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On the structure of standard regular semigroups 

R. J. WARNE 

We give a structure theorem for a class of regular semigroups and determine 
the smallest inverse semigroup congruence for this class of semigroups. Let S be 
a regular semigroup, let T denote the union of the maximal subgroups of S, and 
let E(T) denote the set of idempotents of T. Assume T is a semigroup (equivalently 
Tis a semilattice Y of completely simple semigroups (Ty: yd F)). If Fhas a greatest 
element and e,f,gdE(T), e=f, and e^g imply fg—gf, we term S a standard" 
regular semigroup. The structure of S is given modulo standard inverse semigroups 
and standard completely regular semigroups by means of an explicit multiplica-
tion. In the case |F | = 1, our structure theorem reduces to the Rees theorem for 
completely simple semigroups. A structure theorem for standard completely regular 
semigroups is also given. The minimum inverse semigroup congruence on a standard 
regular semigroup is described. 

Let us first state our structure theorem for standard regular semigroups. Let 
(V, o) be a standard inverse semigroup with semilattice of idempotents Y, and let 
(T, *) be a standard semilattice Y of completely simple semigroups (Ty: yd Y) 
with y = y*ydTy. Suppose Ty(~]V=Hy for yd Y and (Hy, o) [(Hy, *)] is the maxi-
mal subgroup of (V., o) [{T, *)] containing y and assume a*b—aob for 
a,bdU(Hy: ydY). Let Iy denote the maximal left zero [right zero] subsemi-
group of Ty containing y. Let (Y, T, V) denote {(i,b,j): bdV, idIbob-x, jdJb-iob} 
under the multiplication (i, b,j)(r, c, s)—(i*u, bo(j*r)oc, v*s) where 
wi/(i.oc)»(i.oc)-i a n d v£J(b°c)-ic(boc)- W e show (Theorem 1.9) that (Y, T, V) is a stand-
ard regular semigroup and, conversely, every standard regular semigroup is isomor-
phic to some (Y, T, V). 

In [4, Theorem 3.14], we gave a different structure theorem for standard regular 
semigroups. 

The structure of standard inverse semigroups is clarified by [4, Theorem 5.5].. 
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In Section 1, we prove our structure theorem for standard regular semigroups 
(Theorem 1.9) and give some specializations of this theorem (Remarks 1.21 and 
1.22). In Section 2, we describe standard completely regular semigroups in terms 
of groups by means of a "Rees type" multiplication (Theorem 2.1). In Section 3, 
we give the following description of the minimum inverse semigroup congruence 
on a standard regular semigroup S=(Y,T, V). Let N denote the collection of all 
finite products of elements of the form a~1osoa where a£V and s or 
.s~H(\J(Jy: >'6 5 0 ) * ( U ( / r y£Y)). Let N, = NDH, for y£Y. Let 

SN = {((/, a,j), (p, b, q))£SxS: Nyoa = Nyob where y = aoa'1 = bob-1}. 

Then, dN is the minimum inverse semigroup congruence on S. 
We will use the definitions and notation of CLIFFORD and PRESTON [1, 2] unless 

otherwise specified. The terms mainly used are: Green's relations {Si, i f , and 3>), 
-class, regular semigroup, bisimple semigroup, inverses, inverse semigroup, left 

(right) zero semigroup, right group, idempotent, natural partial order of idempo-
tents, semilattice, completely simple semigroup, semilattice of completely simple 
semigroups [groups, left (right) zero semigroups], maximal subgroup, congruence, 
and kernel of a homomorphism. 

A semigroup is termed completely regular if it is a union of its subgroups. If 
X is a semigroup, E(X) will denote the set of idempotents of X. A regular semi-
group X is termed locally inverse if e,f g£E(X), e^f and e=g imply fg=gf 
'(See [4] for an explanation of terminology.) A congruence g o n a semigroup X such 
that X/Q is an inverse semigroup is termed an inverse semigroup congruence on X. 
"Structure homomorphisms" are defined and discussed in [4, Section 1]. 

1. Standard regular semigroups. In this section, we establish our new structure 
theorem for standard regular semigroups (Theorem 1.9). 

