Quasi-similarity of restricted C_{0} contractions

MITSURU UCHIYAMA

1. A bounded linear operator X from a separable Hilbert space $\mathfrak{5}$ to a separable Hilbert space \mathfrak{Y}^{\prime} is called a quasi-affinity if $K(X)=0$ and $K\left(X^{*}\right)=0$, where $K(X)$ denotes the kernel of X. The bounded operators T on \mathfrak{S} and T^{\prime} on \mathfrak{G}^{\prime} are called quasi-similar and denoted by $T \sim T^{\prime}$ if there are quasi-affinities X and Y such that $X T=T^{\prime} X$ and $T Y=Y T^{\prime}$.

In this note we say thet T has property (Q) if $T \mid K(A)$ and $\left(\left(T^{*} \mid K\left(A^{*}\right)^{*}\right)\right.$ are quasi-similar for every A in $(T)^{\prime}$. Not every bounded operator has property (Q); it is easy to contstruct even a self adjoint operator which has not property (Q).
2. Lemma 1. If T on \mathfrak{G} and S on \mathfrak{G}^{\prime} are similar, then T has property (Q) if and only if so is S.

Proof. Let T have property (Q) and suppose $X T=S X$ for some invertible X. Set $B=X^{-1} A X$ for A commuting with S. Then it is clear that B commutes with T and that $T \mid K(B)$ and $T^{*} \mid K\left(B^{*}\right)$ are similar to $S \mid K(A)$ and $S^{*} \mid K\left(A^{*}\right)$, respectively. Therefore $S \mid K(A) \sim\left(S^{*} \mid K\left(A^{*}\right)\right)^{*}$.

Lemma 2. If both T on \mathfrak{G} and \dot{S} on \mathfrak{G}^{\prime} have property (Q) and $\sigma(T) \cap \sigma(S)=\emptyset$, then the direct sum $T \oplus S$ on $\mathfrak{G} \oplus \mathfrak{S}^{\prime}$ has property (Q) also.

Proof. From Rosenblum's corollary, $(T \oplus S)^{\prime}=(T)^{\prime} \oplus(S)^{\prime}$ [2]. The rest is omitted.

Proposition 1. If $\mathfrak{5}$ is finite dimensional, then every normal operator on \mathfrak{G} has property (Q).

Proof. From Lemma 1 and Lemma 2, we may assume that $T=\alpha I$ for some scalar α. The rest is obvious.

We will use the above results in the last example.

[^0]3. Sz.-NAGY and C. Foiaş [7] conjectured that all C_{0} contractions with finite multiplicity have property (\mathbb{Q}). In this section we present a counter example. About the terminology and the notations see [4] and [1].

Example 1. Let ψ_{1} and ψ_{2} be relatively prime scalar inner functions defined on the unit circle. And define the 2×2 diagonal matrix valued inner function M by

$$
M=\psi_{1}^{2} \psi_{2} \oplus \psi_{1}^{3} \psi_{2}^{2}
$$

Then the class $C_{0}(2)$ contraction $S(M)$ on $\mathfrak{G}(M)$ defined by

$$
\mathfrak{G}(M)=H_{2}^{2} \ominus M H_{2}^{2}, \quad S(M) h=P(z h)
$$

where H_{2}^{2} denotes the 2-dimensional vector valued Hardy class and P is the projection from H_{2}^{2} onto $\mathfrak{G}(M)$, does not have property (Q).

Proof. Setting

$$
\Delta=\left[\begin{array}{ll}
\psi_{1}^{2} & \psi_{1}^{3} \\
\psi_{1}^{2} \psi_{2}^{2} & 0
\end{array}\right]
$$

$A=P \Delta \mid \mathfrak{G}(M)$ commutes with $S(M)$, because $\Delta M H_{2}^{2} \subset M H_{2}^{2}$. First we show that

$$
K(A)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
0 & \psi_{1} \\
\psi_{2} & -1
\end{array}\right]\left\{H_{2}^{2} \ominus \frac{1}{\sqrt{2}}\left[\begin{array}{ll}
\psi_{1} & \psi_{1}^{3} \psi_{2} \\
\psi_{1} \psi_{2} & 0
\end{array}\right] H_{2}^{2}\right\}
$$

and hence

$$
S(M) \left\lvert\, K(A) \sim S\left(\frac{1}{\sqrt{2}}\left[\begin{array}{lr}
\psi_{1} & \psi_{1}^{3} \psi_{2} \\
\psi_{1} \psi_{2} & 0
\end{array}\right]\right)\right.
$$

