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Co-Fredholm operators. II 

HARI BERCOVICI 

SZ.-NAGY and FOIA§ [16] proved that the operators T of class C0 and of finite 
multiplicity have the following property: 
(P) any injection X£ {T}' is a quasi-affiniti. 

In [3] we showed that property (P) also holds for weak contractions of class 
C0. In sec. 4 of the present note we shall characterize the class S? of C0 operators 
having property (P). 

UCHIYAMA [18] has shown that some quasi-affinities intertwining two contrac-
tions of class C0(N) induce isomorphisms between the corresponding lattices of 
hyper-invariant subspaces. This is not verified for arbitrary operators of class Cft 

(cf. Example 2.10 below). For operators of the class 3? we show (cf. sec. 4) that 
any intertwining quasi-affinity induces isomorphisms between the corresponding 
lattices of invariant and hyper-invariant subspaces. However the other results proved 
in [18] for operators of the class C0(N) hold for arbitrary operators of class C0; 
this is shown in sec. 2 of this note. In sec. 2 we also show which is the connection 
between the lattice of hyper-invariant subspaces of a C0 operator and the correspond-
ing lattice of the Jordan model. 

In sec. 3 of this note we prove a continuity property of the Jordan model. 
This is useful when dealing with operators of class 

In [16] B. SZ.-NAGY and C. FOIA§ made the conjecture that any operator T of 
class C0 and of finite multiplicity has the property: 
(Q) T|ker X and TkerX* are quasisimilar for any Xi {J } ' . 
This conjecture was infirmed in [3], Proposition 3.2, but was proved under the 
stronger assumption X£ {T}" for any operator 7" of class C„ (cf. also UCHIYAMA [19]). 

Uchiyama began the study of the class of operators satisfying the property (Q) 
showing in particular that there exist operators of class C0(N) and multiplicity 2 
wich have this property (cf. [19], Example 2). In sec. 5 of this note we characterise 
in terms of the Jordan model the class 2t of C„ operators having property (Q). 
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In [3] the determinant function of a weak contraction was used for proving 
various index results. In sec. 6 of this note we extend the notion of inner function 
in order to find a substitute of the determinant function for the case of operators 
of class 3?. In sec. 7 it is shown that the class of generalised inner functions (defined 
in sec. 6) naturally appears in the study of index problems. In sec. 8 we generalise 
the notion of C0-fredholmness defined in [3]. All results of [3] are extended to this 
more general setting. 

1. Notation and preliminaries 

Let us recall that Lat ( T ) and Lat^ (T) stand for the lattice of all invariant, 
respectively semi-invariant subspaces of the operator T. We shall denote by 
Hyp Lat (T) the lattice of hyper-invariant subspaces of T. If aJleLat .̂ (T), Tm 

stands for the compression of Tto the subspace SOi and ^r(9Jl) stands for the multi-
i 

plicity of Tw. The notations T~<T\ T<T' mean that T is a quasi-affine trans-
form of T', respectively that T can be injected into T' (cf. e.g. [15]). 

The following result will be frequently used in the sequel. 

Lemma 1.1. If T and 7" are operators of class C0 and T< T' then T and T' 
are quasisimilar. 

Proof. Cf. [16], Theorem 1 or [4], Corollary 2.10. 

Lemma 1.2. Let be a sequence of pairwise relatively prime inner func-
eo 

tions. If the operator S(m¡) is of class C0, the Jordan model of T is S{m), 
i = 0 

m = mT. 

Proof . If T is of class C0 it follows that T is a weak contraction (cf. the proof 
of [6], Lemma 8.4) and from the assumption we easily infer dT=mT. The conclusion 
follows by [6], Theorem 8.7. 

For two operators T and T' we denote by •/(?"", T) the set of intertwining 
operators 
(1.1) J(T',T) = {X: T'X = XT). 

Let us recall (cf. [3], Definition 2.1) that X^J(T\ T) is a lattice-isomorphism 
if the mapping ®te-«-(Z$Dt)- is an isomorphism of Lat (T) onto Lat (T'). 

Definit ion 1.3. An operator T has property (P) if any injection A£{T}' is 
a quasi-affinity. 
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We introduce the property (Q) as in [19]: 

Def init ion 1.4. An operator T has property (Q) if for any A£{T}', r|ker A 

and TkeiAt are quasisimilar. 
Obviously (P) is implied by (Q). 

Lemma 1.5. The operator T of class C0 acting on the Hilbert space § has the 

property (P) if and only if there does not exist Lat (T), such that T and 

are quasisimilar. 

Proof. Let T be quasisimilar to TS)'€Lat (T) and let X: be a 
quasi-affinity such that {T\9)')X—XT. Then A—JX (where J denotes the inclusion 
of into § ) commutes with T and ker A = {0}. If T has the property (P) we infer 
g>'=(A§>)-=§>. Conversely, if A£ {T}' is an injection, T and T\(A§)~ are quasi-
similar by Lemma 1.1. 

We shall denote by H" the set of inner functions in H°°. The set H" is (pre)-
ordered by the relation 

(1.2) m á m ' if and only if |m(z)| ̂  |m'(z)|, |z|<l. 

Obviously m^m' if and only if m divides m'. The relations m^m' and m'^m 

imply that m and m' differ by a complex multiplicative constant of modulus one; 
we shall not distinguish between the functions m and m' in this case. 

Let us recall (cf. [4]) that a Jordan operator is an operator of the form 

(1.3) S(M) = © S imJ, mx = M{a) 
a 

where M is a model function, that is M is an inner function valued mapping defined 
on the class of ordinal numbers and 

{mx mf whenever a ̂  /J; 

mx = mp whenever a = p; 

(1.5) m, = 1 for some a, 

where a denotes the cardinal number associated with the ordinal number a. 
The Jordan model S(M) is acting on a separable space if and only if ma=\, 

where co denotes the first transfinite ordinal number. In this case the Jordan operator 
is determined by the sequence {Wj}°10. If mn=1 for some «<ct>, we shall also 
use the notation S(m0, m1, ..., mn_1) for S(M) (cf. [13]). If S(M) is the Jordan 
model of the operator T of class C0, we shall use the notation m a [ r ]=M(a ) (cf. [4]). 
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2. Hyper-invariant subspaces of operators of class C0 

In this section we continue the study of hyper-invariant subspaces for the class 
C„ begun by UCHIYAMA [18] (for the case of operators of class C0(N)). The following 
Proposition extends [18], Theorem 3 and Corollaries 4 and 5 to the class of general 
Jordan operators. 

Proposition 2.1. Let T= S(M) be a Jordan operator acting on the Hil-

bert space 

(2.1) § (M ) = © § (mj, mx = M(ai). 
a 

(i) A subspace 9Jtc§(M) is hyper-invariant for T if and only if it is of the form 

(2.2) 931 = 0 ( M : # 2 0 m, H*), ml tk mx, 
a 

and the functions M' and M" given by M"{n)=m"x and M'(jx)=mJm"x are model 

functions. 

(ii) If № is a subspace of the form (2.2) then T' = T\)R is unitarily equivalent 

to S(M') and T"=Tm± is unitarily equivalent to S(M"). In particular, 

(2.3) mT = mr. mT» 
ifyjl is hyper-invariant. 

(iii) If 3Jil5 9Ji2€Hyp Lat (T) are such that and r|5öi2 are quasisimilar, 

we have 9Jl1=SDi2. 

Proof. We shall denote by the projection of H2 onto by Pg (m ) 

the projection of § ( M ) onto § ( w j and by Jx the inclusion of §>{mx) into § ( M ) . 
By the lifting Theorem (cf. [12], Theorem II.2.3) {T}' is strongly generated by the 
operators 4f(T), where ij/£H°°, and the operators Aßx given by 

<2.4) { Aßt — Jß 

Aox — Ja 

— JßPi>(.mß-)P§{m*) if X — ß', 

*/»«= WmßlmJh(m.) i f a>~ß> 

;and therefore the subspace 9Jlc§(/V/) is a hyper-invariant subspace if and only 
it is invariant and ^ S f l c i J l for each a and /?. Let us assume that 9JÏ is hyper-
invariant. Because Aaxy)l~P^m } SRcSIl we have 

<2.5) S)l = © 2R, 
a 

•where 2Ra£Lat (S(mxj), say S R t h e r e f o r e 9K is of the form (2.2). 
Now let a and jS be ordinal numbers such that the conditions ^^SRcSDl 
and A ^ c z m . are equivalent to P ^ S ^ c S D ^ and ( m ^ / m ^ ^ e ^ . We infer 
mxÇ.m'pH2 and {mJm^)m"^m"xH- so that m'x^m'^ and mjmx^mfi/m'^, respec-
tively; therefore M' and M" are model functions. 
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Conversely, let 9Ji be given by (2.2) and assume M ' and M " are model func-
tions. It easily follows that Pg^SO^cSOlp and (mJm^WlpCWlt whenever a</?. 
Thus A^maNl for each a and P so that 0)1 £ Hyp Lat (T) and (i) follows. 

To prove (ii) let us remark that, if 9JÎ is given by (2.2), we have r [9K=© SimJI®^ 

and TmJ- = © S{mx)m±, where mx=rnxHiQmxH2 and SimJI»^ is unitarily 
a 

equivalent to S(mx) while SÇm^J- is unitarily equivalent to S(mx). If 9JÎ is hyper-
invariant then S (M ' ) and S(M") are Jordan operators and therefore they are the 
Jordan models of 7" and T", respectively. In particular mr=m'Q—mjm'^=mT\mT-

and (2.3) follows. 
Finally, if 9Wi, 9K2ÇHyp Lat (7 ) and r ^ , T|DJî2 are quasisimilar it fol-

lows that r|9Mx and r|93l2 have the same Jordan model. By (ii) ÜJÍj is determined 
by the Jordan model of" r ^ . Therefore and (iii) follows. 

