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On the structure of standard regular semigroups

R. J. WARNE

We give a structure theorem for a class of regular semigroups and determine:
the smallest inverse semigroup congruence for this class of semigroups. Let S be
a regular semigroup, let 7 denote the union of the maximal subgroups of S, and
let E(T) denote the set of idempotents of 7. Assume 7 is a semigroup (equivalently
T is a semilattice Y of completely simple semigroups (T,: yeY )). If Y has a greatest
element and e, f, g€ E(T), e=f, and ez=g imply fg=gf, we term S a standard
regular semigroup. The structure of S is given modulo standard inverse semigroups
and standard completely regular semigroups by means of an explicit multiplica-
tion. In the case |Y|=1, our structure theorem reduces to the Rees theorem for
completely simple semigroups. A structure theorem for standard completely regular
semigroups is also given. The minimum inverse semigroup congruence on a standard
regular semigroup is described.

Let us first state our structure theorem for standard regular semigroups. Let
(V, o) be a standard inverse semigroup with semilattice of idempotents ¥, and let
(T, ») be a standard semilattice Y of completely simple semigroups (T,: y€Y)
with y=y#*y€T,. Suppose T,NV=H, for ycY and (H,, o) [(H,, *)] is the maxi-
mal subgroup of (V, o) [(T, )] containing y and assume axb=agob for
a, b€ U(H,: ycY). Let I [J,] denote the maximal left zero [right zero] subsemi-
group of T, containing y. Let (¥, T, ¥) denote {(i, b,): b€V, i€l -1, JETy-1,p}
under the multiplication (i, b,7)(r, ¢, s)=(i*u, bo(jxr)oc, vxs) where
UE€L o oo pocy-1 @0 V€S o 1 -10po)- WE show (Theorem 1.9) that (Y, T, V) is a stand--
ard regular semigroup and, conversely, every standard regular semigroup is isomor--
phic to some (Y, 7, V). _

In [4, Theorem 3.14], we gave a different structure theorem for standard regular
semigroups.

The structure of standard inverse semigroups is clarified by [4, Theorem 5.5].
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In Section 1, we prove our structure theorem for standard regular semigroups
(Theorem 1.9) and give some specializations of this theorem (Remarks 1.21 and
1.22). In Section 2, we describe standard completely regular semigroups in terms
of groups by means of a “Rees type” multiplication (Theorem 2.1). In Section 3,
we give the following description of the minimum inverse semigroup congruence
on a standard regular semigroup S=(Y, T, V). Let N denote the collection of ali
finite products of elements of the form a~'osoa where a€V and s or
57 (U, yeY))* (U(,: y€Y)). Let N,=NNH, for peY. Let

Sy ={((i, a,)), (p, b, q))ESXS: Nyoa= Nyob where y=aoca™=bob 1.

“Then, oy is the minimum inverse semigroup congruence on S.

We will use the definitions and notation of CLIFFORD and PRESTON [1, 2] unless
otherwise specified. The terms mainly used are: Green’s relations (£, %, %, and 9),
R-class, regular semigroup, bisimple semigroup, inverses, inverse semigroup, left
{right) zero semigroup, right group, idempotent, natural partial order of idempo-
tents, semilattice, completely simple semigroup, semilattice of completely simple
semigroups [groups, left (right) zero semigroups], maximal subgroup, congruence,
and kernel of a homomorphism.

A semigroup is termed completely regular if it is a union of its subgroups. If
X is a semigroup, E(X) will denote the set of idempotents of X. A regular semi-
group X is termed locally inverse if e,f, g€ E(X), e=f and ex=g imply fg=gf.
(See [4] for an explanation of terminology.) A congruence ¢ on a semigroup X such
that X/¢ is an inverse semigroup is termed an inverse semigroup congruence on X.
“Structure homomorphisms™ are defined and discussed in [4, Section 1].

1. Standard regular semigroups. In this section, we establish our new structure
theorem for standard regular semigroups (Theorem 1.9).