For this, it is sufficient to show that

$$
\left\{h_{1} \oplus h_{2}: h_{i} \in H_{2}^{2}, \Delta\left(h_{1} \oplus h_{2}\right) \in M H_{2}^{2}\right\}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
0 & \psi_{1} \\
\psi_{2} & -1
\end{array}\right] H_{2}^{2}
$$

It is clear that the right hand side set is included to the left hand side set. Suppose that an element $h_{1} \oplus h_{2}$ in the left hand side set is orthogonal to the right hand set. Then there are f_{1} and f_{2} in H_{2}^{2} such that

$$
h_{1}+\psi_{1} h_{2}=\psi_{2} f_{1}, \quad h_{1}=\psi_{1} f_{2}, \quad \text { and, therefore }, \quad \psi_{1}\left(f_{2}+h_{2}\right)=\psi_{2} f_{1}
$$

Since ψ_{1} and ψ_{2} are relatively prime, there exists f in H_{2}^{2} such that $f_{1}=\psi_{1} f$ so $f_{2}+h_{2}=\psi_{2} f$. On the other hand, for every g_{1} and g_{2} in H_{2}^{2} it follows that

$$
\left(h_{1}, \psi_{1} g_{2}\right)+\left(h_{2}, \psi_{2} g_{1}-g_{2}\right)=0
$$

Thus we have $f_{2}=h_{2}$ and $\left(h_{2}, \psi_{2} g_{1}\right)=0$, which imply $f=0$ and hence $h_{1}=h_{2}=0$.
Next we show that

$$
\text { closure of range } A=\left(\psi_{1}^{2} \oplus \psi_{1}^{2} \psi_{2}^{2}\right) H_{2}^{2} \ominus M H_{2}^{2}
$$

and hence $\left(S(M)^{*} \mid K\left(A^{*}\right)\right)^{*} \sim S\left(\psi_{1}^{2} \oplus \psi_{1}^{2} \psi_{2}^{2}\right)$. For this it suffices to show that

$$
\Delta H_{2}^{2} \vee M H_{2}^{2}=\left(\psi_{1}^{2} \oplus \psi_{1}^{2} \psi_{2}^{2}\right) H_{2}^{2}
$$

Since

$$
\Delta=\left[\begin{array}{cr}
\psi_{1}^{2} & 0 \\
0 & \psi_{1}^{2} \psi_{2}^{2}
\end{array}\right]\left[\begin{array}{rr}
1 & \psi_{1} \\
1 & 0
\end{array}\right] \quad \text { and } \quad M=\left(\psi_{1}^{2} \oplus \psi_{1}^{2} \psi_{2}^{2}\right)\left(\psi_{2} \oplus \psi_{1}\right)
$$

$\Delta H_{2}^{2} \vee M H_{2}^{2} \subset\left(\psi_{1}^{2} \oplus \psi_{1}^{2} \psi_{2}^{2}\right) H_{2}^{2}$, Suppose that $\quad \psi_{1}^{2} h_{1} \oplus \psi_{1}^{2} \psi_{2}^{2} h_{2}$ is orthogonal to $\Delta H_{2}^{2} \vee M H_{2}^{2}$. Then $h_{1} \oplus h_{2}$ is orthogonal to

$$
\left[\begin{array}{rr}
1 & \psi_{1} \\
1 & 0
\end{array}\right] H_{2}^{2} \vee\left(\psi_{2} \oplus \psi_{1}\right) H_{2}^{2}
$$

From this it follows that $h_{1}+h_{2}=0$, and that h_{1} and h_{2} are orthogonal to $\psi_{2} H^{2}$ and $\psi_{1} H^{2}$, respectively. Since ψ_{1} and ψ_{2} are relatively prime, we have $h_{1}=h_{2}=0$.

