Quasi-similarity of restricted C_0 contractions

MITSURU UCHIYAMA

1. A bounded linear operator X from a separable Hilbert space \mathfrak{H} to a separable Hilbert space \mathfrak{H}' is called a *quasi-affinity* if K(X)=0 and $K(X^*)=0$, where K(X) denotes the kernel of X. The bounded operators T on \mathfrak{H} and T' on \mathfrak{H}' are called *quasi-similar* and denoted by $T \sim T'$ if there are quasi-affinities X and Y such that XT=T'X and TY=YT'.

In this note we say that T has property (Q) if T|K(A) and $((T^*|K(A^*)^*)$ are quasi-similar for every A in (T)'. Not every bounded operator has property (Q); it is easy to construct even a self adjoint operator which has not property (Q).

2. Lemma 1. If T on \mathfrak{H} and S on \mathfrak{H}' are similar, then T has property (Q) if and only if so is S.

Proof. Let T have property (Q) and suppose XT=SX for some invertible X. Set $B=X^{-1}AX$ for A commuting with S. Then it is clear that B commutes with T and that T|K(B) and $T^*|K(B^*)$ are similar to S|K(A) and $S^*|K(A^*)$, respectively. Therefore $S|K(A)\sim (S^*|K(A^*))^*$.

Lemma 2. If both T on \mathfrak{H} and S on \mathfrak{H}' have property (Q) and $\sigma(T) \cap \sigma(S) = \emptyset$, then the direct sum $T \oplus S$ on $\mathfrak{H} \oplus \mathfrak{H}'$ has property (Q) also.

Proof. From Rosenblum's corollary, $(T \oplus S)' = (T)' \oplus (S)'$ [2]. The rest is omitted.

Proposition 1. If \mathfrak{H} is finite dimensional, then every normal operator on \mathfrak{H} has property (Q).

Proof. From Lemma 1 and Lemma 2, we may assume that $T=\alpha I$ for some scalar α . The rest is obvious.

We will use the above results in the last example.

10*

Received September 29, 1978, in revised form February 1, 1979.

Mitsuru Uchiyama

3. Sz.-NAGY and C. FOIAŞ [7] conjectured that all C_0 contractions with finite multiplicity have property (Q). In this section we present a counter example. About the terminology and the notations see [4] and [1].

Example 1. Let ψ_1 and ψ_2 be relatively prime scalar inner functions defined on the unit circle. And define the 2×2 diagonal matrix valued inner function M by

$$M = \psi_1^2 \psi_2 \oplus \psi_1^3 \psi_2^2.$$

Then the class $C_0(2)$ contraction S(M) on $\mathfrak{H}(M)$ defined by

$$\mathfrak{H}(M) = H_2^2 \ominus M H_2^2, \quad S(M)h = P(zh),$$

where H_2^2 denotes the 2-dimensional vector valued Hardy class and P is the projection from H_2^2 onto $\mathfrak{H}(M)$, does not have property (Q).

Proof. Setting

$$arDelta=egin{bmatrix} \psi_1^2&\psi_1^3\ \psi_1^2\psi_2^2&0 \end{bmatrix}$$
 ,

 $A = P\Delta|\mathfrak{H}(M)$ commutes with S(M), because $\Delta MH_2^2 \subset MH_2^2$. First we show that

$$K(A) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & \psi_1 \\ \psi_2 & -1 \end{bmatrix} \left\{ H_2^2 \ominus \frac{1}{\sqrt{2}} \begin{bmatrix} \psi_1 & \psi_1^3 \psi_2 \\ \psi_1 \psi_2 & 0 \end{bmatrix} H_{2!}^2 \right\}$$

and hence

$$S(M)|K(A) \sim S\left(\frac{1}{\sqrt{2}} \begin{bmatrix} \psi_1 & \psi_1^3 \psi_2 \\ \psi_1 \psi_2 & 0 \end{bmatrix}\right)$$

For this, it is sufficient to show that

$$\{h_1 \oplus h_2: h_i \in H_2^2, \Delta(h_1 \oplus h_2) \in MH_2^2\} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & \psi_1 \\ \psi_2 & -1 \end{bmatrix} H_2^2.$$

