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Quasi-similarity of restricted C0 contractions 

MITSURU UCHiYAMA 

1. A bounded linear operator X from a separable Hilbert space § to a separable 
Hilbert space is called a quasi-affinity if and K(X*) = 0, where K(X) 
denotes the kernel of X. The bounded operators T on § and T' on are called 
quasi-similar and denoted by T' if there are quasi-affinities X and Y such that 
XT=T'X and TY= YT'. 

In this note we say thet T has property (Q) if T\K{A) and ({T^KiA*)*) are 
quasi-similar for every A in (T) ' . Not every bounded operator has property (Q); 
it is easy to contstruct even a self adjoint operator which has not property (Q). 

2. Lemma 1. If T on § and S on 9y' are similar, then T has property (Q) if 
and only if so is S. 

Proof . Let T have property (Q) and suppose XT=SX for some invertible X. '' 
Set B=X~1AX for A commuting with S. Then it is clear that B commutes with T 
and that T\K(B) and T*\K(B*) are similar to and S"\K{A*), respec-
tively. Therefore S|A:(4)~(S*|i:(>4*))*. 

Lemma 2. If both T on § and S on have property (Q) and cr(r)ricr(5') = 0, 
then the direct sum T® S on § © §>' has property (Q) also. 

Proof . From Rosenblum's corollary, (T© S)'=(Ty®(Sy [2]. The rest is 
omitted. 

P r o p o s i t i o n 1. If 9) is finite dimensional, then every normal operator on § has 
property (Q). 

P r o o f . From Lemma 1 and Lemma 2, we may assume that T—al for some 
scalar a. .The rest is obvious. 

We will use the above results in the last example. 
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3 . S Z . - N A G Y and C . FOIA§ [7 ] conjectured that all C 0 contractions with finite 
multiplicity have property (Q). In this section we present a counter example. About 
the terminology and the notations see [4] and [1]. 

Example 1. Let ij/1 and \p2 be relatively prime scalar inner functions defined 
on the unit circle. And define the 2 x 2 diagonal matrix valued inner function M by 

M = I 
Then the class C0(2) contraction S(M) on § ( M ) defined by 

§(M) = Hi © MHl S(M) H = P(zh), 

where H2 denotes the 2-dimensional vector valued Hardy class and P is the projec-
tion from Hi onto §(M), does not have property (Q). 

Proof . Setting 

A=PA\5)(M) commutes with S(M), because AMH2cMH2. First we show that 

and hence 

For this, it is sufficient to show that 

{K@h2: h£Hl A(h^h^MHi) = -i- ^ HI 

It is clear that the right hand side set is included to the left hand side set. Suppose 
that an element hx © h2 in the left hand side set is orthogonal to the right hand set. 
Then there are fx and / 2 in H2 such that 

hx+\!/xh2 = \j/2fx, hx = \j/xf2, and, therefore, *l/t(f2+h2) = \l/2fx. 

Since iJ/x and ij/2 are relatively prime, there exists / in H\ such that fx—^/xf so 
f2+h2=\j/2f. On the other hand, for every g1 and g2 in H2 it follows that 

(h, "Ai g 2 ) + i h , gi ~ gi) = 0-

Thus we have f2—h2 and (h2,^2g^)—Q, which imply / = 0 and hence hx=h2 = 0. 
Next we show that 

closure of range A = (ij/f® ij/j ij/t) H2 Q MHl 
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and hence (S(M)*\K(A*))*~S(i]/l(Biplil/l). For this it suffices to show that 

AH2VMHI = 
Since 

A = [OL rJ^l 1 ^O] AND 

AH*VMH\c(i/^28 " A i " A D S u p p o s e that is orthogonal to 
AH2W MH2. Then h^®h2 is orthogonal to 

[\ ' ^ J / / | V 0 A 2 © , / , , ) / / ! . 

From this it follows that A1+/!2=0, and that hx and h2 are orthogonal to ij/2 H2 and 
ipiH2, respectively. Since \j/1 and t¡/2 are relatively prime, we have /i1 = /?2 = 0. 

Last we must show that S{M)\K(A) and (S(Mf\K{A*)f are not quasi-
similar. But this is clear, because the minimal functions of these operators are t/'®)/'2 

and respectively. 

4. We denote the lattice of invariant subspaces for T and the lattice of hyper-
invariant subspaces for T by Lat T and Hyplat T, respectively. 

Let 9 and 9' be nXn matrix valued inner functions. Suppose S(0) on §(9) 
and S(9') on §(0 ' ) defined as Example 1 are quasi-similar. Then there are nXn 
matrices T and A over H°° such that 

re = 6'A and (det F) (det A) A (det 9) (det 0') = 1 [1]. 