Remark 2.2. The proof of Proposition 2.1 can be applied with minor changes 
to the description of Hyp Lat (T ) when T= © 5(wy) and {mj}j€J is a totally 

js.J 
ordered subset of H". 

For further use let us note that the general form of a subspace Hyp Lat (T) is 

(2.5) © (m'jH2QmjH2), m", m, for j€J 
iii 

where m"ĵ .m"k and mjlm"J-^mlJml whenever m }^mk . 

Remark 2.3. Let the subspaces Wlj be given by 

(2.6) SKy = © (mj(«)H*QmxH2), j = 1,2. 
a. 

Then 
f a ^ n 9K2 = © (mMVmÂ*)H*QmxH% 

( 2"7 ) laKiVaria = © (mx(a)Am2(a)/P© mxH2); a 

in particular SD̂ cSDÎa if and only if ml(oi)^m.i('x) for each a. 
We shall now characterize the Jordan operators having a totally ordered lattice 

of hyper-invariant subspaces thus extending [18], Theorem 6. 

Proposit ion 2.4. The lattice Hyp Lat (T), T=S(M), is totally ordered if 

and only if one of the following situations (i), (ii) occurs: 

(i) m°=(S)and mÂ1' (S) ' (S)}for each a'with |a|<1 
and a natural number n. 

(ii) m0=exp (*——•) with |a| = l, 0, and mx=m0 whenever mx?±l. 
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Proof. For two inner divisors m, m' of mT we have (ran wz(J))~c(ran m'{T))~~ 

if and only if msm' (cf. [4], Lemma 1.7). If Hyp Lat (T) is totally ordered it fol-
lows that the lattice of divisors of m r=m0 is also totally ordered. Therefore we 

have either w0=|—^—(|a|«=l, n a natural number) or m0—exp(f j 
\1 —az ) v z — a ) 

(|a| = l, />0). 
( z - f l \ " W 

Let us consider the first situation. Then m,=I - — w h e r e « (a ) is a 

decreasing function of a. By Proposition 2.1 and Remark 2.3, Hyp Lat (T ) is iso-
morphic to the lattice of natural number valued decreasing functions k (a) such 
that &(a)áw(a) and n(a)—k(oc) is also decreasing. Assume there exists oc0 such 
that m—n(a0)^ { « , «—1, 0} and define k1 (a) = max [n(a) — 1, 0} and k2(a) 
= min {m, «(a)}. Then we have k^(0)=n—1 >k2 (0 )=m and k1(oc0)=m—1)< 
</r2 (a0)—m so that kx and k2 are incomparable. Thus we necessarily have 
n(a)€{n, n — 1, 0}. Conversely, if n(a)€{«, n—1, 0} for every a, let us take two 
functions klt k2 of the type considered before. If kx and k2 would not be compara-
ble there would exist a</? such that n(JS)^0 and, by example, k1(ct)<k2(ci), 

ki(P)>k2(P). From the assumption it follows that iz(a)=7i(/?) + l so that n (j5) — 
-k2(fi)S n (a) -k2(a)^n(P)+i-k2(a) and therefore k2(a)-l^k2(fi). Now k^fi)^ 
^k1((x)^k2(<x) — l^k2 ( f i ) , a contradiction. This shows that Hyp Lat (J1) is totally 
ordered in this case. 

Now let us consider the case m0 (z)=exp • Then ma (z)=exp , 

where t{a) is a positive number valued decreasing function. Again by Proposition 
2.1 and Remark 2.3, Hyp Lat (T ) is isomorphic to the lattice of positive number 
valued decreasing functions i (a) such that s(a)^i (a) and ¿(a)—s(a) is also decreas-
ing. Assume there exists a0 such that í(a0)f£{í, 0} and let us take 0 < £ < 
min {í(a0), i—f(a0)}. Then the functions jj (a)=max {i(a)—e, 0} and s2(a) = 

=min {/(a), i(a0)} are such that i1(0)=/(0)—e>s2(0)=t(ao) and 

Si(a0) = t(a0)-e < s2(a0) = r(a0); 

therefore sx and s2 are incomparable. Thus we necessarily have /(oc)€{i, 0} if 
Hyp Lat (T ) is totally ordered. 

Conversely, let us assume /(a)£ {t, 0} for each a. If í is a function of the type 
considered above and t(a)¿¿0, we have s(0)^s(a) and /—s(0)S/(a)—s(a)= 
= t - s ( a ) so that s(a)=s(0). Thus s(a)=s(0) if t (a)^0 and s(oe)=0 if *(a)=0. 
It is obvious that Hyp Lat (T ) is totally ordered in this case also. The Proposition 
is proved. 

UCHIYAMA [18] has shown that two quasisimilar operators of class C0(JV) have 
isomorphic lattices of hyper-invariant subspaces. This result is also verified, as we 
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shall see in sec. 4, for operators of class C0 having property (P). The same thing; 
is not true for arbitrary operators of class C0 (cf. Example 2.10). However we can 
find a connection between Hyp Lat ( T ) and Hyp Lat (S ) if S is the Jordan model 
of the C0 operator T. This allows us to extend [18], Corollaries 2 and 5 to arbitrary 
operators of class C0. 

Theorem 2.5. Let T be an operator of class C0 acting on the Hilbert space 

§ and let S=S(M) be the Jordan model of T. Let <p: Hyp Lat (S )^Hyp Lat (7> 
be defined by 

(2.8) (p(2R) = V 
*€/(7\S) 

and let ip: Hyp Lat (T ) - H y p Lat (S), 

•A*: Hyp Lat (T*) - Hyp Lat (S*) 

be defined by analogous formulas. 

(i) There exist Y£J(S, T) and X£J{T, S) such that i^(9M)=(nW)- = 

=X_1(9)?), 9Ji€Hyp Lat (T). In particular S\ij/(M) is unitarily equivalent to the 

Jordan model of 7"|9Ji. 

( i i ) [¡/0(p = idHypLat(S)-

(iii) ^ (a » J - ) = (^0DI))J-, SJlgHypLat (T). 

Proof. By [4], Theorem 3.4, there exists an almost-direct decomposition 

(2.9) § = V 8«, S a £Lat (T), 
at ^ 

such that T|$a is quasisimilar to S(ma) and if a and fi are different 
limit ordinals and m, n^co. If we put 

(2.10) S i = ( V S/r^CLat(T*) 

we also have § = V § * by [4], Lemma 1.11; because 
a 

(2.11) = ( P ^ a X m j 

and obviously -PgjIS« is a quasi-affinity, is also quasisimilar to S(mJ. We 
choose quasi-affinities Xx: §>(mx)-~§>x, Ya: such that (T\$yx)Xx= 

= Xx S(mx) and Sim^Y^Y^i and moreover 

(2.12) 2 l in +J ^ i, 2 fl^+J ^ i 
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for each limit ordinal a. Then we can define quasi-affinities XÇ.f(T, S), T) 

by the formulas 
•(2.13) Xh = 2 X«ha, h = ©A. <E§(M), 

a a 

Yh = @ J.YaP6Îh, 
a 

Indeed, from (2.12) it follows that X and Y are bounded (of norm S i ) . 
Let us remark that Y^P^lfy^) XxÇ_ {S^mJ}' is a quasi-affinity such that by 

Sarason's Theorem [10] we have 

(2.14) Ya{P^\§t)Xa = ux(S(mj), ux€H", « . A m ^ l . 

If SRÇHyp Lat (S) we obviously have i//(ç>(9)ï))c9JÎ. Now, let 9K be given 
.by (2.2) and denote mx=m^H2QmxH2. Then, by (2.14), 

(KKIR)- 3 (FXSRJ- = (YX.WJ- = (YxP6:Xx9)lx)- = 

= (u.(S (/»,))№,)- = 931, and therefore 931 = (YJirSR)- c i//(<p(m)); 

;this proves (ii). 

Let us consider the operators Rfix€ {T}' defined by 

\RPx = Xf(mll/mx)YxP^ if a > /?, 

-and let Apx£{SY be defined by (2.4). Then, for a^fi, 

YRp: = J a YD Ps* X^ (mjj) Ya P6* = 

= JpUp (S(mpj) Pç {mp) Yx Pè* = 

= Up (S) Jp Cmjî) P6(ma) = Up(S)ApxYP£* 

:and because AfixYP(S*)±=0 we obtain 

(2.16) YRqx = Up(S)ApxY 

in this case. The relation (2.16) is proved analogously when <x^p. If 9l6Hyp Lat (T) 

and 9JÎ=(F9l)- we infer from (2.16) ^(SO/i^SJlcSDi. Because uxhmx=\ we 
infer by [3], Corollary 2.9, that « ^ ( f f î ^ K ^ S K ) - is a quasi-affinity; therefore 
^Rr> (a ; (S ( i iO ) (^aR) - ) -= (4 »aB) -= (^c B 1 j a » ) - - As in the proof of Proposi-
tion 2.1 it follows that 9K = © 5№a, mx=mxH2QmxH^LsLt(S(mx)) and for 

a 
u0mxÇ.m^H2 and ux(mJmf)m'^mxH2. Because uxAmx=1, upAmfi=l we also 
have uaAm^=i, AmJ=l so that from the preceding relations we infer mx£m'pH2, 

respectively (mJm f i )m'^mxH2 . By Proposition 2.1 we proved 

<2.17) (F9l)~£Hyp Lat (S) whenever 9l€Hyp Lat (T). 
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Analogously we infer 

(2.17)* (.ST* 91) ~ £ Hy p Lat (S *) whenever 91£ Hyp Lat (T*). 