Let S be a standard regular semigroup and let 7 denote the union of the maximal
subgroups of S. Hence, T is a semilattice Y’ of completely simple semigroups
(T,: y€Y’) [1, Theorem 4.6] where Y’ has a greatest element y,. Let {{, .: y,z€Y}
denote the set of structure homomorphisms of T [4, Section1]. Let E,=E(T,).
‘Select and fix e, eE(T ) ‘For each  ycY’, define e,=e, Cy y- Let So_e Se, .
Let 7, [J ] denote the set of idempotents of the $-class [% class] of T, contammg
e, . Let H denote the s#-class of S containing e,.

Lemma 1.1. (4, Lemma 2.2]) y—e, defines an isomorphism of Y’ onto E(S,).
Lemma 1.2. Hesz,ﬁS0 for yeY’

Proof. Utilize [4, Theorem 2.3].
Let E(Sy)=Y and let #(a) denote the collection of inverses of a.
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Lemma 1.3. (a) T is a semilattice Y of completely simple semigroups (T,: y€Y)
where y*=y€T,. (b) I=U(l,: yeY) [J=U(J,: yeY)] is the semilattice Y of left
zero semigroups [right zero semigroups] (I,: y€Y) [(J,: y€Y)].

Proof. (a) Let T, =T,(y€Y’). Then,usingLemma 1.1, T, T, =T,T,ET,,=
=Teyz:Teyez' (b) Utilize the proof of [4, Lemma 2.4] and its dual.

" Lemma 1.4. Every element of S may be uniquely expressed in the form x=gbh
where bES,, g€l,,_1, and heJ,_,,.

Proof. Let acS. Hence, acR,NL; for some e, f€E(S). Suppose ecT, and
JeT,(y,2€Y"). Let r, [[;] denote the Z#-class [Z-class] of T, [T,] containing e [ f].
Using[1, Theorem 2.51], r,NI, =0 and lfﬂJ # . Lethr NI, and helNJ, .
Hence, g(e, ae, )h (geyo)a(e h) (geye, )a(e 0 h)y=gah=a. By the proof of [l
Theorem 2. 18] since at€R, ﬂL,,, there exists a unique a '€R,NL,NF(a) such
that aa—'=g and a~*a=h. Thus, (eyoaeyo)(eyoa‘leyo) (eyoaeyo)=eyoaey°ha‘1geynaeyo: '
=e, ae, , and similarly, (eyoa—le%)(eyﬂaeyo)(eyoa'le;o)=eyoq‘1eyo. Thus, if
b=eyoaeyo, b‘1=eyoa—1eyo. Hence, as above, bb~'=e, and b~ 'b=e,. Hence,
every element of S may be expressed in the form gbh where b€S,, g€l,,-., and
heJ,-1,. We next show gbh€¢ R, L,. Since gbhb~'bb~'=g, gcgbhS. Thus, since
gbhegs, gbh€ R,. Similarly, gbh€ L,. We are now in a position to establish unique-
ness. Let x=gbh=wcz where c€S,, wel _,, and z&J__,,. Hence, gZxAw
and, similarly, A.%#z. Since gw=w, wg=g, and S, is an inverse semigroup, using
[1, Theorem 1.17], cc '=bb lcct=cc tbb~1=bb"'. Thus, g=w. Similarly
b~lb=c ¢ and h=z. Hence, b=>bb~1bb 1b=bb"1gbhb~'b=cc iwczclc=
=cclecie=c. Q.E.D.

Using Lemma 1.2, Hey is the ##-class of S, [Tey] containing e, .

Lemma 1.5. If iEIey and jeJ, , jicH,
Proof. Apply the proof of [4, Lemma 2.11].

Lemma 1.6, Let H=U(Hey: y€Y’). Then H is the semilattice Y of groups
(H,: y€Y). Hence, E(H) is contained in the center of H (i.e. eh=he for all e€¢ E(H)
and heH).