Moreover, it follows that 
(det A)ra9' = 0 (det T) A", 

where ra denotes the classical adjoint of r [6]. In this case, setting X=P'F\9)(0) 
and y=P(de t A)Ta |§(0'), where P' and P are the projections from Hn onto 
§(0 ') and §(0), respectively, X and Fare quasi-affinities satisfying XS(9) = S(0')X 
and YS(9') = S(9)Y [1]; moreover, XY=<p(S(9'j) and YX=q>(S(6)), where 
<p=(det T)(det A). 

P r o p o s i t i o n 2. The mapping x from Lat S(0) to Lat S(9') defined by T £ = X £ 

is a lattice isomorphism, and its inverse is given by x_1£ = Y£. Hyplat S(0) and 
Hyplat S(O') are isomorphic. Similarly, the mapping x' from Lat S(9)* to Lat S(9')* 
defined by x' 2 = Y* 2 is a lattice isomorphism, and its inverse is given by x/_1£ = 
=X*&. Hyplat 5(0)* and Hyplat S(0')' are isomorphic. 

Proof . Let £ ^ 0 belong to Lat S(0). Then belongs to Lat 5(0'). 
Since (Z|£)(S(0)|£) = (S(0')|l£)(A''|fl), we have S(6)\2~S(6')\X2. [1]. Similarly, 
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S(6')\X2~S(e)\YXQ. Since YX2=(p(S(6))2<z2, we have KZ£ = £ (see [5] or [7]). 
Therefore, t is one to one. Surjectivity is similarly shown. That r preserve the lattice 
structure is obvious. That Hyplat 5(0) and Hyplat S(d') are isomorphic was shown 
in [8]. Since 

X*Y* = <p(S(0)*) and Y*X* = <p(5(0')*) 
we can show the rest similarly. 

P ropos i t i on 3. If 5(0) and 5(0') are quasi-similar, then 5(0) has property 
(Q) if and only if so is 5(0'). 

Proof . Assume that S(0') has property (Q). For each A commuting with 
5(0) set B=XAY. Then B commutes with 5(0') and Y K(B)aK(A). Since 

BX = XAYX = XAcp (5(0)) = Xcp (5(0)) A 

we have XK(A)c:K(B). Thus, by Proposition 2, it follows that 

K(A) YK{B) 3 YXK(A) = K(A). 

Therefore, we have K(A) = YK(B) and XK(A) = XYK(B) = K(B). Thus 

S(0)|K(4) = S(0)\YK(B) ~ 5(0') (5). 
Similarly, we have 

S(9)*\K(A*) = S(0)*\X*K(B*) ~ S(9')*\K(B*). 

Since S(0')|Je(fl)~(S(0')*|K(£*))*, it follows that 
5(0)|K(,4) ~ {S(0)\K(A*)Y, 

concluding the proof. 

P r o p o s i t i o n A. If A belongs to (5(0))", then 

5(0)1*04) ~ (S(6)*\K(A*))*. 

Proof . Let 0 ' = ^ ! © ...©)/'„ be the normal form of 0. Then B—XAY belongs 
to (5(0'))" so £=>J(5(0')) for some t] in / / ~ [9]. Setting = 1̂ /(17 A we have 

K(B) = (^©...©^^©(^©...ffiW//2. 
Thus S(0')\K(B)~S(r)/\ij/i® ... ©//Ai/O- On the other hand, 

implies that 
{S(0T\KOB*))*5(//AI^1FFI...FFI/;A^„). 

Since, by the proof of Proposition 3, 
5(0)|A:O4) ~ S(6')\K(B) • and S(ff )* IK(A*) ~ S(6')*\K(B*), 

we have 5(0)|/q>4)~(5(0)*|/s:O4*))*. 
Corol la ry . If 5(0) has a cyclic vector, then 5(0) has Property (Q). 
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Proof. Since (5(0))'=(5(0))" (see [3] and [4]), it is obvious. 

To conclude we present a counterexample to the converse assertion of Corollary. 

2 — a (z+ l \ Example 2. Set ^ 1 (z)=-—— for | a |< l and ^2(z)=exp . Then 
1 — ccz \z— 1 j 

0=(^1©i/,l(//2) is a 2 x 2 matrix valued inner function, and 5(0) has no cyclic 
vector [4]. But it follows that 

5(0) = 5(1 © ^ © i / ^ ) ~ 5(i/'1©IAi©I/'2) = 5(t/'1©t/'1)ffi5(iA2). 

Since 5(i/'1ffii/'1) is a 2 x 2 diagonal matrix, by Proposition 1, S(\l/1®\l/1) has 
property (Q). Since S(^2) has a cyclic vector, by Proposition 4, S(i]/2) has property 
(Q). Lemma 2 and relation 

ff(SWi®«Mn<r(SGM = 0 (cf- [4]), 
imply that 5(i^1©^1)© S(\j/2) has property (Q). Thus, by Proposition 3, 5(0) also 
has property (Q). 

Note. After this paper was written, the author received a preprint*) from Hari 
Bercovici, which covers a great part of the results of this paper. The author thanks 
to H. Bercovici and B. Sz.-Nagy. 
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