If Hyp Lat (T) we have .S'*(9t-L)c(r9t)-L. Indeed, if h£9i, g(E9l\ we 
have (Yh, X*g)=(XYh, g)=0 because AT/7691. An analogous argument shows that 

(2.18) ^ ( 9 U ) c 0K91))-1-, 916 Hyp Lat (T). 

In particular we have 

Because I91-1 has dense range and SaM)x(P (rM)±F|9l±)=(P (mxF|9}-L)7 ,9,_L 

it follows that S * ! ^ ) 1 ^ * ^ 1 ' By [16], Theorem 1 (cf. also [4], Corollary 2.10) 
the operators T*^-1 , ¿ ^ ( J T ^ 1 ) - , S*|i/'+(9lJ-), S*^^))1- and S h r i l l ) 1 are 
pairwise quasisimilar. Because S* is also (unitarily equivalent to) a Jordan operator 
it follows by Proposition 2.1 (iii) that (Z*9ix )-=^+ (9l-L )=(^(9l) )J-=(F9l)-L . This 
proves the assertions (i) and (iii) of the Theorem. 

The following Corollary extends [18], Corollary 5, to arbitrary operators of 
class C0. 

[T' X 1 

q y,// is the 
triangularization of T with respect to the decomposition § = S)l®9JlJ-, 9Jl£Hyp Lat (T ) , 
we have 
(2.19) mT = mT- mT«. 

Proof. If <j/ is as in Theorem 2.5, 7" is quasisimilar to and T " is 
quasisimilar to The Corollary follows by Proposition 2.1 (ii). 

Corol lary 2.7. Let T and T' be two quasisimilar operators of class C0, let S be 

their Jordan model and let rj: Hyp Lat ( r ) - H y p Lat (7"), Hyp Lat (T) — 

-»Hyp Lat (S), ip': Hyp Lat (7") — Hyp Lat (5) be defined by formulas analogous 

to (2.8). 

(i) ij/'ori = \]/; in particular r|9Jt and T'|i/(93l) are quasisimilar for 

9K£Hyp Lat (T). 

(ii) 7/9Ji€HypLat(r), 9K '€HypLat ( r ) are such that r|9K and r'|9T are 

quasisimilar, then Tm± and are also quasisimilar. 

Proof. The inclusion is obvious for 9Jt£Hyp Lat (T). 

Then by Theorem 2.5 (i) we infer T\m<S\(il/'on)(№)<S\il/(!№)<T\№. By [16], 
Theorem 1, T|9Jl, 5|(^'o/j)(93i), S|i/̂ (9Jl) are pairwise quasisimilar and the equality 
il/'orj—i// follows by Proposition 2.1 (iii). Now it is obvious by Theorem 2.5 (i) 
that r|a>l and T'\ri(№) are both quasisimilar to S|^(9Ji); (i) follows. 
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To prove (ii) we remark that, by Theorem 2.5 (i), 5|^(a»î) and S^ 'O^ ' ) are 
quasisimilar and therefore \j/(W)=if/'(W) by Proposition 2.1 (iii). Again by Theo-
rem 2.5 it follows that Twx and T'№,± are both quasisimilar to Sm>_ where 9t=i/f(9Jl) = 
=\p'(W). Corollary follows. 

Corol lary 2.8. Let T, S, q>, ip be as in Theorem 2.5 and let Hyp Lat (S*)-~ 
— Hyp Lat (T*) be defined by a formula analogous to (2.8). Among the spaces 

916 Hyp Lat (T ) such that J|9l is quasisimilar to S|9ft for a given 93?6 Hyp Lat (5), 
<p (93Î) is the least one and (ç>*(9Jl-L))-L is the greatest one. 

Proof. If r|9l is quasisimilar to S|9Jt we have \j/(91)=931 by Theorem 2.5 
(i) and Proposition 2.1 (iii) and therefore <p (9JÎ)=<p(\]/ (91)) c 91. Now, by Corol-
lary 2.7, T|9t and 5|50i are quasisimilar if and only if T^x and Sw± are quasi-
similar. Because (9JÎ-1-) is the least hyper-invariant subspace of T* such that 
T ^ X ) and Sw±_ are quasisimilar, the last assertion of the Corollary follows. 

Corol lary 2.9. Let T, S, (p, cp* be as before. The following assertions are 

equivalent: 

(i) q> is a bijection; 

(ii) (p^ is a bijection; 

(iii) <p(93l)-L=<?);([(9K-L) for 9JÎ€Hyp Lat (5 ) ; 
(iv) if 9l1; 9l2€Hyp Lat (71) and T " ^ , T[9Î2 are quasisimilar, we have 9^ = 9Î2. 

Proof . By Theorem 2.5 (ii) q> is a bijection if and only if ip is one-to-one. 
By Theorem 2.5 (i) and Proposition 2.1 (iii) i¡i is one-to-one if and only (iv) holds. 
Thus the equivalence ( i )o ( iv ) is established. 

By Theorem 2.5 (iii) we have i/^(9JÎ-L)=i/'(95l)J- so that ip is one-to-one if 
and only if ipx is one-to-one. This establishes the equivalence (i )o(i i ) . 

r|<p(9H) and ^ (^ (a^ ) ) - 1 - are both quasisimilar to S\Wl so that <p(2)t) = 
=(ç»+(9Ji-L))-L if (iv) holds. Conversely, if (iii) holds and T|9Î2 are quasi-
similar, by the preceding Corollary we have <p (9JÎ) c 91, c (<p+ (9JÎ ±))J- = (p (99Î), 
j= 1,2, where 9Jl=i^(9î1) = ^(9î2). Thus 9t1=9î2=ç>(9:>î) and the Corollary is 
proved. 

Example 2.10. Let S=S(m2)^ and T=S®S(m), where and 
S(/w2)(So) denotes the direct sum of K0 copies of S(m2). By [2], Corollary 1, S is 
the Jordan model of T. The subspaces ker m(T), ran m(T) are hyper-invariant for 
7" and 7"|ker m(T), 7>an m(T) are both quasisimilar to S(m)^. By Corollary 2.9 
it follows that in this case <p is not onto, f is not one-to-one. 

If we take in particular m(z)=z2 (|z|< 1) it is easily seen that 
card (Hyp Lat (7"))=9 and card (Hyp Lat (S) )=5. Thus Hyp Lat (T) and Hyp 
Lat (S) are not isomorphic. Moreover, one can verify, by the proof of Propositi-
on 2.4, that Hyp Lat (T) is not totally ordered while Hyp Lat (S ) is totally ordered. 
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3. A theorem on monotonic sequences of invariant subspaces 

If T is an operator of class C0 acting on § and Lat (T) are such that cz9)j+1, 
7=0,1, ... , and § = V $,•> it is clear that mT is the least common inner multiple 

J® o 
of the functions mT|Sj, j=0,1, ... . The following Theorem shows that the same 
thing is verified for all the functions appearing in the Jordan model of T. 

Theorem 3.1. Let T be an operator of class C0 acting on the Hilbert space 

§> and let { f v } J l 0 c :Lat (T ) be such that § c § +1, 0 a n d § = V 
is o 

Then 

(3-1) m.[T]= V m«[r|Sy] 
is 1 

for each ordinal number a. 

Proof. Because T\§>j<T\9)j+1<T it follows that mx[T\§>j]^ma[T\9>J+1]^ 
for each a (cf. [4], Corollary 2.9). Let us consider firstly the case a^co 

and denote m=\j ma[T|§,]; then m divides ma[T], Because divides 
JSO 

m we have (cf. [4], Remark 2.12). Because obviously 
( m ( r ) § ) ~ = V m(T)§>j we infer /iT(m)=fiT,,m,T)f))-^^0 -5.-0. and therefore 

j so 
mJT] divides m by [4], Definition 2.4. Thus mx[T]=m and (3.1) is proved for 
asco. 

Now let us recall that by [4], Theorem 3.3, there exists an orthogonal decom-
position 
(3.2) § = © 2Ka, 93la£Lat(T), 

a 

such that riSOtj is quasisimilar to © S(mx+j[T]) for each limit ordinal a. If 
J<0) 

we define we obviously have 9Jt0=V and T%<T% i so that 

T\Kj-<T\%j by [4], Corollary 2.9. Again by [4], Corollary 2.9 we infer ma[T\Rj]^ 
^ma[T|§j], a<co, and therefore it will be enough to prove the relation (3.1) 
for §=9Ji0 and §j=Rj, that is for T acting on a separable space. 

We may assume that T is a functional model, that is 

(3.3) § = § ( 0 ) = i/2(U)G 0t f2 (U) 

where U is a separable Hilbert space, 0 is a two-sided inner function, 0€if~(jS?(U)), 
and 
(3.4) Th= S{0)h = P6myh,7iz) = z, he?>(&). 

