1}{A_{n}^{\gamma}} \sum_{k=0}^{n} A_{n-k}^{\gamma-1}\left|s_{k}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K H_{r, \omega}^{p, 1, n} \quad\left(A_{n}^{\gamma}=\binom{n+\gamma}{n}\right),
$$

where

$$
H_{r, \omega}^{p, \beta, n}=\left\{\frac{1}{(n+1)^{\beta}} \sum_{k=1}^{n}(k+1)^{\beta-1}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}\right\}^{\frac{1}{p}} .
$$

Moreover, there are functions $f \in W^{r} H^{\omega}$ for which

$$
h_{n}(f, p, \beta ; 0) \geqq c H_{r, \omega}^{p, \beta, n} \quad \text { and } \quad \sigma_{n}^{\gamma}|f, p ; 0| \geqq c H_{r, \omega}^{p, 1, n} \quad(n=1,2, \ldots)
$$

for some $c>0$.

Received November 29, 1978.
${ }^{*}$) K, c with or without subscripts denote constants not necessarily the same at each occurrence.

Leindler [2] raised the question: What can we say about the order of the strong approximation if we replace the sequence of the partial sums by a subsequence (very strong approximation) or by a permutation of such a subsequence (mixed approximation). In this paper we shall deal with these questions.

Our main result is
Theorem 1. Let $E_{n}(f) \leqq K \varrho_{n}(n=1,2, \ldots)$, where the sequence $\left\{\varrho_{n}\right\}$ satisfies ithe condition

$$
\begin{equation*}
i \varrho_{2^{i} n} \leqq K \varrho_{n} \quad(i, n=1,2, \ldots) \tag{1.1}
\end{equation*}
$$

There exists a constant K_{p}, independent of n and of the sequence $v=\left\{v_{k}\right\}_{k=0}^{\infty}$ for which

$$
\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{v_{k}}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K_{p} \varrho_{n} \cdot(p>0)
$$

We shall use Theorem 1 to prove
Theorem 2. Let us suppose that $f \in W^{r} H^{\omega}$ where either $r \geqq 1$ or $r=0$, and ω satisfies the condition

$$
\begin{equation*}
i \omega\left(\frac{1}{2^{i} n}\right) \leqq K \omega\left(\frac{1}{n}\right) \quad\left(i, n_{i}=1,2, \ldots\right) \tag{1.2}
\end{equation*}
$$

We have for any $\gamma, \beta, p>0$ and for an arbitrary sequence $v=\left\{v_{k}\right\}$

$$
\begin{equation*}
\left\{\frac{1}{(n+1)^{\beta}} \sum_{k=0}^{n}(k+1)^{\beta-1}\left|s_{v_{k}}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K H_{r, \infty}^{p, \beta, n} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\frac{1}{A_{n}^{\gamma}} \sum_{k=0}^{n} A_{n-k}^{\gamma-1}\left|s_{v_{k}}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K H_{r, \omega}^{p, 1, n} \tag{1.4}
\end{equation*}
$$

where K is independent of n and v.
If, moreover, for every function $f \in W^{r} H^{\omega}$ and for every sequence $\left\{v_{k}\right\}$ we have

$$
\begin{equation*}
\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{v_{k}}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}}=O\left(\frac{1}{n^{r}} \omega\left(\frac{1}{n}\right)\right) \tag{1.5}
\end{equation*}
$$

then either $r \geqq 1$ or $r=0$, and (1.2) is true.
If $\omega(\delta)=\delta^{\alpha}(0<\alpha \leqq 1)$ then (1.2) is satisfied and Theorem 2 shows that there is no difference with respect to the approximation order between the strong and the very strong approximation of functions in the classes $W^{r} \operatorname{Lip} \alpha(r=0,1, \ldots ; 0<\alpha \leqq 1)$. This is an answer to one of Leindler's problems (see the last two question of [2]).