Let S be a standard regular semigroup and let T denote the union of the maximal 
subgroups of S. Hence, T is a semilattice Y' of completely simple semigroups 
(Ty: y£ Y') [1, Theorem 4.6] where Y' has a greatest element y0. Let {¿^z: y, z£ Y} 
denote the set of structure homomorphisms of T [4, Section 1]. Let Ey=E(Ty). 
Select and fix ey£E(Tyo). For each y£Y', define ey = e y ^ y . Let S0 = eyoSeyo. 
Let Ie [Je ] denote the set of idempotents of the if-class [^2-class] of Ty containing 
ey. Let He denote the ^f-class of S containing ey. 

Lemma 1.1. ([4, Lemma 2.2]) y-»ey defines an isomorphism of Y' onto E(S0). 

Lemma 1.2. He=TyC\ S0 for y^Y'. 

Proof . Utilize [4, Theorem 2.3]. 
Let £(S0) = y and let J {a) denote the collection of inverses of a. 
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Lemma 1.3. (a) T is a semilattice Y of completely simple semigroups (Ty\ yd Y) 
where y*=y£Ty. (b) / = U(Iy: y£Y) [J=U(Jy: y£Y)] is the semilattice Y of left 
zero semigroups [right zero semigroups] (Iy: yd Y) [(Jy: y£Y)]. 

Proof , (a) Let Te=Ty{ydY'). Then, using Lemma 1.1, TeTe=TyTz<gTy2 = 
= T = T (b) Utilize the proof of [4, Lemma 2.4] and its dual / yz eyex 

Lemma 1.4. Every element of S may be uniquely expressed in the form x=gbh 
where bdS0, gdlbb-i, and hdJb-ib. 

Proof . Let adS. Hence, a£ReC)Lf for some e,fdE(S). Suppose e£Ty and 
fdTz (>', z<E Y'). Let re [lf] denote the ^-class [J2?-class] of Ty [Tz] containing e [ / ] . 
Using [1, Theorem 2.51], r e C \ I e ^ a and l f C \ J e ^ Letgdre(~\Iey and hd l fHJ^ . 
Hence, g(eyoaeyt)h = (geyo)a(eyoh) = (geyeyo)a(eygezh)=gah = a. By the proof of [1, 
Theorem 2.18], since adRgDLh, there exists a unique a~1dRhr\Lif]J(d) such 
that aa~x=g and a~la=h. Thus, (ey<iaey)(e^a"1 ey)(eyoaey) = eyaaeytha'^ae^ = 
= W a n d similarly, {e y a-^e y ) (e y ae y ) (e y a-^e ; ) = eya-^ey a . Thus, if 
b=e ae , b_1 = e a~1e„ . Hence, as above, bb 1 = e, and b 1b = e,. Hence, >>o J>o' ô y z 

every element of S may be expressed in the form gbh where bdS0, gdlbb-1, and 
h£Jb-ib. We next show gbhdRgC\Lh. Since gbhb~1bb~1=g, gdgbhS. Thus, since 
gbhdgS, gbhdRg- Similarly, gbh£Lh. We are now in a position to establish unique-
ness. Let x—gbh = wcz where cdS0, wdlcc-i, and zdJc-ic. Hence, g0txMw 
and, similarly, h$£z. Since gw = w, wg—g, and S0 is an inverse semigroup, using 
{1, Theorem 1.17], cc-1 = bb~1cc-1 = cc~1bb-1=bb~1. Thus, g=w. Similarly 
b~1b=c~1c and h=z. Hence, b=bb~1bb~~1b=bb~1gbhb~1b = cc~1wczc~1c = 
= cc~1cc~1c — c. Q.E.D. 

Using Lemma 1.2, He is the ^f-class of S0 [ 7 y containing ey. 
Lemma 1.5. If idL and jdJ. , jidH. . 

Proof . Apply the proof of [4, Lemma 2.11]. 

Lemma 1.6. Let H=U(He : yd Y'). Then H is the semilattice Y of groups 
(Hy : yd Y). Hence, E(H) is contained in the center of H fi.e. eh=he for all edE(H) 
and hdH). 

Proof . Utilize [4, Proposition 1.9], Lemma 1.2, and [1, Lemma4.8]. 

Lemma 1.7. Let b, cdS0,jdJb-ib, and pdlcc-1. Then (b(jp)c)(b(jp)c)~1 = 
—(bc)(bc)~^ and (b(jp)c)-1b(jp)c=(bc)~1bc. 