Proof. Utilize [4, Proposition 1.9], Lemma 1.2, and [1, Lemma 4.8].

Lemma 1.7. Let b, c€Sy, j€J,-v,, and p€l, ... Then (b(jp)c)(b(jp)c)~'=
=(bc)(bc)™ and (b(jp)c)~tb(jp)c=(bc) 1hc.

Proof. Using Lemmas 1.5 and 1.6, (b(jp)c)(b(jp)c) 1 =b(jp)cc 2 (jp) b=
=bec™1(jp)(jp) b 1=bcc™b"1=(bc)(bc)' and, similarly, (b(jp)c) 2 (b(jp)c)=
=(bc)~2be.
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For a, b¢S,, define aob=ab. For a, bcT, define axb=ab.

Lemma 1.8. Let b, cCSy, i€1,,-1, j€Jp-104 PEL o1, and q€J, _y,,.. Then
(i) (peq)=(i*x)(bo(j*p)oc)(y*q) where X€ly, 0poc-1 @A Y€ 4o -10pon-
Hence, S={(i,b,j): b€S,, i€l -1, jE€EJ,-1,,} under the multiplication
(i, b,))(p, ¢, 9)=(i*x, bo(j*p)oc, yxq).

Proof. Utilizing  Lemma 1.7, (ibj)(peq)=i(bo(j*p)oc)g=(i*((boc)o
o(boc) ™)) (bo(j*p)oc)((boc)o(boc)) xq). Let bob~'=e, and (boc)o(boc) 1=
=e,,. Thus, ix((boc)o(boc)™Y)=i(, ,=i*x and, similarly, ((boc)-o(boc))xg=
=yxq. Hence, using Lemmas 1.4, 1.3, 1.5, 1.2, and 1.7 the last sentence of the
lemma is established.

Theorem 1.9. (Y, T, V) is a standard regular semigroup, and, conversely, every
standard regular semigroup is isomorphic to some (Y, T, V).

Proof. The converse is a consequence of Lemmas 1.1, 1.6, 1.3, 1.2, and 1.8.
We next establish the direct part of Theorem 1.9. Let S:(Y, v, T).

Lemma 1.10. S is a groupoid.

Proof. Let (i, b,)), (r,c,s)€S. Let {{,.: y,2z€Y} denote the set of structure
homomorphisms of (T, *). Suppose y=z. Hence, z=y*z=y(, xz=zxy=z%)(, .
or z=y{,,. Thus, y{,,=z. Hence, ily,.p-1 hocjooe-1ZL(boc)o(boc)™?, since
iZbob™. Thus pop-1,(pocrobocr-1€lpocyowory-1- HENCE, IxX=1ly 011 (hocyo(pocy-1
for x€ly,popon-1 and, similarly, s _1.. Gog-10p0c€dpoc)-topoc aNd Y ks=
=-10c,oc)-10oc) 10T V€Jhogy-10poey- Lhus, (G, b,j)(r, ¢, s) is independent of
the choice of u and ». Furthermore, as in the proof of [2, Theorem 2.11], j€J,
and i€/, implies jxicH, . Let H=U(H,: yc€Y). Then, Lemma 1.6 is valid for H.
Thus, as in the proof of Lemma 1.7, (bo(j*r)oc)o(bo(j*r)oc) t=(boc)o(boc)7L,
and, similarly, (bo(j*r)oc) lo(bo(j*r)oc)=(boc) o(boc).

Lemma 1.11. S obeys the associative law.

Proof. Let a=(, b,j), B=(r,c, s), y=(w, d, z) be elements of S. Let o,=i,
a;=b, and ag=j. Then, ((aﬁ)‘y)l=izbob'l,(bocod)o(bocod)‘l:(a(ﬂy))lﬁ and, simi-
larly, ((@B)y)s=(x(By))s. Furthermore, ((xB)y)e=bo(j*r)oco((vxs)*w)od where
V€ pogy-1pocy- HOWEVET,  (v#S)*w= (((boc) to(boc)) ¥ s)x w=(cLob loboc)o
o(s*w). Hence, ((af)y).=bo(j*r)ococ™lob™ oboco(s ¥ w)od= bO(_]*I')OCO(S*W)O
od. Similarly, (x(By)).=bo(j*r)oco(s*xw)od. Q.E.D.