We mention that the assumption "either $r \geqq 1$ or $r=0$ and (1.2)" is also necessary that (1.3) and (1.4) should be satisfied, namely for $\beta>(r+1) p$ we obtain by Corollary of [3, Theorem 1]

$$
\begin{aligned}
\left\{\frac{1}{n} \sum_{k=n+1}^{2 n}\left|s_{v_{k}}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} & =O\left(\left\{\frac{1}{(2 n+1)^{\beta}} \sum_{k=0}^{2 n}(k+1)^{\beta-1}\left|s_{v_{k}}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}}\right)= \\
& =O\left(\frac{1}{n^{r}} \omega\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

so the second part of Theorem 2 is applicable.
Finally we turn to the mixed approximation. Let N be the collection of the natural numbers.

Theorem 3. Let $\pi: N \rightarrow N$ be an injection, $p>0$ and $f \in W^{r} H^{\omega}$, where either $r \geqq 1$ or $r=0$, and (1.2) is true for ω.
(i) If $0<\beta \leqq 1$ then
$h_{n}(f, p, \beta, \pi ; x)=\left\{\frac{1}{(n+1)^{\beta}} \sum_{k=0}^{n}(k+1)^{\beta-1}\left|s_{\pi(k)}(x)-f(x)\right|^{p^{p}}\right\}^{\frac{1}{p}} \leqq K H_{r, \infty}^{p, \beta, n}$.
(ii) If $\beta>1$ and $\sum_{k=1}^{\infty}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}=\infty \quad$ then $\quad h_{n}(f, p, \beta, \pi ; x) \leqq K H_{r, \omega}^{p, 1, n}$.
(iii) If $\beta>1$ and $\sum_{k=1}^{\infty}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}<\infty \quad$ then $\quad h_{n}(f, p, \beta, \pi ; x)=o\left(H_{r, \omega}^{p, 1, n}\right)$, uniformly in x.
(iv) If $0<p<1$ and $\sum_{k=1}^{\infty}(k+1)^{\gamma-1}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}=\infty$ then

$$
\sigma_{n}^{\gamma}|f, p, \pi ; x|=\left\{\frac{1}{A_{n}^{\gamma}} \sum_{k=0}^{n} A_{\left.n=\frac{1}{k} \right\rvert\,}^{\gamma-1} s_{\pi(k)}(x)-\left.f(x)\right|^{p^{\prime}}\right\}^{\frac{1}{p}} \leqq K H_{r, \omega}^{p, \gamma, n} .
$$

(v) If $0<p<1$ and $\sum_{k=1}^{\infty}(k+1)^{y-1}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}<\infty$ then

$$
\sigma_{n}^{\gamma}|f, p, \pi ; x|=o\left(H_{r, \omega}^{p, \gamma, n}\right)
$$

uniformly in x.
(vi) If $\gamma \geqq 1$ then $\sigma_{n}^{\gamma}|f, p, \pi ; x| \leqq K H_{r, \omega}^{p, 1, n}$.

The above constant K is independent of π, n and x.
These estimations are best possible, namely if $\varrho_{n} \rightarrow 0$ arbitrarily, then there exist $f \in W^{r} H^{\omega}$ and $c>0$ such that, according to the cases (i)-(vi) separately, there
are permutations π of N for which

$$
h_{n}(f, p, \beta, \pi ; x)= \begin{cases}c H_{r, \omega}^{p, \beta, n} & \text { (i) } \tag{1.8}\\ c H_{r, \omega}^{p, 1, n} & \text { (ii) } \\ c \varrho_{n} H_{r, \omega}^{p, 1, n} & \text { (iii) }\end{cases}
$$

and

$$
\sigma_{n}^{\gamma}|f, p, \pi ; 0| \geqq\left\{\begin{array}{l}
c H_{r, \omega}^{p, \gamma, n} \tag{1.9}\\
c \varrho_{n} H_{r, \omega}^{p, \gamma, n} \\
c H_{r, \omega}^{p, 1, n}
\end{array}\right.
$$

are satisfied for infinitely many n.
Corollary. Under the assumptions of Theorem 3, for
and

$$
h_{n}(p, \beta)=\sup _{f: \omega(f ; \delta) \leqq \omega(\delta)} \sup _{\pi ; x} h_{n}(f, p, \beta, \pi ; x)
$$