Proof . Using Lemmas 1.5 and 1.6, ( b ( j p ) c ) ( b ( j p ) c ) ~ 1 = b ( j p ) c c ~ 1 ( j p ) ~ 1 b ~ 1 = 
=bcc-1(jp)(jp)-1b-1=bcc-1b-1 = (bc)(be)~1 and, similarly, (b(jp)c)'1(b(jp)c) = 
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For a,b£S0, define aob=ab. For a,b£T, define a*b — ab. 

Lemma 1.8. Let b, c£S0, KIbob-i,j£Jb-iob, p£lco-c-i, and q£Jc.ioc. Then 
(ibj)(pcq) = (i*x)(bo(j*p)oc)(y*q) where xil(boc)o{boc)-i and y£J(boc)-io(6oc). 
Hence, 5 s {(/, b,j): b£S0, i£fbob-i, j£Jb-iob} under the multiplication 
(i, b,j)(p, c, q) = (i*x, bo(j*p)oc, y*q). 

Proof . Utilizing Lemma 1.7, ( ibj){pcq) — i{bo{j*p)oc)q = {i*{(boc)o 
o(6oc)-1))(6o(y'*/7)oc)(((Z>oc)-1o(6oc))*^). Let bob~x = eT and (¿oc)o(6oc)_ 1= 
= ew. Thus, i*((boc)o(boc)~1) = iC,yW = i*x and, similarly, (([boc)-1o(boc))*q = 
=y*q. Hence, using Lemmas 1.4, 1.3, 1.5, 1.2, and 1.7 the last sentence of the 
lemma is established. 

Theorem 1.9. (Y, T, V) is a standard regular semigroup, and, conversely, every 
standard regular semigroup is isomorphic to some (Y, T, V). 

Proof . The converse is a consequence of Lemmas 1.1, 1.6, 1.3, 1.2, and 1.8. 
We next establish the direct part of Theorem 1.9. Let S=(Y, V, T). 

Lemma 1.10. S is a groupoid. 

Proof . Let (i, b,j), (r, c, s)ZS. Let {Cy,z- y, z£ Y} denote the set of structure 
homomorphisms of (T, *). Suppose y^z. Hence, z=y*z=yCytZ*z=z*y=z*y(ytZ 

or zSyCy,z. Thus, Xy,z = z. Hence, iC^-i^^^yi^iboc^iboc)-1, since 
iSebob-1. Thus iCbob.i>(6oe)o№oe)-i€/№oc)<>(6.c)-i. Hence, ' i**=if6 .4- i ,№ . e ) o ( i < , e )- i 
for x£l(boc)o(boc).i and, similarly, sCc-ioetiboc)-ioboc€Jiboe)-ioboc and y*s= 
=iC->oc,№oc)-'o(ioc) for yeJ(boc)-io(bocy Thus, (i, b,j)(r, c, s) is independent of 
the choice of u and v. Furthermore, as in the proof of [2, Theorem 2.11], j£Jz 

and i£Iy implie's j*i£Hyz. Let H= U(//,,: yd Y). Then, Lemma 1.6 is valid for H. 
Thus, as in the proof of Lemma 1.7, ( b o ( j * r ) o c ) o ( b o ( j * r ) o c ) ~ 1 = (boc)o(boc)~\ 
and, similarly, (bo( j*r )oc)~ 1 o(bo( j*r )oc)=(boc)~ 1 o(boc) . 

Lemma 1.11. S obeys the associative law. 

Proof . Let a = (i,b,j), fi = {r,c,s), y = (w,d,z) be elements of 5. Let cc^i, 
a2~b, and a3=j. Then, ((a^)?)i = iC6oil-i;(6ocoi))o(f>ocod)-i = (a(i5y))1, and, simi-
larly, ((oip)y)z — (a(fiy))3. Furthermore, ((af})y)2=bo(j*r)oco((v*s)*w)od where 
v£J(b°c)-Hb°cy However, (y*j)*»v = (((6oc)_1o(i>oc))*5)* w—{c~1ob~1oboc)o 
o(s*w). Hence,((af})y)2 = bo(j*r)ococ~1ob~1 oboco(s* w)od=bo(j*r)oco(s*w)o 
od. Similarly, (a(py) ) 2 =bo( j*r )oco(s*w)od . Q.E.D. 