It is clear that the right hand side set is included to the left hand side set. Suppose that an element $h_1 \oplus h_2$ in the left hand side set is orthogonal to the right hand set. Then there are f_1 and f_2 in H_2^2 such that

$$h_1 + \psi_1 h_2 = \psi_2 f_1$$
, $h_1 = \psi_1 f_2$, and, therefore, $\psi_1 (f_2 + h_2) = \psi_2 f_1$

Since ψ_1 and ψ_2 are relatively prime, there exists f in H_2^2 such that $f_1 = \psi_1 f$ so $f_2 + h_2 = \psi_2 f$. On the other hand, for every g_1 and g_2 in H_2^2 it follows that

$$(h_1, \psi_1 g_2) + (h_2, \psi_2 g_1 - g_2) = 0.$$

Thus we have $f_2 = h_2$ and $(h_2, \psi_2 g_1) = 0$, which imply f = 0 and hence $h_1 = h_2 = 0$. Next we show that

closure of range
$$A = (\psi_1^2 \oplus \psi_1^2 \psi_2^2) H_2^2 \oplus M H_2^2$$

and hence $(S(M)^*|K(A^*))^* \sim S(\psi_1^2 \oplus \psi_1^2 \psi_2^2)$. For this it suffices to show that

$$M_2^2 \vee MH_2^2 = (\psi_1^2 \oplus \psi_1^2 \psi_2^2) H_2^2.$$

Since

$$\Delta = \begin{bmatrix} \psi_1^2 & 0 \\ 0 & \psi_1^2 \psi_2^2 \end{bmatrix} \begin{bmatrix} 1 & \psi_1 \\ 1 & 0 \end{bmatrix} \text{ and } M = (\psi_1^2 \oplus \psi_1^2 \psi_2^2)(\psi_2 \oplus \psi_1),$$

 $\Delta H_2^2 \vee M H_2^2 \subset (\psi_1^2 \oplus \psi_1^2 \psi_2^2) H_2^2$. Suppose that $\psi_1^2 h_1 \oplus \psi_1^2 \psi_2^2 h_2$ is orthogonal to $\Delta H_2^2 \vee M H_2^2$. Then $h_1 \oplus h_2$ is orthogonal to

$$\begin{bmatrix} 1 & \psi_1 \\ 1 & 0 \end{bmatrix} H_2^2 \vee (\psi_2 \oplus \psi_1) H_2^2.$$

From this it follows that $h_1 + h_2 = 0$, and that h_1 and h_2 are orthogonal to $\psi_2 H^2$ and $\psi_1 H^2$, respectively. Since ψ_1 and ψ_2 are relatively prime, we have $h_1 = h_2 = 0$.

Last we must show that S(M)|K(A) and $(S(M)^*|K(A^*))^*$ are not quasisimilar. But this is clear, because the minimal functions of these operators are $\psi_1^3 \psi_2^2$ and $\psi_1^2 \psi_2^2$, respectively.

4. We denote the lattice of invariant subspaces for T and the lattice of hyperinvariant subspaces for T by Lat T and Hyplat T, respectively.

Let θ and θ' be $n \times n$ matrix valued inner functions. Suppose $S(\theta)$ on $\mathfrak{H}(\theta)$ and $S(\theta')$ on $\mathfrak{H}(\theta')$ defined as Example 1 are quasi-similar. Then there are $n \times n$ matrices Γ and Λ over H^{∞} such that

 $\Gamma \theta = \theta' \Lambda$ and $(\det \Gamma)(\det \Lambda) \land (\det \theta)(\det \theta') = 1$ [1].

Moreover, it follows that

$$(\det \Lambda)\Gamma^a\theta'=\theta(\det \Gamma)\Lambda^a,$$

where Γ^a denotes the classical adjoint of Γ [6]. In this case, setting $X=P'\Gamma|\mathfrak{H}(\theta)$ and $Y=P(\det \Lambda)\Gamma^a|\mathfrak{H}(\theta')$, where P' and P are the projections from H_n onto $\mathfrak{H}(\theta')$ and $\mathfrak{H}(\theta)$, respectively, X and Y are quasi-affinities satisfying $XS(\theta)=S(\theta')X$ and $YS(\theta')=S(\theta)Y$ [1]; moreover, $XY=\varphi(S(\theta'))$ and $YX=\varphi(S(\theta))$, where $\varphi=(\det \Gamma)(\det \Lambda)$.