$$
\sigma_{n}(p, \beta)=\sup _{f: \omega(f ; \delta) \leq \omega(\delta)} \sup _{\pi ; x} \sigma_{n}^{\beta}|f, p, \pi ; x|
$$

we have

$$
c_{1} H_{r, \omega}^{p, \beta^{*, n}} \leqq h_{n}(p, \beta), \sigma_{n}(p, \beta) \leqq c_{2} H_{r, \omega}^{p, \beta^{*}, n} \quad\left(c_{1}>0, n=1,2, \ldots\right)
$$

where $\beta^{*}=\min (1, \beta)$.
2. To prove our theorems we require the following two lemmas.

Lemma 1. [3, Theorem 4] There exists a K_{p} depending only on $p(>0)$ for which

$$
\left\{\frac{1}{r} \sum_{i=1}^{r}\left|s_{k_{i}}-f\right|^{p}\right\}^{\frac{1}{p}} \leqq K_{p} E_{k_{1}}(f) \log \frac{2 n}{r},
$$

whenever $1 \leqq k_{1}<k_{2}<\ldots<k_{r} \leqq n$.
Lemma 2. [3, Lemma 5] Let ω be an arbitrary modulus of continuity. Then there are functions $f \in W^{0} H^{\omega}$ such that

$$
\begin{equation*}
\left|s_{n \pm \lambda}(f ; 0)-f(0)\right|>10^{-2} \omega\left(\frac{1}{n}\right) \log \frac{n}{\lambda} \quad\left(\lambda \leqq e^{-100} n\right) \tag{2.1}
\end{equation*}
$$

is true for infinitely many n.
We can also require that (2.1) be true for infinitely many n belonging to a given sequence.
3. Proof of Theorem 1 . Let k_{i} be the number of those v_{t} for which

$$
2^{i} n<v_{t} \leqq 2^{i+1} n \quad(n<t \leqq 2 n, i=0,1, \ldots) .
$$

By Lemma 1 we have

$$
\sum_{2^{i n}<v_{t} \leq \sum^{i+1} n_{n}}\left|s_{v_{t}}(x)-f(x)\right|^{p} \leqq K k_{i}\left(E_{2^{i} n}(f)\right)^{p}\left(\log \frac{2^{i+1} n}{k_{i}}\right)^{p} \leqq K k_{i} \varrho_{2 i n}^{p}\left(\log \frac{2^{i+1} n}{k_{i}}\right)^{p},
$$

and thus it is enough to show that

$$
\begin{equation*}
S=\frac{1}{n} \sum_{k_{i}>0} k_{i}\left(\frac{\varrho_{2^{i} n}}{\varrho_{n}}\right)^{p}\left(\log \frac{2^{i+1} n}{k_{i}}\right)^{p} \leqq K \tag{3.1}
\end{equation*}
$$

where K is independent from v and n.
Now,

$$
S \leqq K_{p}\left(\frac{1}{n} \sum_{k_{i}>0} k_{i}\left(\frac{\varrho_{2} i_{n}(i+1)}{\varrho_{n}}\right)^{p}+\frac{1}{n} \sum_{k_{i}>0}\left(\frac{\varrho_{2^{i} n}}{\varrho_{n}}\right)^{p} k_{i}\left(\log \frac{n}{k_{i}}\right)^{p}\right)=S_{1}+S_{2}
$$

(1.1) gives

$$
\begin{gathered}
S_{1} \leqq K \frac{1}{n} \sum_{k_{i}>0} k_{i} \leqq K \\
S_{2} \leqq K \frac{1}{n} \sum_{k_{i}>0, i>0}\left(\frac{1}{i}\right)^{p} k_{i}\left(\log \frac{n}{k_{i}}\right)^{p}+\frac{k_{0}}{n}\left(\log \frac{n}{k_{0}}\right)^{p}=S_{21}+S_{22}+\frac{k_{0}}{n}\left(\log \frac{n}{k_{0}}\right)^{p}
\end{gathered}
$$