Last we must show that $S(M) \mid K(A)$ and $\left(S(M)^{*} \mid K\left(A^{*}\right)\right)^{*}$ are not quasisimilar. But this is clear, because the minimal functions of these operators are $\psi_{1}^{3} \psi_{2}^{2}$ and $\psi_{1}^{2} \psi_{2}^{2}$, respectively.
4. We denote the lattice of invariant subspaces for T and the lattice of hyperinvariant subspaces for T by Lat T and Hyplat T, respectively.

Let θ and θ^{\prime} be $n \times n$ matrix valued inner functions. Suppose $S(\theta)$ on $\mathfrak{G}(\theta)$ and $S\left(\theta^{\prime}\right)$ on $\mathfrak{H}\left(\theta^{\prime}\right)$ defined as Example 1 are quasi-similar. Then there are $n \times n$ matrices Γ and Λ over H^{∞} such that

$$
\Gamma \theta=\theta^{\prime} \Lambda \quad \text { and } \quad(\operatorname{det} \Gamma)(\operatorname{det} \Lambda) \wedge(\operatorname{det} \theta)\left(\operatorname{det} \theta^{\prime}\right)=1 \quad[1] .
$$

Moreover, it follows that

$$
(\operatorname{det} \Lambda) \Gamma^{a} \theta^{\prime}=\theta(\operatorname{det} \Gamma) \Lambda^{a}
$$

where Γ^{a} denotes the classical adjoint of Γ [6]. In this case, setting $X=P^{\prime} \Gamma \mid \mathfrak{G}(\theta)$ and $Y=P(\operatorname{det} \Lambda) \Gamma^{a} \mid \mathfrak{G}\left(\theta^{\prime}\right)$, where P^{\prime} and P are the projections from H_{n} onto $\mathfrak{H}\left(\theta^{\prime}\right)$ and $\mathfrak{S}(\theta)$, respectively, X and Y are quasi-affinities satisfying $X S(\theta)=S\left(\theta^{\prime}\right) X$ and $Y S\left(\theta^{\prime}\right)=S(\theta) Y \quad$ [1]; moreover, $X Y=\varphi\left(S\left(\theta^{\prime}\right)\right)$ and $Y X=\varphi(S(\theta))$, where $\varphi=(\operatorname{det} \Gamma)(\operatorname{det} \Lambda)$.

Proposition 2. The mapping τ from Lat $S(\theta)$ to Lat $S\left(\theta^{\prime}\right)$ defined by $\tau \mathcal{Q}=\overline{X \mathfrak{Q}}$ is a lattice isomorphism, and its inverse is given by $\tau^{-1} \mathfrak{Q}=\overline{Y \Omega}$. Hyplat $S(\theta)$ and Hyplat $S\left(\theta^{\prime}\right)$ are isomorphic. Similarly, the mapping τ^{\prime} from Lat $S(\theta)^{*}$ to Lat $S\left(\theta^{\prime}\right)^{*}$ defined by $\tau^{\prime} \mathfrak{L}=\overline{Y^{*} \mathfrak{L}}$ is a lattice isomorphism, and its inverse is given by $\tau^{\prime-1} \mathfrak{L}=$ $=\overline{X^{*} \mathfrak{L}}$. Hyplat $S(\theta)^{*}$ and Hyplat $S\left(\theta^{\prime}\right)^{*}$ are isomorphic.

Proof. Let $\mathcal{L} \neq 0$ belong to Lat $S(\theta)$. Then $\overline{X \Omega} \neq 0$ belongs to Lat $S\left(\theta^{\prime}\right)$. Since $(X \mid \mathscr{I})(S(\theta) \mid \mathfrak{L})=\left(S\left(\theta^{\prime}\right) \mid \overline{X \mathfrak{Q}}\right)\left(X^{\prime} \mid \mathfrak{I}\right)$, we have $S(\theta)\left|\mathbb{Q} \sim S\left(\theta^{\prime}\right)\right| \overline{X \mathfrak{L}}$ [1]. Similarly,
$S\left(\theta^{\prime}\right)|\overline{X \mathcal{L}} \sim S(\theta)| \overline{Y X \mathcal{L}}$. Since $\overline{Y X \mathscr{\Sigma}}=\overline{\varphi(S(\theta)) £} \subset \mathcal{Q}$, we have $\overline{Y X \Omega}=\mathcal{Q}$ (see [5] or [7]). Therefore, τ is one to one. Surjectivity is similarly shown. That τ preserve the lattice structure is obvious. That Hyplat $S(\theta)$ and Hyplat $S\left(\theta^{\prime}\right)$ are isomorphic was shown in [8]. Since