Proposition 2. The mapping τ from Lat $S(\theta)$ to Lat $S(\theta')$ defined by $\tau \mathfrak{L} = \overline{X\mathfrak{L}}$ is a lattice isomorphism, and its inverse is given by $\tau^{-1}\mathfrak{L} = \overline{Y\mathfrak{L}}$. Hyplat $S(\theta)$ and Hyplat $S(\theta')$ are isomorphic. Similarly, the mapping τ' from Lat $S(\theta)^*$ to Lat $S(\theta')^*$ defined by $\tau'\mathfrak{L} = \overline{Y^*\mathfrak{L}}$ is a lattice isomorphism, and its inverse is given by $\tau'^{-1}\mathfrak{L} =$ $= \overline{X^*\mathfrak{L}}$. Hyplat $S(\theta)^*$ and Hyplat $S(\theta')^*$ are isomorphic.

Proof. Let $\mathfrak{L} \neq 0$ belong to Lat $S(\theta)$. Then $\overline{X\mathfrak{L}} \neq 0$ belongs to Lat $S(\theta')$. Since $(X|\mathfrak{L})(S(\theta)|\mathfrak{L}) = (S(\theta')|\overline{X\mathfrak{L}})(X|\mathfrak{L})$, we have $S(\theta)|\mathfrak{L} \sim S(\theta')|\overline{X\mathfrak{L}}$ [1]. Similarly,

Mitsuru Uchiyama

 $S(\theta')|\overline{X\mathfrak{L}} \sim S(\theta)|\overline{YX\mathfrak{L}}$. Since $\overline{YX\mathfrak{L}} = \overline{\varphi(S(\theta))\mathfrak{L}} \subset \mathfrak{L}$, we have $\overline{YX\mathfrak{L}} = \mathfrak{L}$ (see [5] or [7]). Therefore, τ is one to one. Surjectivity is similarly shown. That τ preserve the lattice structure is obvious. That Hyplat $S(\theta)$ and Hyplat $S(\theta')$ are isomorphic was shown in [8]. Since

$$X^*Y^* = \tilde{\varphi}(S(\theta)^*)$$
 and $Y^*X^* = \tilde{\varphi}(S(\theta')^*)$

we can show the rest similarly.

Proposition 3. If $S(\theta)$ and $S(\theta')$ are quasi-similar, then $S(\theta)$ has property (Q) if and only if so is $S(\theta')$.

Proof. Assume that $S(\theta')$ has property (Q). For each A commuting with $S(\theta)$ set B=XAY. Then B commutes with $S(\theta')$ and $Y K(B) \subset K(A)$. Since

$$BX = XAYX = XA\varphi(S(\theta)) = X\varphi(S(\theta))A$$

we have $XK(A) \subset K(B)$. Thus, by Proposition 2, it follows that

$$K(A) \supset \overline{YK}(B) \supset \overline{YXK}(A) = K(A).$$

Therefore, we have $K(A) = \overline{YK(B)}$ and $\overline{XK(A)} = \overline{XYK(B)} = K(B)$. Thus

$$S(\theta)|K(A) = S(\theta)|\overline{YK(B)} \sim S(\theta')|K(B).$$

Similarly, we have

 $S(\theta)^*|K(A^*) = S(\theta)^*|\overline{X^*K(B^*)} \sim S(\theta')^*|K(B^*).$

Since $S(\theta')|K(B) \sim (S(\theta')^*|K(B^*))^*$, it follows that

$$S(\theta)|K(A) \sim (S(\theta)|K(A^*))^*,$$

concluding the proof.

Proposition 4. If A belongs to
$$(S(\theta))''$$
, then
 $S(\theta)|K(A) \sim (S(\theta)^*|K(A^*))^*.$

Proof. Let $\theta' = \psi_1 \oplus ... \oplus \psi_n$ be the normal form of θ . Then B = XAY belongs to $(S(\theta'))''$ so $B = \eta(S(\theta'))$ for some η in H^{∞} [9]. Setting $\psi'_i = \psi_i/(\eta \wedge \psi_i)$ we have

$$K(B) = (\psi'_1 \oplus \ldots \oplus \psi'_n) H_n^2 \oplus (\psi_1 \oplus \ldots \oplus \psi_n) H_n^2.$$