(if $k_{0}=0$ then the last member is missing), where the summation in S_{21} is extended to the i 's satisfying the condition $\frac{1}{i} \log \frac{n}{k_{i}} \leqq p$. We obtain

$$
S_{\mathrm{an}} \leqq K \sum_{k_{i}>0} \frac{k_{i}}{n} \leqq K
$$

In S_{22} we have $\log \frac{n}{k_{i}}>p i$ i.e. $\frac{n}{k_{i}}>e^{p_{i}}$, and so $\left(\log \frac{n}{k_{i}}\right)^{p} \left\lvert\, \frac{n}{k_{i}} \leqq(p i)^{p} / e^{p_{i}}\right.$; hence,

$$
S_{22} \leqq K \sum_{i=1}^{\infty} \frac{1}{i^{p}} \frac{(p i)^{p}}{e^{p_{i}}} \leqq K .
$$

Finally, $(\log x)^{p} / x \leqq K_{p}(x \geqq 1)$ and so $\frac{k_{0}}{n}\left(\log \frac{n}{k_{0}}\right)^{p} \leqq K_{p}$,
Collecting the above estimations we obtain (3.1), and the proof is completed.
Proof of Theorem 2. $f \in W^{r} H^{\omega}$ implies by the well-known result of Jackson that $E_{n}(f) \leqq K \frac{1}{n^{r}} \omega\left(\frac{1}{n}\right)$; thus we can apply Theorem 1 with $\varrho_{n}=\frac{1}{n^{r}} \omega\left(\frac{1}{n}\right)$. and, obtain

$$
\left\{\frac{1}{n} \sum_{k=n=1}^{2 n}\left|s_{v_{k}}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K \frac{1}{n^{r}} \omega\left(\frac{1}{n}\right) .
$$

Using this, we get for $2^{m_{0}-1}<n \leqq 2^{m_{0}}$

$$
\begin{aligned}
& \left.\left\{\left.\frac{1}{(n+1)^{\beta}} \sum_{k=0}^{n}(k+1)^{\beta-1} \right\rvert\, s_{v_{k}} x\right)-\left.f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K\left\{\frac{1}{(n+1)^{\beta}} \sum_{k=0}^{1}\left|s_{v_{k}}(x)-f(x)\right|^{p}+\right. \\
& \left.\quad+\frac{1}{(n+1)^{\beta}} \sum_{m=0}^{m_{0}-1}\left(2^{m}\right)^{\beta-1} \sum_{k=2^{m}+1}^{2^{m}}\left|s_{v_{k}}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq \\
& \quad \leqq \\
& \quad K\left\{\frac{1}{(n+1)^{\beta}} \sum_{m=0}^{m_{0}-1}\left(2^{m}\right)^{\beta-1} 2^{m}\left(\frac{1}{2^{m}} \omega\left(\frac{1}{2^{m}}\right)\right)^{p}\right\}^{\frac{1}{p}} \leqq K H_{r, \omega}^{p, \beta, n}
\end{aligned}
$$

which is (1.3).
(1.4) resuits by a similar argument using also the Hölder inequality (see e.g. the proof of [1, Theorem 3]).

Next we prove the last statement of Theorem 2. We have to show that if (1.2) is not satisfied then (1.5) does not hold for some f and v.

Thus let us suppose that (1.2) is not true. Then for every n there are m_{n} and i_{n} such that

$$
i_{n} \omega\left(\frac{1}{2^{i_{n} m_{n}}}\right)>n \omega\left(\frac{1}{m_{n}}\right) .
$$

Since $\omega\left(\frac{1}{2 m}\right) \geqq \frac{1}{2} \omega\left(\frac{1}{m}\right)$, we may suppose that the sequence $\left\{i_{n}\right\}_{n=1}^{\infty}$ is increasing and that $m_{n+1}>2 m_{n}(n=1,2, \ldots)$.