With each subspace we can associate by [12], Theorem VII. 1.1 a factorisation 

(3.5) 0 = 0f> 0«> 
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such that the functions Q (p and 0*2) are two-sided inner, 

(3.6) b j = 0 j 2 ) # 2 (U )Q 0Я2(11), 

and Т\9)} is unitarily equivalent to S (&f ) ) . The inclusion § j C § j + 1 is equivalent 
to & f № 0 Х ) с О ( Л г № ( и ) and therefore 

(3.7) 0<2> = e f ^ Q j for some 

The condition § = V bj is equivalent to Я2 (Н) = V 0 f Я2(U). In partic-
j'eo jgo 

ular, if u£VL, we have lim |]и—Рвсг)нг(и)и||=0. It is easily seen that Рв^юн2ш)и= 

= &{p Q{p {G)*u. Indeed, it is enough to verify that the scalar product 

( « - 0<-2) (z) 0j2 ) (0)* u, & {P (z)zn г;) 

vanishes for t>£U and natural n; this is a simple computation. Thus we have 
u=lim 0f Qf (0)*И, M£U. Because the functions Qfef{G)*u are uniformly 

bounded we also have lim ( 0 f ) A n ( 0 f (0)*)An(MlA...AM„), 
j-*» 

ux,u2, ..., w„GU, and therefore 

V (0< 2 ) ) A "# 2 (U A n ) z> Нл". 
j'so 

Because V (0j2))A"7/2(UA") is invariant with respect to the unilateral shift on 
j so 

H2 (UA" ) we necessarily have 

(3.8) # 2 (U A " ) = V (0j2 ) )A"#2 (UA n )-
jso 

The subspaces 
(3.9) = (0<2>)л"я2(ил")© 0Л"Я2(ЦЛВ) 

are invariant with respect to 5 (0Л п ) and because 0Лп=(0^2 ) )Лп (0У ) )Лп is a 
regular factorization, S(0A")|§" is unitarily equivalent to 5((0^1))Лп). By (3.7) 
we have ( 0 f )A"=(0<2>1)A"i2An and therefore for 0ёу<«=. Finally, 
relation (3.8) shows that § ( 0 A n ) = V Ь", and therefore 

js о 

(3.10) шо[5(0А")] = V mo[S(0A*)IS3J-
jso 

By [6], Corollary3.3, and relation (2.5) we have mo[S(0A")]=mo[T]m1[T]... 

mn_AT] and mo[5(0A")|§Jn]=Wo[5((0<1>)A")]-Wo[r|5J.]Wl[r|§J.]...m„_1[r|5J.]. 
Let us put mk= \J mt|T|§•] for /c-=co; then mk divides mk[T] and relation (3.10) 

j&o 
shows that 

m0 [r ]nj1 [r ] . . .mn_i [T] = m0m1...mn^1, 1 ̂  n < со. 



[Co-Fredholm operators. II 15 

Therefore we have necessarily mk[T]=mk and (3.1) is proved for a<co. The 
Theorem follows. 

Remark 3.2. The relation (3.1) is not verified if the sequence {§j}~=0 is replaced 
by an arbitrary totally ordered family of invariant subspaces. Indeed, let us take a 
Jordan operator T=S(M) such that ma = 1, where Q denotes the first uncount-
able ordinal number. The subspaces © &(mB) for a < Q are separable and 

fi <x 

§>(M)= V The relation (3.1) is not verified in this case because mffl[T|§J = 1 
a<Q 

while it is possible to have mm[T]^\. However the relation (3.1) is verified for 
a <co and for any totally ordered family of invariant subspaces such that 
§ = V Indeed, if § is separable we can select an increasing sequence {§,. 

j£J 
such that § = V Si and then apply Theorem 3.1. If § is not separable, the proof 

nso " 
of Theorem 3.1 shows how to reduce the problem of verifying (3.1) to the separa-
ble case. 

Let us recall that for a contraction To f class C„ and for a subspace SUî Lat̂  (T) 

such that Tw is a weak contraction, dr(M) denotes the determinant function of Tw 

(cf. [3], Definition 1.1). 

Corol lary 3.3. Let T be a weak contraction of class C0 acting on § and let 

Lat (T), 

(i) If SjC.^+i and V we have dT= V dT(^j). 
jmo jmo 

(ii) If § p § J + 1 and f| we have A ¿r(5/) = l-
jmo jmo 

Proof, (i) Obviously V divides dT. Now, mQ[T\%J]m-L[T\§J]...mn[T\%jl 
jm o 

divides V dr (§,•) for every natural n; by Theorem 3.1 it follows that m0[T]m1 [T]... 
¡mo 

...m„[T] divides V dT(§;) and therefore dT divides \J dT(§>j). 
jmo jmo 

(ii) Since T* is also a weak contraction we infer by (i) dT= \J dT(5)f). Because 
jm o 

dT=dT (§;) dT ( §+ ) (cf. [6], Proposition 8.2) we obtain 

dT = { A dT(bj)) • ( V dT(Zf)) = ( A dT(<Djj) • dT. 
jm 0 jmo j so 

The Corollary follows. 

Proposit ion 3.4. Let T be an operator of class C0 acting on the separable 

Hilbert space Then 

(3.11) /\m}[T] = l 
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if and only if for any sequence { § }J l 0c Lat (T ) such that §>JZ3%JJ.1and § , = {0}, 
JSO 

we have 

<3.12) A « o [ T | S j ] = I -
jso 

Proof. As shown in the proof of [5], Theorem 1, there exists a decreasing 
•sequence {§y}"= 0cLat (T) such that f| § , = {0} and m0[T\$j]=mj[T] so that 

(3.11) foUows from (3.12). 
Conversely, let us assume (3.11) holds. For any natural number k we have the 

decomposition 
% = (mk(T)%j)- ©91) = SWj©9t}, mk = mk[T]. 

Because obviously /w0[7"sij] divides mk, it follows by [12], Proposition III.6.1, that 

(3.13) m0[T\5>j] divides m0[T\m)]-mk, 0 ^ j < 

Now, 9JiJie(77jt(r)§)- and T\(mk(T)$)- is an operator of finite multiplicity, 
in particular a weak contraction (cf. [6], Theorem 8.5). Because Pi 93*5 c Pi § , = {0} 

js0 7=0 
we infer by the preceding Corollary A = >n particular A m0[r|9)l*] = l. 

J'SO j s o 
By (3.13) A w0[r|SJ necessarily divides mk and the relation (3.12) follows from 

js 0 
the assumption. The Proposition is proved. 

4. Operators of class Co having property (P) 

In [16], Theorem 2, the operators of class C0 and of finite multiplicity were 
shown to have property (P). In [3], Corollary 2.8 we extended this result to the class 
of weak contractions of class C0. We are now going to characterise the class of C0 

operators having property (P). 

Theorem 4.1. Let T be an operator of class C0 acting on the Hilbert space 

Then T has property (P) if and only if 

(4.1) A ntj[T] = 1. 
J-e© 

In particular, if T has property (P), § is separable and T* also has property (P). 

Proof. Let us assume (4.1) holds and denote ntj=mj[T]. For each j<co 
the subspace 
(4.2) = K - ( r ) § ) -
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is hyper-invariant for T and /i r (§; )<°o (cf. [4], Remark 2.12). If A€ {71}' is an 
injection then is also an injection and by [16], Theorem 2, 

(4.3) (A$)~ 3 (A%j)- = §>j. 

We have ( V § i ) x = f ) kermJ(T*)=§0 and the minimal function m° of 
j< to j<(0 

r*|§° divides mj, j^co. By the assumption we infer m°=1 so that 5 ° = { 0 } 
and therefore V From (4.3) we infer 

}<<o ' • 

(4.4) (A&)~ ZD V = § 
J-COJ 

that is, ,4 is a quasi-affinity. The injection being arbitrary it follows that T has 
property (P). 

Conversely, let us assume that (4.1) does not hold. We claim that there exist 
an inner function m such that T and T® S{m) are quasisimilar. If § is separable 
we may take m = f\ mj[T\ and apply [1], Lemma 3. If § is nonseparable we may 

}<a> 
take m=ma[T]. Then T®S(m) and T have the same Jordan model so that they 
are quasisimilar. Let us take a quasi-affinity X such that 

(4.5) (T@S(m))X= XT. 
Let us put 

(4.6) 9Jt = (X* ({0} © § (m)))", = § Q SW. 

Then 9Jt£ Lat (T*) and r*|2)l is quasisimilar to S(m)*. If Pl and P2 denote 
the orthogonal projections of <9© §(m) onto §>(m), respectively, the operator 

(4.7) F = P1Z|5R 
satisfies the relation 
(4.8) TY= Y(T\tl). 

We claim that Y is a quasi-affinity. We show firstly that ran Y* is dense in 91. 
Indeed, because i>9,Z*|{0}©§(m)=0 (by the definition (4.6) of 9)1 and 91), we have 

(4.9) ran Y* = P9 1Z*(§© {0}) = P 9 l Z* ( §©§ (m) ) 

which shows that 
(4.10) (ran Y*)~ = (Pg, (ran Z * ) - ) - = Pm§ = 91. 

Now let lis show that ker F* = {0}. To do this let us remark that the sub-
space 
(4.11) ft = ke r r *©§ (m) = {u(ES©S(m); X*«<E9H} 

is invariant with respect to (T®S(mj)*, (Z*ft)~=9Ji and (r*|9K)^r* = 
=Z*(7'©5'(m))*|ft so that and (T® S(m))*|ft are quasisimilar. By the 
remark following relation (4.6), (T® is quasisimilar to S(m)*. But 
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(r©S(w))*|{0}©§(7n) is unitarily equivalent to S(m)* so that R= {0}© § (m) by 
[14], Theorem 2, and the injectivity of Y* is proved. Relation (4.8) and Lemma 1.1 
show that T and :T|9t are quasisimilar. Because 5Dt ̂  {0}, we have 9i so that 
T does not have property (P) by Lemma 1.5. 