Lemma 1.12. (b~1ob, b-1, bob'1)^J(fj, b,j)). Hence, 5 is a regular semi-
group. 

Proof . This lemma follows from a straightforward calculation. 
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Lemma 1.13. (a) (i,b,j)@(p, z, q) if and only if i=p. (b) (i, b,j)£?(p, z, q) 
if and only if j=q. (c) (z, b,j)Jf(p, z, q) if and only if i=p and j=q. 

Proof , (a) First assume i=p (hence, bob~i=zoz~1). Thus, (/, b,j)(b~1ob, 
¿_ 1oz, q) = (i, z, q) and (z, z, q^z'^oz, z~1ob,j) = (i, b,j). If (z, b,j)@(p, z, q), 
there exist x,ydl such that i*x=p and p*y = i. Thus, i*p=p and p*i=i. 
Hence, bob~1=zoz~1 and i—p. 

Lemma 1.14. (z, b,j)3)(p, z, w) if and only if b!3z(£ V). Hence, S is bisimple 
if and only if V is bisimple. 

Proof . Suppose b3)z (in V). Hence, there exists x£V such that bob-1 — 
and x~1ox=z~1oz. Thus, (i, b,j)i%(i, x, w)£f(p, z, w). Conversely, 

suppose (z, b,j)3i(p, z, w). Hence, (i, bJ)Sft(u, x, v)£C(p, z, q), say. Thus, bob~1 = 
=xox~1 and x~1ox=z~1oz or b!3z. 

Lemma 1.15. E(S)={(i,b,j): j*i=b~\ iUy, j£Jy, y£Y). 

Proof . Suppose (z, b,j)(i, b,j) = (i, b,j). Hence, bo(j*i)ob = b. Thus, 
0b~' i ob)o{j*i )o{bob- Y )^b- 1 . Hence, b~KH and bob~1=b~1ob. Hence, 
j*i£Hbob-i and j*i=b~1. Conversely, {i,(j*i)~1,j)(i,(j*i)~1,j) = (i*((j*i)~1o 
°(j*ij), (j*0~\ (U*i)°(j*i)~1)*j) = {i> U*i)~\j)-

Lemma 1.16. T' = {(i,b,j): b£Hy,i£ly,j£Jy,y£Y} is the union of the maximal 
subgroups of S. 

Proof . Let T' denote the union of the maximal subgroups of S. Hence, 
(z, b,j)£ r if and only if (z, b,j)je(p, c, q)£E(S)' Suppose (z, b,j)3e(p, c, q)£E(S). 
Using Lemmas 1.13 and 1.15, c = (q*p)~1£Hy, say, i£ly,j£Jy, and b£Hy. Sup-
pose i£ly, b(iHy, and jUy. Hence, (z, b,j)^{i, (j*i)~\j)£E(S). Q.E.D. 

Lemma 1.17. Let Ty = {(i, g,j): g£Hy, i£ly,j£Jy}. Then T' is the semilattice 
Y of completely simple semigroups (Ty: y£ Y). 

Proof . Let ( i , g , j ) , ( p , h , q ) e T y . Hence, (z, g,j)(p, h, q) = (i, go(j*p)oh, q). 
Hence, T'y is completely simple. Let ( i , g , j ) £T y and (p,h ,q)£T ' z . Hence, 
(i,g,j)(P, K q) = (i*(y°z), go(j*p)oh, (yoz)*q)eTy2. 

Lemma 1.18. Every element of Ty may be uniquely expressed in the form 
x = i*g*j where i£ly, g£Hy, and j£Jy. 

Proof . Suppose Ty = Jt{G\M,K\P) (notation of [1]). Let ey = (j>~l
1)n. 

Hence, Iy={(p^)a: ieM}, Jy = {(p-\j:jeK}, and Hy = {(g)n: gfG}. Hence, 
(g)ij=(Pii1)ii(x)u(Pji)ij where x=p~1pligpnp-1

1. 
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Lemma 1.19. Let (i*g*j)9 — (i,g,j) {idIy, gdHy, jdJy). Then 9 defines an 
isomorphism of T onto T'. Hence, T' is locally inverse. 