Taking into account that surely $i_{n} \rightarrow \infty$ if $n \rightarrow \infty$, we have $2^{i_{n}}>e^{100}$ for all sufficiently large n. Now Lemma 2 gives a function $f \in W^{0} H^{\omega}$ such that

$$
\begin{equation*}
\left|s_{2^{i} m_{n}+\lambda}(f ; 0)-f(0)\right|>10^{-2}\left(\log 2^{i_{n}}\right) \omega\left(\frac{1}{2^{i_{n} m_{n}}}\right) \quad\left(0<\lambda \leqq m_{n}\right) \tag{3.2}
\end{equation*}
$$

holds for infinitely many n. Hence, if we construct a sequence $\left\{v_{k}\right\}$ for which
for all n (this is clearly possible) then we get for infinitely many n

$$
\begin{gathered}
\left\{\frac{1}{m_{n}} \sum_{k=m_{n}+1}^{2 m_{n}}\left|s_{v_{k}}(f ; 0)-f(0)\right|^{p}\right\}^{\frac{1}{p}}>10^{-2}\left(\log 2^{i_{n}}\right) \omega\left(\frac{1}{2^{i} n m_{n}}\right) \geqq \\
\geqq \frac{1}{2} 10^{-2} i_{n} \omega\left(\frac{1}{2^{i} m_{n}}\right)>\frac{1}{2} 10^{-2} n \omega\left(\frac{1}{m_{n}}\right)
\end{gathered}
$$

i.e. f and $\left\{v_{k}\right\}$ do not satisfy (1.5).

We have completed our proof.

Proof of Theorem 3. First we prove (i) for $\beta=1$:

$$
\begin{gathered}
h_{n}(f, p, 1, \pi ; x) \leqq K\left(\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|s_{k}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}}+\left\{\frac{1}{n+1} \sum_{\substack{0 \leq k \leq m \\
\pi,(k)>n}}\left|s_{\pi(k)}(x)-f(x)\right|^{p^{p}}\right\}^{\frac{1}{p}}\right) \leqq \\
\leqq K H_{r, \omega}^{p, 1, n}+K \frac{1}{n^{r}} \omega\left(\frac{1}{n}\right) \leqq K H_{r, \omega}^{p, 1, n},
\end{gathered}
$$

where we use Theorem A and Theorem 1.
This gives

$$
\begin{equation*}
\sum_{k=1}^{n}\left|s_{\pi(k)}(x)-f(x)\right|^{p} \leqq K \sum_{k=1}^{n}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}, \tag{3.3}
\end{equation*}
$$

by which we have for $2^{m_{0}-1}<n \leqq 2^{m_{0}}$ and for $\beta<1$

$$
\begin{aligned}
& \sum_{k=1}^{n}(k+1)^{\beta-1}\left|s_{\pi(k)}(x)-f(x)\right|^{p} \leqq K \sum_{m=0}^{m_{0}-1}\left(2^{m}\right)^{\beta-1} \sum_{k=2^{m}}^{2^{m+1}}\left|s_{\pi(k)}(x)-f(x)\right|^{p} \leqq \\
& \leqq K \sum_{m=0}^{m_{0}-1}\left(2^{m}\right)^{\beta-1} \sum_{k=1}^{2^{m+1}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p} \leqq K \sum_{k=1}^{2^{m}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p} \sum_{m=\log k-1}^{m_{0}-1}\left(2^{m}\right)^{\beta-1} \leqq \\
& \leqq K \sum_{k=1}^{2^{m}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}\left(2^{\frac{2}{\log } k}\right)^{\beta-1} \leqq K \sum_{k=1}^{n}(k+1)^{\beta-1}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}
\end{aligned}
$$

and this is exactly (i).
(ii) follows from (3.3) since

$$
h_{n}(f, p, \beta, \pi ; x) \leqq\left\{\frac{1}{(n+1)^{\beta}} \sum_{k=0}^{n}(n+1)^{\beta-1}\left|s_{\pi(k)}(x)-f(x)\right|^{p^{\prime}}\right\}^{\frac{1}{p}} \leqq K H_{r, \omega}^{p, 1, n} .
$$