Thus $S(\theta')|K(B) \sim S(\eta \land \psi_1 \oplus \ldots \oplus \eta \land \psi_n)$. On the other hand,

$$\eta H_n^2 \vee \theta' H_n^2 = (\eta \wedge \psi_1 \oplus \ldots \oplus \eta \wedge \psi_n) H_n^2$$

implies that

 $(S(\theta')^*|K(B^*))^* \sim S(\eta \wedge \psi_1 \oplus ... \oplus \eta \wedge \psi_\eta).$

Since, by the proof of Proposition 3,

 $S(\theta)|K(A) \sim S(\theta')|K(B)$ and $S(\theta)^*|K(A^*) \sim S(\theta')^*|K(B^*)$, we have $S(\theta)|K(A) \sim (S(\theta)^*|K(A^*))^*$.

Corollary. If $S(\theta)$ has a cyclic vector, then $S(\theta)$ has Property (Q).

Proof. Since $(S(\theta))' = (S(\theta))''$ (see [3] and [4]), it is obvious.

To conclude we present a counterexample to the converse assertion of Corollary.

Example 2. Set $\psi_1(z) = \frac{z-\alpha}{1-\bar{\alpha}z}$ for $|\alpha| < 1$ and $\psi_2(z) = \exp\left(\frac{z+1}{z-1}\right)$. Then $\theta = (\psi_1 \oplus \psi_1 \psi_2)$ is a 2×2 matrix valued inner function, and $S(\theta)$ has no cyclic vector [4]. But it follows that

$$S(\theta) = S(1 \oplus \psi_1 \oplus \psi_1 \psi_2) \sim S(\psi_1 \oplus \psi_1 \oplus \psi_2) = S(\psi_1 \oplus \psi_1) \oplus S(\psi_2).$$

Since $S(\psi_1 \oplus \psi_1)$ is a 2×2 diagonal matrix, by Proposition 1, $S(\psi_1 \oplus \psi_1)$ has property (Q). Since $S(\psi_2)$ has a cyclic vector, by Proposition 4, $S(\psi_2)$ has property (Q). Lemma 2 and relation

$$\sigma(S(\psi_1 \oplus \psi_1)) \cap \sigma(S(\psi_2)) = \emptyset \quad \text{(cf. [4])},$$

imply that $S(\psi_1 \oplus \psi_1) \oplus S(\psi_2)$ has property (Q). Thus, by Proposition 3, $S(\theta)$ also has property (Q).

Note. After this paper was written, the author received a preprint*) from Hari Bercovici, which covers a great part of the results of this paper. The author thanks to H. Bercovici and B. Sz.-Nagy.

References

- B. MOORE—E. A. NORDGREN, On quasi-equivalence and quasi-similarity, Acta Sci. Math., 34 (1973), 311–316.
- [2] H. RADJAVI-P. ROSENTHAL, Invariant Subspaces, Springer Verlag (Berlin, 1973).
- [3] D. SARASON, Generalized interpolation in H[∞], Trans. Amer. Math. Soc., 127 (1967), 179-203.
- [4] B. Sz.-NAGY—C. FOIAŞ, Harmonic analysis of operators on Hilbert space, North Holland/Akadémiai Kiadó (Amsterdam/Budapest, 1970).
- [5] B. Sz.-NAGY—C. FOIAŞ, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 61 (1970), 91—115.
- [6] B. Sz.-NAGY-C. FOIAS, Jordan model for contractions of class C₀, ibidem, 36 (1974), 305-322.
- [7] B. Sz.-NAGY—C. FOIAŞ, On injections, intertwining operators of class C₀, *ibidem*, 40 (1978), 163-167.
- [8] M. UCHIYAMA, Hyperinvariant subspaces of operators of class $C_0(N)$, *ibidem*, **39** (1977), 179– 184.
- [9] M. UCHIYAMA, Double commutants of C.₀ contractions. II, Proc. Amer. Math. Soc., to appear.

DEPARTMENT OF MATHEMATICS FUKUOKA UNIVERSITY OF EDUCATION MUNAKATA, FUKUOKA, 811—41 JAPAN

^{*)} It has appeared in the meantime in this journal: H. BERCOVICI, C_0 -Fredholm operators. I, Acta Sci. Math., 41 (1979), 15–27. (The Editor)