Theorem is proved. 

Corol lary 4.2. An operator T of class C0 has property (P) if and only if there 

does not exist T' of class C0 on a nontrivial Hilbert space such that T and T© T' 

are quasisimilar. 

Proof. Let Tand T®T' be quasisimilar. Since T' acts on a nontrivial space, 

there exists a nonconstant inner function m such that T® S(m)-<T. Because 

obviously T<T® S(m), T@S(m) and T are quasisimilar by [16], Theorem 1. 
By the proof of Theorem 4.1 it follows that T does not have the property (P). The 
converse assertion of the Corollary follows from the proof of Theorem 4.1. 

Corol lary 4.3. If T and T' are two quasisimilar operators of class C0, then T 

has property (P) if and only if T has property (P). 

Proof. Theorem 4.1 exprimes the property (P) in terms of the Jordan model 
so that the Corollary is obvious. 

[7" X 1 
q j,// be the triangularization of the operator T 

of class C„ with respect to the decomposition § = §'©§", §'6Lat (T). Then T has 

property (P) if and only if 7" and T" have property (P). 

Proof. Let S(M), S(M'), S(M") be the Jordan models of T, T', T", respec-
i 

tively. Let us assume that T has property (P). Because it follows 
that m'x divides mx for each a (cf. [4], Corollary 2.9), therefore by Theorem 4.1 we 
have A m'j=l and T' has property (P). Analogously T"* has property (P) because 

j<to 
T* has property (P) and it follows by Theorem 4.1 that T" also has property (P). 

Conversely, let us assume that T' and T" have property (P) so that 

(4.12) A = A >n'j = 1-
j-'cj j a 

We consider firstly the case In this case the space 

(4.13) = « ( T ) § ) - € Hyp Lat (T), j < co, 

is contained in § ' f f i ( m j ( r " ) § " ) " s o that M S j H " 3 and by [16], Theorem 2, 
T\9)j has property (P). Because A = 1 we have V §/=£> (cf. the proof of 
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Theorem 4.1) and the first part of the proof of Theorem 4.1 shows that T has prop-
erty (P). 

Considering the operator T* instead of T, it follows that T has property (P) 
in the case /iT.< °° also. 

We are now considering the general case iiT>=nT» = X0- Let us define the hyper-
invariant subspaces by (4.13). The operator T\9)'@{m"j(T")§>")~ has prop-
erty (P) because MT'i(m'j(T')s,")~<°° and from the first part of the proof of our 
Proposition it follows that also has the property (P). Because \J j 

j<(0 

we infer as in the first part of the proof of Theorem 4.1 that T has property (P). 
The proposition is proved. 

Coro l lary 4.5. If T is an operator of class C0 having property (P ) and 

SDleLatj (T), then Tm also has property (P). 

Proof . We have 3)i=U©93, H, 23<ELat (T) and T|U has property (P) by 
Proposition 4.4. Again by Proposition 4.4 and Theorem 4.1 it follows that Tm has 
property (P) because 7^=(r|lt)*|9J?. 

Propos i t ion 4.6. Let T be an operator of class C0 acting on § and let 

Jrj^Lat (T) be such that §j-c§)+1, /<©, §o= {°} and §= \J §>j. Then T has 
j<co 

property (P) if and only if TRj, = + (_/<«) have property (P) and 

(4.14) A m ^ T x] = 1. 
J-=0) 1 

Proof . If T has property (P) then TR have property (P) by Corollary 4.5. 
By Theorem 4.1 and Proposition 3.4 we infer the necessity of (4.14). 

Conversely let us assume that have property (P) and (4.14) holds; let us 
put mj=m0[TS)^]. If we define 
(4.15) J = (nij (T) £ Hyp Lat (T) 

then, as in the proof of Theorem 4.1, from (4.14) we infer V ~/=§> and the first 
j<0> 

part of the proof of Theorem 4.1 shows us that it is enough to prove that T\2j 

have property (P). Now, obviously fijC^- so that by Corollary 4.5 we have only 
to show that T\&j have property (P). This easily proved inductively since the tri-
angularization of r|§ J + i with respect to the decomposition §> j + 1 =& j®R j is of 

the form = 7^]- T h e Proposition follows. 

Coro l lary 4.7. Let T be an operator of class C0 acting on § and let 

§j£Lat (T) be such that /<0, §0 = § and H §,— {()}. Then T has 
j <al 

property (P) if and only if , Rj=%)jQ§>j+1 ( ; ' <a ) , have property (P ) and 

(4.16) A m„ [ r|S ; ] = l . 

2* 
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Proof. By Theorem 4.1, Г has property (P) if and only if T* has property (P). 
Therefore we have only to replace T by T*, b j by and apply the preceding Prop-
osition. 

We are now going to extend [18], Theorem 1, and [3], Corollaries 2.4, 2.8 and 
2.9 to the case of C0 contractions having property (P). 

Proposit ion 4.8. Let T and T' be two quasisimilar operators of class C0 acting 

on §>, respectively, and having property (P). Let us define 

s: Hyp Lat (T) - Hyp Lat ( Г ) and ц: Hyp Lat (T") - Hyp Lat ( Г ) 
by 
(4.17) с(9Я) = V t](9l)= V Yto. 

XIJ(X',T) YZSIT.T') 

(i) Each injection T) is a lattice-isomorphism. 

(ii) £(9К)=(/Ш)- =Я_19Л, ТОеНур Lat (T),for any quasi-affinities A~J(T', T), 

B£S(T, T'). 

(iii) t is bijective and >; = c_1. 

Proof , (i) If A£J(T', T) is an injection, Г is quasisimilar to T'\(A9))~ so 
that T' and T'\(Ab)~ are quasisimilar. Now T' has property (P) so that (A§i)~ = $У 

by Lemma 1.5 and A is a quasi-affinity. 
Let Я', &"6Lat (T ) be such that ( Л Я ' ) - = 0 4 Я " ) _ = Я * ; then we also have 

(/4Я)-=Я* with Я=Я'\/Я". The operators Г|Я', 7 ^ " and Г|Я are quasi-
similar to 7"|Я*. By Proposition 4.4 Г|Я has the property (P) and therefore 
Я ' = Я " = Я by Lemma 1.5. Thus we have shown that the mapping Я—(/4Я)- is 
one-to-one on Lat(T). Because we have shown that A is a quasi-affinity, the same 
argument can be applied to T'*, T* and A* thus proving, via [3], Lemma 1.4, that 
A is a lattice-isomorphism. 

(ii) Let us take any quasi-affinities A£S(T', T) and T'); by (i) A 

and В are lattice isomorphisms. For each 9Jt€Hyp Lat (T), BA£ { T } ' so that А49Лс9Л 
and since Т\Ш also has property (P) by Proposition 4.4 and 5/i|9Ji€ {7,|9Л}' is 
one-to-one, we infer by (i) (б/Ш)~=9Л. Now, £ is a lattice-isomorphism so 
that we infer 
(4.18) Я-Ч9И) = (ЛЮ1)-. 

If X£J(T',T), we have BX£ {T}' so that 5X9Jlc9Jt and by (4.18) X9Jic 
с£-1 (ЗК)=(^9Л)- ; it follows that с(9Я)с=(Л9.)})-\ Because the inclusion (Л9Л) _ с 
c^(9Ji) is obvious, (ii) is proved. 

(iii) If A£ J{T', T), B£J(T, T') are quasi-affinities we have by (ii) (£/Ш)"=9Л 
and (AB9t)-=9i for any 9Л£ Hyp Lat (r ) , 916Hyp Lat (T ' ) . Because, again by 
(ii), £(901)=(Л9Л)- and г] {Щ=(ВЩ~, (iii) follows. 
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The Proposition is proved. 

Corol lary 4.9. Let T, S, (p, be as in Theorem 2.5. If T has property (P), 
(p is a bijection and \j/ = <p~1. 

Proof. Obviously follows from the preceding Proposition. 
The following result extends [3], Proposition 2.3, to the class of C„ operators 

having property (P). 

Proposit ion 4.10. Let T, T', T" be operators of class C0 acting on 

§>", respectively, and let AÇ_J(T, T'), B£J(T,T") be such that A$o'<z(B§")-. 

If T has property (P) then 

(i) (A-HB^'Oy = S ' and (ii) =) A&. 

Proof. Because (ii) easily follows from (i), we have only to prove (i). We may 
assume that A is one-to-one, B is a quasi-affinity and T has the property (P). Indeed, 
we have only to replace T, T, T", A, B, by T\(B9>")~, T^aA)J., T^B)±, A\(ker A)\ 

i?|(ker B)L, respectively. Now the operator T" has property (P) being quasisimilar 
to T (cf. Corollary 4.3) and T' has property (P) being quasisimilar to T\(A9y')~ 

(cf. Proposition4.4). Then the operators T'®T" and T'®T are quasisimilar 
and have property (P) by Proposition 4.4. The operator X: § ' © § " — £ ) ' © § 
given by 
(4.19) X(h'®h,r) = h'®(Ah'-Bh"), fc'ffi/i "€§'©§", 

is an injection. Indeed, X(h'®h") =0 implies h'=0 and Bh"=Ah'=0, thus. 
h"=0 by the injectivity of B. Because X£J(T'®T, T'®T") it follows by Prop-
osition 4.8(i) that A' is a lattice-isomorphism. In particular A r (Z - 1 (§ ' f f i {0})) is 
dense in £>'©{0}. But 

^(X-HS' f f i iO} ) ) = {Zi'ffiO; and Ah' = Bh" for some h"} 

so that (i) follows and the Proposition is proved. 