Now let us suppose that $\sum_{k=1}^{\infty}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}<\infty$. Lemma 1 gives that

$$
\sum_{k=n}^{2 n}\left|s_{k}(x)-f(x)\right|^{p} \leqq K \sum_{k=n}^{2 n}\left(\frac{1}{k^{\prime}} \omega\left(\frac{1}{k}\right)\right)^{p}
$$

by which

$$
\sum_{k=M}^{\infty}\left|s_{k}(x)-f(x)\right|^{p} \leqq K \sum_{k=M}^{\infty}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}=o(1) \quad(M \rightarrow \infty) .
$$

Let $\varepsilon>0$ be arbitrary and let us choose M so that

$$
\sum_{k=M}^{\infty}\left|s_{k}(x)-f(x)\right|^{p}<\varepsilon
$$

be satisfied for all x. If $N \geqq \max _{0 \leqq i \leqq M} \pi^{-1}(i)$ then

$$
\begin{gathered}
\frac{1}{(n+1)^{\beta} \cdot} \sum_{k=0}^{n}(k+1)^{\beta-1}\left|s_{\pi(k)}(x)-f(x)\right|^{p} \leqq \\
\leqq \frac{(N+1)^{\beta-1}}{(n+1)^{\beta}} \sum_{k=0}^{M}\left|s_{k}(x)-f(x)\right|^{p}+\frac{1}{(n+1)^{\beta}} \sum_{\substack{0 \leqq k \leqq n \\
\pi(k) \leqq M}}(n+1)^{\beta-1}\left|s_{\pi(k)}(x)-f(x)\right|^{p}= \\
=o\left(n^{-1}\right)+\frac{1}{n+1} \sum_{k=M}^{\infty}\left|s_{k}(x)-f(x)\right|^{p} \leqq \frac{2 \varepsilon}{n+1}
\end{gathered}
$$

for all n large enough. Thus we have proved (iii), too.
(iv) foilows from (i):

$$
\begin{aligned}
& \sigma_{n}^{\gamma}|f, p, \pi ; x| \leqq K\left\{\frac{1}{(n+1)^{\gamma}} \sum_{k=0}^{n}(n+1-k)^{\gamma-1}\left|s_{\pi(k)}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}}= \\
& \quad=K\left\{\frac{1}{(n+1)^{\gamma}} \sum_{k=0}^{n}(k+1)^{\gamma-1}\left|s_{\pi(n-k)}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K H_{r, \omega}^{p, \gamma n},
\end{aligned}
$$

where cwe used the inequalities

$$
c_{1}(\alpha) k^{\alpha} \leqq A_{k}^{\alpha} \leqq c_{2}(\alpha) k^{\alpha} \quad\left(\alpha>-1, c_{1}(\alpha)>0, k=1,2, \ldots\right)
$$

(vi) could be proved similarly with the aid of (ii) and (iii).

Finally let us suppose that $\gamma<1$ and $\sum_{k=1}^{\infty}(k+1)^{\gamma-1}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}<\infty$. It is known that the last condition implies

$$
\sum_{k=1}^{n}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}=o\left((n+1)^{1-\gamma}\right)
$$

Thus to every $\varepsilon>0$ there exists an $M=M(\varepsilon)$ for which

$$
\sum_{k=2^{M}+1}^{\infty}(k+1)^{\gamma-1}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}<\varepsilon^{p} \quad \text { and } \quad \sum_{k=1}^{2^{M+1}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}<\varepsilon^{p}\left(2^{M}\right)^{1-\gamma}
$$

are satisfied. It is easy to see that (1.2) implies $\omega(\delta) \log \delta=o(1)^{\prime}(\delta \rightarrow 0)$. Now the Dini-Lipschitz test gives that $s_{k}(x)-f(x)=o(1)$ uniformly in x, and so

$$
\left|s_{\pi(n-k)}(x)-f(x)\right|<\frac{\varepsilon^{p}}{2^{M}+1} \quad\left(k=0,1, \ldots, 2^{M}\right)
$$

for $n \geqq n_{\varepsilon}$.