$$
X^{*} Y^{*}=\tilde{\varphi}\left(S(\theta)^{*}\right) \quad \text { and } Y^{*} X^{*}=\tilde{\varphi}\left(S\left(\theta^{\prime}\right)^{*}\right)
$$

we can show the rest similarly.
Proposition 3. If $S(\theta)$ and $S\left(\theta^{\prime}\right)$ are quasi-similar, then $S(\theta)$ has property (Q) if and only if so is $S\left(\theta^{\prime}\right)$.

Proof. Assume that $S\left(\theta^{\prime}\right)$ has property (Q). For each A commuting with $S(\theta)$ set $B=X A Y$. Then B commutes with $S\left(\theta^{\prime}\right)$ and $Y K(B) \subset K(A)$. Since

$$
B X=X A Y X=X A \varphi(S(\theta))=X \varphi(S(\theta)) A
$$

we have $X K(A) \subset K(B)$. Thus, by Proposition 2, it follows that

$$
K(A) \supset \overline{Y K(B)} \supset \overline{Y X K(A)}=K(A) .
$$

Therefore, we have $K(A)=\overline{Y K(B)}$ and $\overline{X K(A)}=\overline{X Y K(B)}=K(B)$. Thus

$$
S(\theta)|K(A)=S(\theta)| \overline{Y K(B)} \sim S\left(\theta^{\prime}\right) \mid K(B)
$$

Similarly, we have

$$
S(\theta)^{*}\left|K\left(A^{*}\right)=S(\theta)^{*}\right| \overline{X^{*} K\left(B^{*}\right)} \sim S\left(\theta^{\prime}\right)^{*} \mid K\left(B^{*}\right)
$$

Since $S\left(\theta^{\prime}\right) \mid K(B) \sim\left(S\left(\theta^{\prime}\right)^{*} \mid K\left(B^{*}\right)\right)^{*}$, it follows that

$$
S(\theta) \mid K(A) \sim\left(S(\theta) \mid K\left(A^{*}\right)\right)^{*}
$$

concluding the proof.
Proposition 4. If A belongs to $(S(\theta))^{\prime \prime}$, then

$$
S(\theta) \mid K(A) \sim\left(S(\theta)^{*} \mid K\left(A^{*}\right)\right)^{*}
$$

Proof. Let $\theta^{\prime}=\psi_{1} \oplus \ldots \oplus \psi_{n}$ be the normal form of θ. Then $B=X A Y$ belongs to $\left(S\left(\theta^{\prime}\right)\right)^{\prime \prime}$ so $B=\eta\left(S\left(\theta^{\prime}\right)\right)$ for some η in H^{∞} [9]. Setting $\psi_{i}^{\prime}=\psi_{i} /\left(\eta \wedge \psi_{i}\right)$ we have

$$
K(B)=\left(\psi_{1}^{\prime} \oplus \ldots \oplus \psi_{n}^{\prime}\right) H_{n}^{2} \ominus\left(\psi_{1} \oplus \ldots \oplus \psi_{n}\right) H_{n}^{2}
$$

Thus $S\left(\theta^{\prime}\right) \mid K(B) \sim S\left(\eta \wedge \psi_{1} \oplus \ldots \oplus \eta \wedge \psi_{n}\right)$. On the other hand,

$$
\eta H_{n}^{2} \vee \theta^{\prime} H_{n}^{2}=\left(\eta \wedge \psi_{1} \oplus \ldots \oplus \eta \wedge \psi_{n}\right) H_{n}^{2}
$$

implies that

$$
\left(S\left(\theta^{\prime}\right)^{*} \mid K\left(B^{*}\right)\right)^{*} \sim S\left(\eta \wedge \psi_{1} \oplus \ldots \oplus \eta \wedge \psi_{n}\right)
$$