Corol lary 4.11. Let T, T', T", A and B be as in the preceding Proposition. 

IfT' is multiplicity-free then A^iBfy") contains cyclic vectors of T'. 

Proof . Let us denote by P the orthogonal projection of § ' © § onto 
From Proposition 4.10 it follows that A- 1 {B§" )=PX(X- 1 (9 ) ' ® {0})) is dense in; 

(where X is defined by relation (4.19)). Let us denote § 0 = ( ^ _ W © {0}) )© 
©ker ( ^ I X - ^ S ' © {0}))6Lat4 (T'®T"). Then we have 

T'(PX\<ô0) = (PX\Z0)(T'®T'%o 

and by Lemma 1.1 T' and (T'®T")& are quasisimilar; in particular (T'® T")5 
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is also multiplicity-free. If/r0 is any cyclic vector of ( 7 "© r " ) S o t h e n P X A o ^ ^ - 1 ^ " ) 
is a cyclic vector of 7". Corollary follows. 

Finally let us remark that the result of [4] concerning the quasi-direct decom-
position of the space on which a weak contraction acts can be extended, via Prop-
osition 4.8 (i), to the class of C0 operators having property (P). 

Corol lary 4.12. Let T be an operator of class C0 having property (P) and 

acting on the (necessarily separable) Hilbert space § and let © S(mj) be the Jordan 
j<Oi 

model of T. There exists a decomposition of § 

(4.19) j'-cco 

into a quasi-direct sum of invariant subspaces of T such that T\$)j is quasisimilar 

to S(mJ). 

Proof. Cf. the proof of [4], Proposition 3.5. 

5. Operators of class Co having property (Q ) 

The following Lemma extends [19], Proposition 3, to the entire class of C0 

operators. 

Lemma 5.1. Let T andT" be two quasisimilar operators of class C0. Then T 

has property (Q) if and only if T' has property (Q). 

Proof. Because (Q) implies (P), by Corollary 4.3 it is enough to prove the 
Lemma for T and T' having the property (P). Let X^J(T, T'), Yf^J{T', T) be 
two quasi-affinities. By Proposition 4.8 (i) X and Y are lattice-isomorphisms. Let 
us take A^{T'}'\ then B=XAYe{T}'. Obviously ker B=7-Hker A), X being an 
injection. Because Y is a lattice-isomorphism we have (7(ker B)) ~ = ker A so 
that Y|ker B is a quasi-affinity from ker B into ker A. Because 

YlkeiBtSiT'lkerA, T{kerB) 

it follows by Lemma 1.1 that T|ker5 and T' |ker A are quasisimilar. Analogously 
an<i T'KER A* a r e quasisimilar. If T has the property (Q), the operators 7T|ker B 

and TktrBt are quasisimilar and it follows from the preceding considerations that 
7"|ker A and T'kcr are quasisimilar. Since A£{T'}' is arbitrary it follows that 7" 
has the property (Q). The Lemma is proved. 

Lemma 5.2. For any inner function m and natural number k the operator 

T=S(m,m, ...,m) has the property (Q). 
k times 
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Proof. By the lifting Theorem (cf. [12], Theorem II.2.3) any operator Xe { r } ' 
is given by 

(5.1) Xh = P$Ah, = S(m)©§(m)©. . .©8(m) 
k times 

where ^ = tFLY]iSIJst is an arbitrary matrix over H°°. As shown by NORDGREN [9] 
(cf. also Szűcs [17] and SZ.-NAGY [11]) there exist matrices B, U, V which determine 
by formulas analogous to (5.1) operators Y, K, L in {T}' such that 

(5.2) (det U) (det F)Am = 1; 

(5.3) AU = VB, 

(5.4) B=[blJ]ialiJsk, bu = 0 for 

From (5.2) we infer as in [8] that K and L are quasi-affinities and therefore 
lattice-isomorphisms by Proposition 4.8 (i). From (5.3) we infer 

(5.5) XK = LY 

so that íT(ker Y)cker X and AT-1(ker Z)cker Y; because AT is a lattice-iso-
morphism it follows that (A:(ker F) ) _=ker X and therefore r|ker X and T|ker Y 

are quasisimilar. Analogously TkerX* and Tketi* are quasisimilar. We have 
k k 

Y=®bjj(S(m)) and ker Y= © (ker bjj(S(m))) so that T|ker F is unitarily 
j-i j-i 

equivalent (cf. [15], p. 315) to © S(ntj), where m^mKbjj. Analogously we 
* 

can show that TkerY* is unitarily equivalent to © S(ntj). We have shown T|ker Y 
j=i 

and Tkciyt are unitarily equivalent; we infer that r|ker X and TketX* are quasi-
similar. Because X is arbitrary in {T}', the Lemma follows. 

Lemma 5.3. If T®S has the property (Q) then T and S also have the prop-

erty (Q). 

Proof. It is obvious since { r ® 5}'z> { r } '©/U/© {5} ' . 
The following Theorem characterizes the class of C0 operators having the prop-

erty (Q) in terms of the Jordan model. 

Theorem 5.4. An operator T of class C0 has property (Q) if and only if 

(i) A rrij — 1, mj = mj[T], and 

(ii) the functions m0lm1, m1/m2, ... are pairwise relatively prime. 

In particular, if T has property (Q), then T acts on a separable Hilbert space 
and T* also has property (Q). 
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Proof. Let T have property (Q). Then T also has property (P) so that the 
necessity of (i) follows by Theorem 4.1. By Lemma 5.1 the Jordan model S{M) of 
T also has the property (Q) so that S(mj)@S(mj+1), j^co, must have prop-
erty (Q) by Lemma 5.3. The matrix 

0 mjlmJ+1 

0 0 (5.6) A = 

determines an operator X£ {SJ } ' by the formula 

(5.7) Xh = P^Ah, h£f>j = S(mj)©S(mJ+1 ). 
Obviously 

ker X = 9) (ntj) © {0} 

so that SJ|ker X is unitarily equivalent to S(mJ). Now 

ran X = ((mj/mj+i) H2 Q rrijH2) © {0} 
so that ker Ar*=§(m j//n j+1)©$(7jj j+1) and it follows that S{„xtt is unitarily equiv-
alent to 5(mJ//MJ+i)ffi'S(mJ+1). The Jordan model of S{mjlm j+1) © S(m j+1) is 

S {(mjlm j+1) V ntj+1) © S ((trij/mj+1) A 7Wj+x) 

by [2], Lemma 4. Because SJ has the property (Q) this Jordan model must coincide 
with S(mj) so that (/m7/wj+1)A/mj+i=1. In particular mjmj + 1 and mk/mk+1 are 
relatively prime for k>j\ (ii) is proved. 

Conversely, let us assume that conditions (i) and (ii) are satisfied. Let us denote 

(5.8) luj = mj/mj+1, j < co. 

Then by Lemma 1.2, S(m0) is quasisimilar to © S(uj), S(m0 is quasisimilar 
j< o 

to © S(uj),..., S(mk) is quasisimilar to © S(uJ) so that T is quasisimi" 
lSj<<o kSj«o 

lar to 
(5.9) S= @ T\ TJ =[S(uj, uj ,...,uj). 

j^to v. 
7+1 times 

Because the functions w0, ult ... are pairwise relatively prime we have (m0/Uj)Auj—l 
so that (mJuJ)(Tk)=0, k^j, and (m0/Uj)(TJ) is a quasi-affinity. This implies that 

& = S(uj)©S(uj)©... ®S ( « i ) = (ran (m0IUj)(S))~ 
. V. 
J-t-l times 

is a hyper-invariant subspace of S. We are now able to prove that S, and therefore 
T, has property (Q). Any operator Z€ {5 } ' has the property X&cz&yj-^ca, so 
that X- © Xs, XJ£ {TJ}'. By Lemma 5.2, T-'Iker XJ and 7^erXJ, are quasisimi-

j<a> 
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lar. But obviously ker X= © ker XJ, ker X* = © ker XJ* so that S|kerZ= 
j< co j< a 

= © JJ'|ker XJ and S t e I , = © TlnxJt; it follows that S|kerX and 5kerX» 
j < to j < to 

are quasisimilar. The Theorem is proved. 
We are now able to give a complete description of the lattice of hyper-invariant 

subspaces of an operator of class C0 having property (Q). 

Proposit ion 5.5. An operator of class C0 having property (P) has property 

(Q) if and only if 

(5.10) Hyp Lat (J ) = {(ran m(T))~: m£Hr, m si m0[T]}. 