Using the previous estimations and (3.3) we have for $n \geqq n_{\varepsilon}$ and $2^{m_{0}-1}<$ $<n \leqq 2^{m_{0}}$

$$
\begin{aligned}
& \sigma_{n}^{\gamma}|f, p, \pi ; x| \leqq K\left(\left\{\frac{1}{A_{n}^{\gamma}} \sum_{k=0}^{2^{M}} A_{k}^{\gamma-1}\left|s_{\pi(n-k)}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}}+\right. \\
& +\left\{\frac{1}{A_{n}^{\gamma}} \sum_{m=M}^{m_{0}-1} \sum_{k=2^{m}+1}^{2^{m+1}} A_{k}^{\gamma-1}\left|s_{\pi(n-k)}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \leqq K\left(\left\{\frac{1}{A_{n}^{\gamma}} \sum_{k=0}^{2^{M}}\left|s_{\pi(n-k)}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}}+\right. \\
& \left.+\left\{\frac{1}{A_{n}^{\gamma}} \sum_{m=M}^{m_{0}-1}\left(2^{m}\right)^{\gamma-1} \sum_{k=2^{m}+1}^{2^{m+1}}\left|s_{\pi(n-k)}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}}\right) \leqq K\left(\left\{\frac{1}{A_{n}^{\gamma}}\left(2^{M}+1\right) \frac{\varepsilon^{p}}{2^{M}+1}\right\}^{\frac{1}{p}}+\right. \\
& \left.+\left\{\frac{1}{A_{n}^{\gamma}} \sum_{m=M}^{m_{0}-1}\left(2^{m}\right)^{\gamma-1} \sum_{k=1}^{2^{M+1}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}\right\}^{\frac{1}{p}}\right) \leqq K\left(\frac{\varepsilon}{\left(A_{n}^{\gamma}\right)^{\frac{1}{p}}}+\right. \\
& +\left\{\frac{1}{A_{n}^{\gamma}} \sum_{k=1}^{2^{M+1}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p} \sum_{m=M}^{m_{0}-1}\left(2^{m}\right)^{\gamma-1}\right\}^{\frac{1}{p}}+\left\{\frac{1}{A_{n}^{\gamma}} \sum_{k=2^{M+1}+1}^{2^{m_{0}}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p} .\right. \\
& \left.\left.\cdot \sum_{m=\log k-1}^{m_{0}-1}\left(2^{m}\right)^{\gamma-1}\right\}^{\frac{1}{p}}\right) \leqq K\left(\frac{\varepsilon}{\left(A_{n}^{\gamma}\right)^{\frac{1}{p}}}+\left\{\frac{1}{A_{n}^{\gamma}} \sum_{k=1}^{2^{M+1}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}\left(2^{M}\right)^{\gamma-1}\right\}^{\frac{1}{p}}+\right. \\
& +\left\{\frac{1}{A_{n}^{p}} \sum_{k=2^{M}+1}^{2^{m_{0}}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}(k+1)^{\gamma-1}\right\}^{\frac{1}{p}} \leqq K \frac{\varepsilon}{\left(A_{n}^{\gamma}\right)^{\frac{1}{p}}} \leqq K \varepsilon H_{r, \omega}^{p, \gamma, n}
\end{aligned}
$$

which was to be proved.
So far we have proved (i)-(vi). It remains to show that these estimations are best possible.

Let f be the function given in Theorem A .
The first row of (1.8) immediately follows from Theorem A.
Let us suppose that $\sum_{k=1}^{\infty}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}=\infty$ and that $\beta>1$. We shall define a π permutation of N as follows: If $\pi(0), \ldots, \pi\left(n_{m-1}\right)$ are already known and $\pi(i) \leqq M_{m}$ ($i=0,1, \ldots, n_{m-1}$), let

$$
\pi\left(n_{m}+1\right)=2 M_{m}+1, \pi\left(n_{m}+2\right)=2 M_{m}+2, \ldots, \pi\left(n_{m}+n_{m}\right)=2 M_{m}+n_{m}
$$