Since, by the proof of Proposition 3,

$$
S(\theta)\left|K(A) \sim S\left(\theta^{\prime}\right)\right| K(B) \cdot \text { and } \quad S(\theta)^{*}\left|K\left(A^{*}\right) \sim S\left(\theta^{\prime}\right)^{*}\right| K\left(B^{*}\right)
$$

we have $S(\theta) \mid K(A) \sim\left(S(\theta)^{*} \mid K\left(A^{*}\right)\right)^{*}$.
Corollary. If $S(\theta)$ has a cyclic vector, then $S(\theta)$ has Property (Q).

Proof. Since $(S(\theta))^{\prime}=(S(\theta))^{\prime \prime}$ (see [3] and [4]), it is obvious.
To conclude we present a counterexample to the converse assertion of Corollary.
Example 2. Set $\psi_{1}(z)=\frac{z-\alpha}{1-\bar{\alpha} z}$ for $|\alpha|<1$ and $\psi_{2}(z)=\exp \left(\frac{z+1}{z-1}\right)$. Then $\theta=\left(\psi_{1} \oplus \psi_{1} \psi_{2}\right)$ is a 2×2 matrix valued inner function, and $S(\theta)$ has no cyclic vector [4]. But it follows that

$$
S(\theta)=S\left(1 \oplus \psi_{1} \oplus \psi_{1} \psi_{2}\right) \sim S\left(\psi_{1} \oplus \psi_{1} \oplus \psi_{2}\right)=S\left(\psi_{1} \oplus \psi_{1}\right) \oplus S\left(\psi_{2}\right)
$$

Since $S\left(\psi_{1} \oplus \psi_{1}\right)$ is a 2×2 diagonal matrix, by Proposition $1, S\left(\psi_{1} \oplus \psi_{1}\right)$ has property (Q). Since $S\left(\psi_{2}\right)$ has a cyclic vector, by Proposition $4, S\left(\psi_{2}\right)$ has property (Q). Lemma 2 and relation

$$
\left.\sigma\left(S\left(\psi_{1} \oplus \psi_{1}\right)\right) \cap \sigma\left(S\left(\psi_{2}\right)\right)=\emptyset \quad \text { cf. }[4]\right)
$$

imply that $S\left(\psi_{\mathbf{1}} \oplus \psi_{1}\right) \oplus S\left(\psi_{2}\right)$ has property (Q). Thus, by Proposition 3, $S(\theta)$ also has property (Q).

Note. After this paper was written, the author received a preprint*) from Hari Bercovici, which covers a great part of the results of this paper. The author thanks to H. Bercovici and B. Sz.-Nagy.

References

[1] B. Moore-E. A. Nordgren, On quasi-equivalence and quasi-similarity, Acta Sci. Math., 34 (1973), 311-316.
[2] H. Radjavi-P. Rosenthal, Invariant Subspaces, Springer Verlag (Berlin, 1973).
[3] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc., 127 (1967), 179-203.
[4] B. Sz.-Nagy-C. Foias, Harmonic analysis of operators on Hilbert space, North Holland/akadémiái Kiadó (Amsterdam/Budapest, 1970).
[5] B. Sz.-Nagy-C. Foiaş, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 61 (1970), 91-115.
[6] B. Sz.-NAGY-C. FoIAŞ, Jordan model for contractions of class C_{0}, ibidem, 36 (1974), 305-322.
[7] B. Sz.-NAGY-C. FoIAş, On injections, intertwining operators of class C_{0}, ibidem, 40 (1978), 163-167.
[8] M. UChiyama, Hyperinvariant subspaces of operators of class $C_{0}(N)$, ibidem, 39 (1977), 179184.
[9] M. Uchiyama, Double commutants of $C_{.0}$ contractions. II, Proc. Amer. Math. Soc., to appear.

[^1]
[^0]: Received September 29, 1978, in revised form February 1, 1979.

[^1]: *) It has appeared in the meantime in this journal: H. Bercovici, C_{0}-Fredholm operators. I, Acta Sci. Math., 41 (1979), 15-27. (The Editor)