Proof. As usual S(M) denotes the Jordan model of T. Assume (5.10) holds-
by Proposition 4.8 (iii), (5.10) also holds for S(M). In particular, 

ker m,+1 (S(Af)) = © ((LmJmJ+JH'emlH'1)® © § ( m j 
isj J+ISicto 

is of the form (ran u(S(M)))~ for some inner divisor u oim0. Because ran u(S(m0))= 

=(mo//wJ+1)i/20moi72 we must have u=mjmj+1. We have also 

(5.11) (m0/mi+1)AmJ+1 = 1 

because w(S(mJ+1)) must have dense range. From (5.11) we infer (mj/mj+J)/\mJ+1=ly 

j<(o. By Theorem 5.4 it follows that T has property (Q). 
Conversely, let us assume that T has property (Q). By the proof of Theorem 

5.4, T is quasisimilar to 

(5.12) 5 = © SJ on § = © 

where 
(5.13) sJ = s(uj, uj,..., uj), = d (u j )@5(uj )e . . .e&(uj ) , 

' r v. 
j + 1 times j + 1 times 

(5.14) Uj = mjlmj+1, 

and 
(5.15) & = ( (m j u j ) (S) § ) - £ Hyp Lat (5). 

Let us take 9tt€Lat(S) and denote Wj=((m0IUj) (S)m)-. We claim that 

(5.16) m = ® W t j and = 931 fl 
jcco 

The inclusion 9Jtz> © <S0lJ is obvious. Now, the minimal function m of Sn, 
j « 0 

9l=9Jl©(© 3Jlj}= f l ker (m0IUj)~((S\mf) divides mjujj^o), so that mAw — l . 
j < CO j<<o 

It follows that m = \, 91 = { 0 } and (5.16) is proved. 
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Moreover, by (5.16), 5Ш; is a hyper-invariant subspace of S} if ЗИбНур Lat (S). 
By Proposition 2.1 (i) we have ЯИу=ЗЛ5©ЯН5© ...©ЭЛ? where m]=u'jH2QujHi 

v 
j + 1 times 

so that Mj=u'j(SJ)^J. Let us denote by m the limit of an arbitrary converging 
subsequence of we shall have (m/u^Auj-l so that 5DJ;=(w(SJ) 
•Using (5.16) we infer 9Jf=(w(S)§)~ and by Proposition 4.8 (iii) the proof is done. 

Let us denote by the lattice Lat (S(m, m m)) im£H°°, 1 sJt<£o). The 
к times 

preceding proof also characterizes Lat (7") for T having property (Q). 

Corol lary 5.6. Let T be an operator of class C0 having the property (Q). Then 

Lat (T) is isomorphic to JJ +1, where i/J. = /7jJ[7,]/mJ+1[J'], 
j <C3 * 

Proof. The decomposition (5.16) was proved for any 9)i£Lat(S). The Corol-
lary follows by Proposition 4.8 (i). 

Example 5.7. There are operators Г of class C0 for which (5.10) holds with-
out property (P). In fact it can be shown that a Jordan operator S(M) satisfies 

the condition (5.10) if and only if (m0/mlz)Ama = l for each ordinal number OL. 

Proof. The necessity of the condition (т01та)Ата=1 is proved analogously 
with the proof of (5.11). Conversely, let us assume (т0/тх)ЛтО1 = 1 and let 
юге Hyp Lat (5 (M) ) be given by (2.2). Then mjmx divides m0/'< so that тЦт"а 

divides m0/ma and therefore (m^/m )̂,\mJ. = l. We infer (m„ (S (mj )§ (mj )~ = 
because « K ) ( S « » is 

a quasi-affinity (cf. [12], Proposition 1II.4.7). We infer 

9Д = (ran m'a(S(M)))-. 

Remark 5.8. As shown by Example 2.10, property (5.10) is not stable with 
respect to quasisimilarities. 

6. Generalized inner functions 

Let us recall (cf. [7]) that a function m^H" has a factorization 

(6.1) m = cbs 

where c is a complex constant of modulus one, b is a Blaschke product 

(6.2) = 
* m 1 —°kz k 
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and is a singular inner function, that is 

0 

where n is a finite Borel measure on [0, 2n], singular with respect to Lebesgue meas-
ure. Let us denote by a(z) the multiplicity of the zero z in the Blaschke product 
(6.2), that is, 

(6.4) <j(z) = card {k: ak = z}. 

The convergence condition in (6.2) is equivalent to 
(6.5) 2 

|Z|«=1 

We shall denote by r the set of pairs y=(o, ¡i), where n is a finite Borel meas-
ure singular with respect Lebesgue's measure on [0, 2K], a (z) is a natural number 
for |z|<l and the condition (6.5) is satisfied. With respect to the edition (a, /.i) + 
+(a', fi ' )=(<r+a', /i+aO, r becomes a commutative monoid. The set r is ordered 
by the relation (c, j i f and only if a ^ a ' and nS/i'. Moreover, in r 
are defined the lattice operations: 

(<7,/z)V(ff',/0 = (<rV<7', /iV/O, 

(<r,/i)A(ff', n') = (<TAa',nt\n') 

where fi\J fi', /i Afi' have the usual sense and ay a' = max {<r, a'}, cAa'^min {a, a'}. 

A mapping y: is defined by y (m) = (a, //), where a is given by (6.4) and 

/x by (6.3) if m has the decomposition (6.1). We have also a mapping <5: r—H°* 

defined by 

where y = /<)• Then 70 <5 =id and 8 (y (m))=cm with c a complex constant of 
modulus one. 

Let us recall that, for a function f(LH°°, the function f~ is defined by f~(z) = 

/(z). For y=(o,n)£r we shall define the element y~ =(<x~, by a~ (z)= 

=c ( z ) and n~=noj where j: [0, 2tt] —[0, 2n] is given by j(t)=2n — t. 

Let us list some properties of the mapping y. 

Lemma 6.1. (i) y(mlm2)=y(m1)+y{m2), mx,m2£H?°. 

(ii) y(m1)^y(m2) if and only if y(m1)=y(m2) if and only if mY and 

m2 differ by a complex multiplicative constant of modulus one. 

(iii) y(m~)=y(m)~, m£Hr. 



28 IH. Bercovici 

(iv) If {mj}Y=0czHi°°, then the family {m0m1...mj}J1=0 has a least inner multiple 
OO OO 

m if and only if y. y{m^r and in this case y(m)= y. y{m). 
7 = 0 7=0 

Proof, (i), (ii) and (iii) are obvious. To prove (iv) let us assume firstly that 
{wi0m1...mJ-}~=0 has a least inner multiple m. Then obviously y^y(m) if and only 

OO OO 

if y^ ^ y(/Mj) for each natural«. Consequently 2 and y(m)= £ y(mj). 
jSn 7 = 0 7 = 0 

OO 

Conversely if y= 2 y{m^r then S(y)^m0m1m2.- mj for each j so that the 

family {m0m1...mj}JL0 has a least inner multiple. The Lemma is proved. 
We shall now introduce the class M of (not necessarily finite) Borel measures 

fx on [0,2n] for which there exists a finite Borel measure v singular with respect to 
Lebesgue measure such that p-<v, where the absolute continuity /i-< v is under-
stood as 
(6.7) p = V (pAnv). 

n 

We shall denote by Jtn the class of c-finite measures \i<iJl and by Jim the 
class of measures p^Jl which take the values 0 and °° only. 

Lemma 6.2. (i) If and v is a finite measure such that ¿¿«< v, we have a 

decomposition 

(6.8) dp = fdv 

where f : [0, 2n]-+ [0, +<»] is a Borel function. 

(ii) Every ¡i£J( admits a unique decomposition where 

/'ooi-^oo and Ho end are mutually singular. 

(iii) If {pj)J=0cJi then 
7 = 0 

Proof, (i) The measure p„=pAnv is finite, p„<v, and by the Radon— 
Nikodym theorem we have d\in=fndv, where f„: [0, 2n\—[0, n] is a Borel func-
tion. Because p„-^Hn+i we have /„==/„+1 rfv-a.e.; replacing/„ by /n'=/iV/2V ...V/„ 
we may assume f„=fn+1. Now it is clear that the function / = lim /„ satisfies the 

n — O O 

relation (6.8). 
(ii) Let v and /be as before; let us denote A = {t;f(t)= + and /„ = f%A , 

/o=/ ( l - zJ - Then we may take dp0=f0-dv, dp^=f„dv. 
oo 

(iii) Let us take finite measures Vj such that t i j < v j > then £ where 
7=0 

v is defined by 

v = J 2~jvjjvj([0, 2n}). 
7=0 
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Remark 6.3. Obviously, every measure n of the form (6.8) belongs to Jl if 
v is a finite singular measure on [0, 2K]. 

oo oo 

Lemma 6.4. If fi,, Vj€.J/,j=0,1, ... , are such that 2 f1]— 2vj t^ien there 
j=0 j=o CO n 

exist ¡¿ijZJ/, i,j=0,1, ... , such that % HiHi, 2 Hij = vj> U}=0. 1 
j=0 ¡=0 

Proof. Let us take a finite singular measure a such that a, Vj -<a,/=0,1, .... 
By Lemma 6.2 we have 

(6.9) dfij =fjdcc, dvj = gjdx, 0 < 

By the hypothesis we have 

(6.10) 2 f j = 2 Sj d*-a.e. 
j =0 J=0 

It will be enough to find Borel functions htJ such that 

(6.11) 2 by =fi, 2hij = gJ da-a.e„ 0 
j=0 i=0 

and then to define d/.iij=hijda. 