where n_{m} will be chosen later.
However should π be defined between n_{m-1} and n_{m} we have in any case

$$
\begin{gathered}
\left\{\frac{1}{\left(2 n_{m}+1\right)^{\beta}} \sum_{k=0}^{2 n_{m}}(k+1)^{\beta-1}\left|s_{\pi(k)}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \geqq \\
\geqq\left\{\frac{1}{\left(2 n_{m}+1\right)^{\beta}}\left(n_{m}\right)^{\beta-1} \sum_{k=n_{m}+1}^{2 n_{m}}\left|s_{\pi(k)}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}} \geqq\left\{\frac{C}{n_{m}+1} \sum_{k=2 M_{m}+1}^{n_{m}}\left|s_{k}(x)-f(x)\right|^{p}\right\}^{\frac{1}{p}}
\end{gathered}
$$

and therefore

$$
\begin{equation*}
h_{2 n_{m}}(f, p, \beta, \pi ; 0) \geqq c\left\{\frac{1}{n_{m}+1} \sum_{k=0}^{n_{m i}}\left|s_{k}(0)-f(0)\right|^{p}-\frac{\sum_{k=0}^{2 M_{m}}\left|s_{k}(0)-f(0)\right|^{p}}{n_{m}+1}\right\}^{\frac{1}{p}} \geqq \frac{c}{2} H_{r, \omega}^{p, 1, n_{m}} \tag{3.4}
\end{equation*}
$$

if n_{m} is large enough in comparison with M_{m}, because $\sum_{k=1}^{\infty}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}=\infty \quad$ is equivalent with $\left(H_{r, \omega}^{p, 1, n}\right)^{p} \neq O\left(\frac{1}{n}\right)$.

Let us choose n_{m} so large that the above estimation should be satisfied, and then continue the procedure.

It is clear that the above, partly defined π could be extended to a permutation of N, and so (3.4) shows that (ii) cannot be improved.

Finally, if $\varrho_{n} \rightarrow 0$ arbitrarily, we follow the above construction and get

$$
\begin{aligned}
& h_{2 n_{m}}(f, p, \beta, \pi ; 0) \geqq c\left\{\frac{1}{n_{m}+1} \sum_{k=2 M_{m}+1}^{n_{m}}\left|s_{k}(0)-f(0)\right|^{p}\right\}^{\frac{1}{p}} \geqq \\
\geqq & c\left\{\frac{1}{n_{m}} \sum_{k=2 M_{m}+1}^{n_{m}}\left(\frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)\right)^{p}\right\}^{\frac{1}{p}} \geqq c \varrho_{n_{m}}\left(\frac{1}{n_{m}}\right)^{\frac{1}{p}} \geqq c \varrho_{n_{m}} H_{r, \omega}^{p, 1, n}
\end{aligned}
$$

(at the second inequality we used that for f we have $\left|s_{k}(0)-f(0)\right| \geqq \mathrm{c} \frac{1}{k^{r}} \omega\left(\frac{1}{k}\right)$ $\left(5 \cdot 2^{v}-2^{\nu-1} \leqq k \leqq 5 \cdot 2^{v}+2^{\nu-1}\right.$) (see the proof of [3, Theorem 1]) if n_{m} is large enough.

Thus the proof of (1.8) is completed.
The proof of (1.9) is similar, we omit the details.
The proof of the Corollary on the basis of the above arguments is easy. The right-hand estimations follow from the proof of (i)-(vi), while the left-hand sides are easy consequences of Theorem A.

The proof of Theorem 3 is thus completed.

References

[1] L. Leindler, Über die Approximation im starken Sinne, Acta Math. Acad. Sci. Hung., 16 (1965), 255-262.
[2] L. Leindler, On the strong summability and approximation of Fourier series, Approximation Theory (Banach Center Publications), to appear.
[3] V. Totik, On the strong approximation of Fourier series, Acta Math. Acad. Sci. Hung., to appear.

bolvainstitute

UNIVERSITY OF SZEGED
ARADI VERTANUK TERE 1
6720 SZEGED, HUNGARY