Lemma 1.12. (b~1ob, 571, 'bob‘l)EJ((i, b,j)). Hence, S is a regular semi-
group.

Proof. This lemma follows from a straightforward calculation.
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Lemma 1.13. (a) (7, b, ))& (p, z, q) if and only if i=p. (b) (i,b,7)L(p,z, q)
if and only if j=q. () (i, b,))# (p, z,q) if and only if i=p and j=q.

Proof. (a) First assume i=p (hence, bob 1=zoz ). Thus, (i, b,j) (b~ 1ob,
b7loz,q)=(,z2,q) and (i, z,q)(z toz,z7 b, j)=(, b,j). If (i,b,/)%(p, z q),
there exist x, y¢/ such that ixx=p and pxy=i. Thus, ixp=p and pxi=i.
Hence, bob '=zoz™! and i=p. ’ :

Lemma 1.14. (i, b, /) 2(p, z, w) if and only if bDz(€V). Hence, S is bisimple
if and only if V is bisimple.

Proof. Suppose Dz (in V). Hence, there exists x€¥V such that bob™1=
=xox ! and x"lox=z loz. Thus, (,b,))Z(, x,w)Z(p,z, w). Conversely,
suppose (i, b, ))2(p, z, w). Hence, (i, b, j) 2 (u, x, v)f(p,z q), say. Thus, bob 1=
=xox~1 and x lox=z"loz or bD:z.

Lemma 1.15. E(S)={(G, b, j): jxi=b""%, icl,, jcJ,, y€Y}.

Proof. Suppose (i, b,j)(i, b,j)=(, b,j). Hence, bo(j*i)ob=>b.- Thus,
(b lob)o(jxi)o(bob™)=b"1. Hence, b"¢H and bob 1=b"1lob. Hence,
j*iCH, ,-1 and jxi=b"1 Conversely, (i, (j*i)™L j)(i, (j*D) ™% j)=(i*({(j*i) o
o(J# D), (J*i)™4 ((G*1)o(j*i) Y *j)=(i, (i) ).

Lemma 1.16. T'={(, b, j): beH,,icl,,jcJ,, y€ Y} is the union of the maximal
subgroups of S.

Proof. Let T’ denote the union of the maximal subgroups of S. Hence,
(i, b, /)€ T’ if and only if (i, b, j) # (p, ¢, ¢)€E(S). Suppose (i, b, j)H# (p, ¢, Q) E(S).
Using Lemmas 1.13 and 1.15, c=(gxp)~'€H,, say, i€l, jeJ,, and bcH,. Sup-
pose i€l,, beH,, and jeJ,. Hence, (i,b,/)# (i, (j*i)™j)€E(S). Q.E.D.

Lemma 1.17. Let T;={(, g, /): gcH,, i€l,, jeJ,}. Then T’ is the semilattice
Y of completely simple semigroups (T ; 1 yeY).

Proof. Let (i, g,), (p, h, )€ T,. Hence, (i,g,/)(p, h, q)=(i, go(j*p)oh, q).

Hence, 7, is completely simple. Let (i,g,/)€T, and (p,h,q)cT,. Hence,

G, & N (D, h, @) =(i*(yoz), go(j*p)oh, (yoz)xq)ET,
Lemma 1.18. Every element of T, may be uniquely expressed in the form

x=ixgxj where icl,, g¢H,, and jcJ,.