Proof . If jdHy and pdlz, j*pdHyoz. Let i*g*jdTy and p*h*q£Tz 

(i£Iy, gdHy, jdJy, pOz, hdHz, qdJz). Hence, ( ( i * g * j ) * ( p * h * q ) ) 9 = 
= (i*g*(j*p)*h*q)9 = (i#(yoz)*g*(j*p)*h*(yoz)#q)9 = (i*(yoz),go(j*p)oh> 

(yoz)*q) = (i, g, j)(p, h,q) = (i*g*j)9(p*h*q)9. 

R e m a r k 1.20. The isomorphism g—(gog -1 , g, g - 1 og) embeds (V, o) into 
(Y, T, V). In fact, {(gog-\ g, g - 1 og): gd V}=(y0, y0, y0)(Y, T, V)(y0, y0, y0) 
where y0 is the greatest of Y. 

The terms standard regular semigroup of type &> Y, coY inverse semigroup, 
locally inverse semigroup, rectangular group, orthodox semigroup, standard orthodox 
semigroup and standard if-unipotent semigroup are defined in [4, pp. 540—542]. 

Remark 1.21. Using Lemmas 1.14—1.17, (Y, T, V) is a standard regular semi-
group of type coY if and only if F is an coY inverse semigroup. 

R e m a r k 1.22. Let (Y, T, V)0 denote (Y, T, V) with "completely simple semi-
groups" replaced by "rectangular groups" and " b o ( j * r ) o c " replaced by "boc". 
Let (Y, T, V)<p denote (Y, T, V)0 with "rectangular groups" replaced by"right 
groups". Then, (Y, T, V)0 [{Y, T, V)^] is a standard orthodox, [standard if-uni-
potent] semigroup, and conversely every standard orthodox [standard Jif-uni-
potent] semigroup is isomorphic to some (Y, T, V)0 [(Y, T, K)J (cf. [4, Theorems 
5.1 and 5.3 and Remark 5.6]). 

Remark 1.23. If we specialize Theorem 1.9 to orthodox semigroups, we obtain 
the specialization of Yamada's structure theorem for generalized inverse semigroups 
[6] to standard regular semigroups. 

2. Standard completely regular semigroups. In this section, we give a structure 
theorem for standard completely regular semigroups (Theorem 2.1). 

Let Y be a semilattice with greatest element. Let I [J] be a locally inverse semi-
lattice Y of left zero [right zero] semigroups (7a: a £ Y) [(/„: ad Y)] with structure 
homomorphisms {^a,p) [(£„,/?)]• Let G be a semilattice Y of groups (Ga: ad Y) with 
structure homomorphisms {(pXip}. Let ( j , i ) — p J t i be a function of Jxl into G 
such that 

(1) if jdJx a n d idh, Pj,idGx; 

(2) if jdJx a n d IDJ^ PJ,i = PJI.,. 

(3) if jdJa a n d id/x a n d a £ 0, pj,i(px,p = 
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Let (Y , /, J, G, i, c, <p) denote {(/, g,'j): i£lx, g£Gx,j£Jx and a € T} under the: 
multiplication 

(4) (i, g, j) O, h, z) = (iw, gpj, w h, jz). 

Theorem 2.1. ( Y , I , J , G, c, 9)) « a standard completely regular semigroup,, 
and, conversely, every such semigroup is isomorphic to some (Y, I, J, G, (p). 

Proof . Let S be a standard completely regular semigroup. Hence, S is a. 
semilattice Y of completely simple semigroups (Sx: a6 Y). Let a„ denote the greatest 
element of Y. Let {<5^} denote the set of structure homomorphisms of S. Let 

and define e^e^S . Hence, exep = exp. Let Tx [ /J denote the set of 
idempotents of the =S?-class [^-class] of Sa containing e„. Hence, Ia [ /J is a left zero 
[right zero] semigroup. As in the proof of Lemma 1.3,1= U (/„: oc£ Y) [/= U(Ja: a€ 7)] 
is a semilattice Y of left zero [right zero] semigroups (/„: af_ Y) [(Ja\ 7)]. Let 
(xj—<>x,p\J a n d t\I- Thus I and J are locally inverse by [4, Theorem 1.6]. 
Let Gx denote the -class of Sx containing ea. Hence, using [4, Proposition 1.9], 
G=U(Ga: Y) is the semilattice Y of groups (Ga: Y) with structure homo-
morphisms (px p=5x ^\G. As in the proof of Lemma 1.18, every element of S may 
be uniquely expressed in the form x=igj where i£la, g£Gx, and j€Jx. Let j£Jx 