Proof. Suppose T,=.#(G; M, K; P) (notation of [1]). Let e,=(pphu.
Hence L={(p;Ya: IEM} Jy= {(P,11)1, JjeK}, and H,={(®u: gEG} Hence,
(8)ij= (ph D (D11 (P where x=py'pugPapr"
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Lemma 1.19. Let (ixg*j)0=(, g,j) (icl,, gcH,, j¢J,). Then 0 defines an
isomorphism of T onto T’. Hence, T’ is locally inverse.

Proof. If j¢H, and p€l,, j*pcH,,,. Let ixg%jcT, and pxhxqcT,
(iel,, g€H,, jeJ,, pel,, héH,, g€J,). Hence, ((i*g*j)*(p*h*q))ﬂ—
—(z*g*(j*p)*h*q)o (zale(yoz)*g*(]*p)*h*(yoz)*q)f) (i#(yo2), go(j*p)oh
(yoz)xq)=(, & J)(p, h, q)=(ixg )0 (pxh*q)0.

Remark 1.20. The isomorphism g—(gog™, g,g log) embeds (V, o) into
(Y, T,V). In fact, {(gog™', g 8 'og): gcV}= (yo,yo,yo)(Y T, V)(¥o, Yo, Yo)
where y, is the greatest of Y.

The terms standard regular semigroup of type w7, wY inverse semigroup,
locally inverse semigroup, rectangular group, orthodox semigroup, standard orthodox -
semigroup and standard #-unipotent semigroup are defined in [4, pp. 540—542].

Remark 1.21. Using Lemmas 1.14—1.17, (¥, 7, V) is a standard regular semi-
group of type oY if and only if V is an wY inverse semigroup.

Remark 1.22. Let (Y, 7, V), denote (Y, T, V) with “completely simple semi-
groups” replaced by “rectangular groups” and “bo(j*r)oc” replaced by “boc”.
Let (Y, T, V), denote (Y, T, V), with “rectangular groups” replaced by “right
groups”. Then, (¥, T, V), [(Y, T, V)] is a standard orthodox. [standard Z-uni-
potent] semigroup, and conversely every standard orthodox [standard Z-uni-
potent] semigroup is isomorphic to some (Y, T, V), [(Y¥, T, V)] (cf. [4, Theorems
5.1 and 5.3 and Remark 5.6]).

Remark 1.23. If we specialize Theorem 1.9 to orthodox semigroups, we obtain
the specialization of Yamada’s structure theorem for generalized inverse semigroups
[6] to standard regular semigroups.

2. Standard completely regular semigroups. In this section, we give a structure
theorem for standard completely regular semigroups (Theorem 2.1).

Let Y be a semilattice with greatest element. Let I [J] be a locally inverse semi-
lattice ¥ of left zero [right zero].semigroups (I,: a€Y) [(J,: «€Y)] with structure
" homomorphisms (&, ;) [({,,5)]- Let G be a semilattice Y of groups (G,: «a€Y) with
structure homomorphisms {¢, z}. Let (j,i)—p;; be a function of JXxI into G
such that

(1) if jEJa and iEIaa pj,ieGa;
(2) if jEJa and ielﬁ? pj,i:pjga,mﬁ)igﬁ,aﬂ;

(3) ]f jEJa and ie[z and d%ﬂ, pj,iqoa,ﬁ:pj{,,g,i{,,p'
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Let (Y, 1, J,G,¢, &, @) denote {(i, g,/): icl,, gEGa,JEJ and «€ Y} under the:
multiplication

(4) (l’ g,j)(W, h: Z) = (iws gpj,whs _]Z)

Theorem 2.1. (Y, 1, J, G,{, &, @) is a standard completely regular semigroup,.
and, conversely, every such semigroup is isomorphic to some (Y, 1,J, G, &, ¢).

Proof. Let S be a standard completely regular semigroup. Hence, S is a.
semilattice Y of completely simple semigroups (S,: a€Y). Let «, denote the greatest
element of Y. Let {, 5} denote the set of structure homomorphisms of S. Let
eaer(Sao) and define ea=e%5%’a. Hence, e,ep=e,5. Let I, [J,] denote the set of
idempotents of the #-class [#-class] of S, containing e,. Hence, 1, [J,] is a left zero
[right zero] semigroup. As in the proof of Lemma 1.3, I= U(,: 2€ Y) [J= U(J,: a€ V)]
is a semilattice Y of left zero [right zero] semigroups (I,: «€Y) [(J,: a€Y)]. Let
lap=04,4l) and &, ;=0, plI. Thus I and J are locally inverse by [4, Theorem 1.6].
Let G, denote the #-class of S, containing e,. Hence, using [4, Proposition 1.9],
G=U(G,: acY) is the semilattice ¥ of groups (G,: a€Y) with structure homo-
morphisms ¢, ;=46, 4|G. As in the proof of Lemma 1.18, every element of S may
be uniquely expressed in the form x=igj where icl,, g€G,, and jcJ,. Let JE€J,
and icl;. Hence, ji=j{, ,5ils 14€ Gop. For j€J, and i€ly;, define p; ;=ji. Hence,
(Jj,i)—p;,; defines a function of JX/ into G satisfying (1) and (2). (3) is verified.
by a straightforward calculation. Let x=igjcS, and y=whz€S,;. Hence xy=
= (ig]) (Wh2) = (8P, W) 2=, o) (82}, 1) (2 g, up)=(W) (g2, W) (j2).  Thus, igj—~
—~(i, g,j) defines an isomorphism of S onto X=(Y, 1, J, G,{ & ¢) under (4).

Next, we show X=(Y, 1, J,G,(, &, ¢) is a standard completely regular semi--
group. Closure is a consequence of (1) and (2). For acY, let T,={(, g, j): i€l,,
8€G,, j€J,). Let x=(i, g j)ET,, y=(m, h,n)€T,, and w=(c,z, d)ET,. Using
Q) and ) PymPupapy =Pit, gty s Pa,881 =P gy ™y =P iy ™y sy =
DR, gy 1) &g, gy = Pime- Smilarly,  p, g, g =pj ..  Thus,  (xy)w=
(imc, 804, apyPj, mPap, apy NP, apy P jn, c 2Py, apy»Jnd)=x(yw). Using (4), the Rees theo-
rem [1, Theorem 3.5, (1) and (2), X is the semilattice ¥ of completely simple semi-
groups (7,: a€Y). Hence, X is completely regular by [1, Theorem 4.6]. We next
show X is locally inverse Using (4), E(X)={G, pj;,)): i€l,, jEJ,, ac Y} Let
(, pj"},j)e T, and (a, p,, o> D)ETy. Then, using (4), 3) and (2), G, p;;, L=, p,, 2. by
if and only if o=8, i, y=a, and j{, ,=b. Thus, using (4), (3) and (2), S is locally
inverse.

Remark 2.2. The structure of I, J, and G are given in terms of their respective
structure homomorphisms (see [4, Section 1, especially Remark 1.7], [5, Theorem 1];
and [1, Theorem 4.11]).
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Remark 2.3. In [4], we used the term Cliffordian semigroup to describe a
-union of groups. In order not to conflict with the terminology of [3], we adopted .
-our present terminology which appears to be the prevalent terminology.

* 3. The minimum inverse semigroup congruence. In this section, we describe the
minimum inverse semigroup congruence on a standard regular semigroup
S=(Y,V,T). If ¢ is a homomorphism, ker ¢ will denote the kernel of ¢.

Proposition 3.1. Let @ be a homomorphism of V onto an inverse semigroup
V* such that JxI1< Uker w. Then, (i,b,j)0=bw defines a homomorphism of S
wonto V*. Conversely, if 0 is a homomorphism of S onto an inverse semigroup V*,
then (i, b, ))0=bw where w is a homomorphism of V onto V* with Uker oS Jx*1.

Proof. We first establish the direct part. Let (i, b,j), (r, ¢, s)€S. Hence,
(G, b, j)(r, ¢, 5))0 = .(bo(jele r)oc)w = bwo((b " ob)o(coc™Y))wocw =
= bwocw = (i, b, j)0(r, ¢, 5)0.