and «e/p. Hence, ji=jCx ^i^ xfi£Gxl!. For j£Jx and i f j p , define Pj,i=ji. Hence,. 
(.j\i)-"Pj,i defines a function of Jxl into G satisfying (1) and (2). (3) is verified, 
by a straightforward calculation. Let x = igj£Sa and y = whzdSp. Hence xy = 
=(igj) (whz) = i(gPj wh)z = (/'C^ xp) (gpJt w h) ( z ^ xfi)=(iw) (gpjt w h) (jz). Thus, igj-

g j ) defines an isomorphism of S onto X=(Y, I, J, G, (, cp) under (4). 
Next, we show X=(Y, I, J, G, c, cp) is a standard completely regular semi-

group. Closure is a consequence of (1) and (2). For a£Y, let Tx={(i,g,j): i£ Ta,. 
g£Gx,j£Jx}. Let x = (i, g,j)£Ta, y = (m, h, n)£Tp, and w=(c, z, d)£Ty. Using 
(2) and (3), 
=Pji.*,ri»')t ty*y=p '-»u>- s i m i l a r l y . Pn,c<Ppy,m=Pin,c- Thus, (xy)w= 
(jrnc,g(pxix^pj m<pxp ^7h(petapyp jn tcz(py^y,jnd) = x(yw). Using (4), the Rees theo-
rem [1, Theorem 3.5], (1) and (2), X is the semilattice Y of completely simple semi-
groups (Tx: a£Y). Hence, X is completely regular by [1, Theorem 4.6]. We next 
show X is locally inverse. Using (4), E(X)= {(i,pjl,j): i£lx, j£Jx, <x£Y}. Let 
(hPZlMT. and Then, using (4), (3) and (2), (i,pj), j)^(a,p~l, 6> 
if and only if a^P, i£XtP=a, and jt,a^=b. Thus, using (4), (3) and (2), S is locally 
inverse. 

Remark 2.2. The structure of I, J, and G are given in terms of their respective 
structure homomorphisms (see [4, Section 1, especially Remark 1.7], [5, Theorem l]j 
and [1, Theorem 4.11]). 
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R e m a r k 2.3. In [4], we used the term Cliffordian semigroup to describe a 
union of groups. In order not to conflict with the terminology of [3], we adopted 
•our present terminology which appears to be the prevalent terminology. 

3. The minimum inverse semigroup congruence. In this section, we describe the 
minimum inverse semigroup congruence on a standard regular semigroup 
S—(Y, V, T). If (p is a homomorphism, ker cp will denote the kernel of <p. 

P r o p o s i t i o n 3.1. Let co be a homomorphism of V onto an inverse semigroup 
V* such that J*IQ Uker no. Then, (/, b,j)9 — bco defines a homomorphism of S 
onto V*. Conversely, if 9 is a homomorphism of S onto an inverse semigroup F*, 
.then (/, b,j)6=bco where co is a homomorphism of V onto V* with Uker coQJ*I. 

Proof . We first establish the direct part. Let ( i , b , j ) , (r, c, s)£S. Hence, 

(0' , b,j)(r, c, s))9 = (bo(j*r)oc)a> = bcoo((b~1ob)o(coc~1))coocco = 

= bcoocco = (/, b,j)9(r, c, s)9. 