‘Conversely, let 6 be a homomorphism of S onto V*. For b¢cV, define bo=
=(bob™1, b, b10b)0. Thus,  bwcw=((bob1, b, b~ob)(coc™, ¢, c71oc))f=
=((boc)o(boc)™1, boc, (boc) to(boc))8=(boc)w. Hence, w is a homomorphism of
V into V*. Let (i, b, j)€S. Then, (G, b, /)=(, bob™1, bob ™) (bob™L, b, b~1ob)(b 10
ob, b~tob,j). Using Lemma 1.13 (b), (i, bob™Y, bob ™)L (bob~, bob™ 1, bob™1).
Hence, using Lemma 1.15, (i, bob™1, bob )8 =(bob™ 1, bob™, bob~1)0. Similarly,
(b71ob, b~ tob, j)O=(b"1ob, b~tob,b~10b)0. Thus, using Lemmas 1.15 and 1.13,
(i, b,/)0=((bob=1, bob~, bob V) (bob~,b,b 1ob) (b~ ob, b~10b,b710b))0 = (bob™?,
b, b7tob)0=bw. Let cc V*. Hence, c=(i, d, j)0=dw for some (i, d, j)¢ S. Thus, w is
a homomorphism of V onto V*. Let jeJ, and i€l,. Since (y,,/)0(,z, 2)0=
=(y*z,j*i, y*2)0=(j*i)o=yowzo=(yz)w, j*xic¢Uker w. Q.E.D.

Let N denote the collection of all finite products of elements of the form
a losoa where acV-and s or s71€J« 1 Since # is a congruence relation on V
by [4, Lemma 2.13] and JxIS H=U(H,: y€Y), a tosoacH. Thus, N is an
inverse subsemigroup of V and H. Since E(¥V) is contained in the center of H, it
follows that x"'oNoxE N for all xcV. Let N,=H,NN. Then N is the semi-
lattice Y of groups (N,: y€Y). Let gy={(a, )eVXV: aca™, bob™%, aob €N,
for some y€Y}. Then, using [2, Theorem 7.54 and Lemma 7.48], gy is a congruence
relation on ¥V with kernel {N,: y€Y}.

Proposition 3.2. V/gy is the maximal inverse semigroup homomorphic image
of S under the homomorphism (i, b, j)0y=bos where o} is the natural homomorphism
of V onto V/gy.
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Proof. Using Proposition 3.1, 8y is a homomorphism of S onto V/gy. Let
0 be a homomorphism of S onto an inverse semigroup V*. Define (x0y)y=x0
for x€S. We will show that y is a homomorphism of V/gy onto V*. Suppose
that (i, b, j)0y=(p, ¢, q)0y. Hence, bofi=ceo¥ and (b, c)€gy. Thus, using [2,
Theorem 7.55], b=nc for some néN_, .. By Proposition 3.1, (i, b, j)8=bw for
some homomorphism w of ¥V onto V* with UkerwSJ«I. We note that
n=(a;'s,ay)...(a; " s,a,) where a;€V and s; or s;'€J«I. Thus, s,w€E(V*) and,
hence, nw€ E(V*). Thus, since ni#coc™, nhw=(cw)(cw)~t. Hence bw=nwcw=
=cw(cw) tecw=cw. Thus, (i,b,j)0=(p, ¢, q)0. Q.E.D.

Theorem 3.3. Let S=(Y, V, T) be a standard regular semigroup. Let N denote
the collection of all finite products of elements of the form a *osoa where acV and
sors7i¢J*I. Let N.=NNH, for y¢ Y. Let y={((i, a, /), (p, b, 9))€ SXS: N,0a=
=N,ob where y=aoa‘1=bob‘1}. Then, oy is the minimum inverse semigroup
congruence on S.

Proof. Utilize Proposition 3.2 and its proof.
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