Conversely, let 9 be a homomorphism of S onto V*. For b{IV, define ba>= 
= (bob~\ b, b'1 ob)0. Thus, bcoco)=((bob~1, b, b^obXcoc'1, c, c~1oc))6= 
= ((boc)o(boc)~1, boc, (boc)~1o(boc))9—(boc)co. Hence, co is a homomorphism of 
F in to F*. Let ( i , b , j ) £S . Then, {i,b,j) = {i,bob~\bob-1){bob-\b,b-1ob){b-1o 
o^b-iobj). Using Lemma 1.13 (b), (i, bob'1, bob-*) & (bob'1, bob'1, bob'1). 
Hence, using Lemma 1.15, (i, bob*1, bob-1) 9 = {bob'1, bob-1, Z>oZ>_1)0. Similarly, 
(b~1ob,b~1ob,j)9={b~1ob,b~1ob,b~1ob)9. Thus, using Lemmas 1.15 and 1.13, 
•(i,b,j)6=((bob-1,bob-1,bob-1)(bob-\b,b-1ob)(b-1ob,b-1ob,b-1ob))6 = (bob 
b, b~1ob)9 = bco. Let c£F*. Hence, c = {i, d,j)6 = dco for some (i, d,j)£S. Thus,rois 
a homomorphism of F onto V*. Let j£Jy and i£lz. Since (y,y,j)9(i,z,z)9 = 
= {y*z,j*i, y*z)9 = (j*i)co=ycozco = (yz)co, / * / £ U k e r co. Q.E.D. 

Let N denote the collection of all finite products of elements of the form 
.a^osoa where a£V and s or s_1dJ* I. Since is a congruence relation on F 
by [4, Lemma2.13] and J*IQH=U(Hy: y£Y), a^osoadH. Thus, N is an 
inverse subsemigroup of V and H. Since E{V) is contained in the center of H, it 
follows that x^oNoxQN for all x£V. Let Ny = HyC\N. Then N is the semi-
lattice Y of groups (Ny: y£Y). Let gN= {{a, b)£ F x V: aoa~\ bob-1, aob^£Ny 

for some y£ 7}. Then, using [2, Theorem 7.54 and Lemma 7.48], oN is a congruence 
relation on F with kernel {Ny: y£Y). 

P r o p o s i t i o n 3.2. V/Qn is the maximal inverse semigroup homomorphic image 
of Sunder the homomorphism (/, b,j)9N=bg^ where Q% is the natural homomorphism 
•of V onto V/gN. 



On the structure of standard regular semigroups 443 

P r o o f . Using Proposition 3.1, 0N is a homomorphism of S onto V/QN. Let 
0 be a homomorphism of S onto an inverse semigroup V*. Define (xON)y = xO 
for x£S. We will show that y is a homomorphism of V/QN onto V*. Suppose 
that (/, b,j)6N—(p, c, q)6N. Hence, bQ% = cg% and (b, c)£gN. Thus, using [2, 
Theorem 7.55], b=nc for some n£Ncoc.1. By Proposition 3.1, (/', b,j)9=ba> for 
some homomorphism OJ of V onto V* with Ukera>QJ*L We note that 
n = (a^1Sla1) ,..(a~1Snan) where V and S( or S^DJ*!. Thus, SFIJ^EIV*) and, 
hence, noj£E(V*). Thus, since n.^coc'1, na>=(cco)(c(o)~1. Hence bco=ncoc(o = 
— cco(ca>)~1cco = cco. Thus, (/, b,j)6=(p, c, q)6. Q.E.D. 

T h e o r e m 3.3. Let S=(Y, V, T) be a standard regular semigroup. Let N denote 
the collection of all finite products of elements of the form a~1osoa where a£ V and 
sors~KJ*L Let Ny=NDHyfor y£Y. Let dN={((i, a j ) , (p, b, qj)£SxS: Nyoa = 
=Nyob where y=aoa~1 = bob~xy Then, SN is the minimum inverse semigroup 
congruence on S. 

Proof . Utilize Proposition 3.2 and its proof. 

References 

[1] A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, Volume 1, Math. Surveys 
No. 7, Amer. Math. Soc. (Providence, R. I., 1961). 

[2] A. H. CLIFFORD and G. B. PRESTON, The algebraic theory of semigroups, Volume 2, Math. Surveys 
No. 7, Amer. Math. Soc. (Providence, R. I., 1967). 

[3] J. M. HOWIE, An Introduction to Semigroup Theory, Academic Press (1976). 
[4] R. J. WARNE, Standard Regular Semigroups, Pacific J. Math., 65 (1976), 539—562. 
[5] M. YAMADA and N. KIMURA, Note on idempotent semigroups, II, Proc. Japan Acad., 34 (1958), 

110—112. 
[6] M. YAMADA, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. 

Math., 21 (1967), 371—392. 

UNIVERSITY OF ALABAMA I N BIRMINGHAM 
BIRMINGHAM, ALABAMA, USA 

11 