If the sum (6.10) is da-a.e. finite we may define h¡j inductively by 

Uoo=/oAg0, h0j = \f0- 2 M A g j , 
v fc=0 ' 

(6.12) j hm = / , A ( g 0 - l~2Ko), 1 S i 

I hij = (/, - 'I /',>) A ( g ; - 2o hkJ), 

If the sum (6.10) is not da-a.e. finite we can find increasing sequences {//n)}r=o> 

{gin) }~0 such that fi = lim f."\ gj=]im gf doc-a.e„ and jj/tw= 
B-̂TO co I* — 0 

= 2 8j1^00 da-a..e., 
j=o 

Let be defined by (6.12) with /¡, g j replaced by /¡(1), gj0 in case «=0 , and by 

fin+1>-fi"\ gf+1)~gf incase n^ 1. We can take htj= 2 hff and the Lemma n = 0 

follows. 
We shall now introduce the class f of "generalized inner functions". An ele-

ment y of f is a pair y=(<r, ¡i) where n^Ji and a is a natural number valued func-
tion defined on {z; |z|<l} such that 

(6.13) 2 
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The subclass f0cf-consists of the pairs y=(a, n)£t such that /i£„//0. Anal-
ogously with r , T is a commutative monoid and an ordered set in which the lattice 
operations are defined. For y=(<x, ¿¿)£f we define y~ = (<r~, /OCT as in the 
case y€/\ Any y = (o, has a decomposition 

(6.14) y = y0 + Vc»> y<> = ^oKAh y « = 

where is the decomposition of fi given by Lemma 6.2 (ii). 

Lemma 6.5. (i) f 0 is the set of simplifiable elements of t, that is y€f 0 if 
and only if y'+y=y"+y implies y'=y" for y', y"£f. 

(ii) y' + y = y" + y implies y' — y" whenever y„ =y'Ay". 

Proof, (i) It is obvious that y'+y = y"+y implies y '=y" whenever y£f 0 . 
Conversely, if y w e have 0^y„ and 0+y^y^+y . 

(ii) By (i) we can simplify y0 from the equality y'+y=y"+y and we obtain 
y ' + y a , = y " + y c a . Now the assumption implies y '+y«,=y ' and y "+y „=y " ; the 
Lemma follows. 

We shall consider the cartesian product J T = f x r and on Jf we define the 
relation by 

(6.15) (y, y j ~ (y', y0 if and only if y + yi = y'+y!-

The relation is not an equivalence relation; however, as shown by Lemma 
6.5 (i) the restriction of on J f 0 = f 0 x f 0 is an equivalence relation. The 
quotient is a group- the group of formal differences y—y', y, y'£F0. 

We may assume F0(Z% identifying the element y£f0 with the class of (y, 0) in 

We shall now describe the connection of f and f „ with r . 

Proposition 6.6. (i) If {yj}Y=0c^r are such that 

(6.16) yj s yJ+1, 0 =5 j < =o, A Yj = 0, 
js 0 

then 

(6.17) Y = Z y £ r . 
j=o 

Conversely, each y£F has a representation of the form (6.17) such that (6.16) is 
satisfied. 

(ii) If {yj}°°=Q<^r satisfy (6.16) and, moreover, 

(6.18) (y j -y j+i )A(yk-y t + 1 ) = 0, 

then the element y defined by (6.17) belongs to T0. Conversely, each y£ T0 has a 

representation of the form (6.17) such that (6.16) and (6.18) are verified. 
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Proof, (i) If yj=((7j, fij), we have /i= 2 Hj£J/ by Lemma 6.2 
j=o 

oo 
(iii); it remains to show that ff = 2 ^ is finite and the condition (6.13) is satisfied. 

7 = 0 
But A Oj=0 imply that for each z, cr(z)=0 for some j and the finiteness of 

jmo 
a is obvious. The condition (6.13) is satisfied because a(z)^0 implies cr0(z)?±0 

and therefore 
2 0 - I ^ M 2 <70(z)(l-|z|)<=o. 

o(z)?SO |z|<=l 

Conversely, if y = (a, ¡i) we define 

(z) = 0 if ff(z) =S j 
(6.19) 

1 if ff(z) =» J, 0 ^ j < oo. 

To define/i, let us write dpL—f-dv for some finite measure v and put dp—fydv,. 

where 

(6.20) /o=/Al , / , - = ( / - Z A ) A 1 / 0 + 1), 1^7 
v t = 0 / 

It is obvious that yj = (Oj,Hj) satisfy (6.16—17). 
(ii) Let us put yj=(cFj, /¿j); from (6.18) we infer the existence of a sequence 

oo 

of pairwise disjoint Borel subsets AjC[0,2n] such that [0,2n]= [J Aj and 
;=o oo 

/ i/ (LM* ) = 0 - If 2 ¿j> we have /i = ( / * 0 + + •••+)".,•) 04,) thus n 
k<j j=0 

is (T-finite. Conversely, let us take y=(a, n)£ra and define Oj by (6.19). If d\i=f-dv 
oo 

and v is finite,/is dv-a.e. finite so that [0, 27r]= (J Aj where Aj = {x;/(*)€[7,7+1)}-
j=o 

We define 

/, = ¿(fc+i Y l f n k 
k=j 

and dnj=fj-dv. It is clear that yj = (aj,nJ) satisfy the conditions (6.16—18). 
Proposition 6.6 is proved. 

oo oo 
Proposit ion 6.7. If {yj }° l0 , {-/.}7=0cf are such that 2 f j = 2 fj^T then 

j=o j=o 
oo oo 

there exist {y l 7 } o s u < I„cf such that 2 Vu=Vt> 2 Vij=7j. 0=§/'J< 
>=o ¡=0 

Proof. If yj=((Tj, fij), y'j = {.a], n'j), 0^7<oo, we shall define yij=((rij, Hij), 

where are given by Lemma 6.4 and CT¡J are defined by formulas analogous to 
(6.12) with/} and g j replaced by Oj and a'j, respectively. The Proposition follows. 
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7. Co-dimension of a subspace 

We shall denote by & the class of C„ operators having the property (P). If 
T^SP and S(M) is the Jordan model of T we have A y(Wj)=0, mj=mj[T], by 

j< to 

Theorem 4.1 and Lemma 6.1. This fact and Proposition 6.6 suggest the following 
Definition. 

Definit ion 7.1. The dimension yT of the operator T£!P is defined as 

(7.1) V r = Zvimj), mj = mj[T]. 
j=o 

If T is an operator of class C0 and aJieLat^ (T) is such that then the 
T-dimension yr (9Ji) is defined as 

(7.2) = y(2R) = yrsw. 

Remark 7.2. (i) Because mj[T*]=mj[T]~ (cf. [4], Corollary 2.8) we have 
yT*=y T,T£0>. Moreover, if T is of class C0 and SRgLatj (T) is such that 
then 
(7.3) y T * m = y T m ~ -

(ii) It is clear that yT—0 if and only if T acts on the trivial space {0}. 
(iii) The dimension yT is a quasisimilarity invariant of T. Indeed, yT is defined 

in terms of the Jordan model. 
We shall say C0-dimension instead of T-dimension if no confusion is possible. 

The usual dimension is a particular case of the C0-dimension. Indeed, the operator 
r = 06 .£?(§) is a C0 operator and each subspace SDiciSj is invariant for T. By 
Theorem 4.1, r|SDi has the property (P) if and only if dim 9Ji< and in this 
case vr(9Ji)=(<7,0) where o-(0)=dim 9Ji and <x(z)=0 otherwise. 

Lemma 7.3. An operator is a weak contraction if and only if yT£T 

and in this case 

(7.4) yT = y(dT). 

Proof. Obviously follows from Lemma 6.1 (iv), [6], Theorem 8.5 and [3], Defi-
nition 1.1. 

By Proposition 6.6, Theorems 4.1 and 5.4, we have {yT; T£3?}=r and 
{yT; T has the property (Q ) } = f „ . It is natural to define by 

(7.5) if and only if and y T e f 0 . 

Lemma 7.4. If is acting on § and §j€Lat (T) are such that § ; c : § J + 1 , 
oo, and V Sy=§> we have 

(7.6) ^ yT = V Vr(Sy). 
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Proof . Because T|§ ;-< T, we have mk[T\^^mk[T\ for each natural num-
ber k; therefore y(MK[ T | i j .•]) ^ y ( M K [ T ] ) and the inequality y r S V VT(§>J) fol-

jmo 
n 

lows. Now, by Lemma 6.1 we shall have V V r (£>/)— 2 V ( V for each 
j SO K = 0 7S0 

R 

natural number n; by Theorem 3.1 we infer V yr(5;) — 2 y(.mkUli- Since n is 
/so *=o 

arbitrary the inequality V ?T(5;)SyT follows. Lemma 7.4 is proved, 
yso 

Remark 7.5. From (7.3) it follows that Lemma 7.4 also holds under the 
assumption § y £La t ( r * ) instead of § ^ L a t (T), 

Corol lary 7.6. If T,T'£SP, we have y T @ r = y T + y r -

Proof. By Remark 7.2 (iii) it is enough to prove the Corollary for T=S(M), 

T'=S(M'). For each j the space %=§_,-©§j-€Lat (71® 7"), where §>j=§>(m0)@ 

© d ( « i ) © - ® S ( » » y ) , and § ( M ) = V S j , yso 
§ ( M ' ) = V By Lemma7.4 we have y r s T , = V Vr©T-(%). VT= V ?r(§j ) , 

>so jso jso 
y r = V Vr*(§/)• By Lemma 7.3 and [3], Theorem 1.3, the Corollary follows. 

j SO 
We shall now introduce a relation q on the class SP, connected to index problems. 

Definit ion 7.7. For TX, we write TXQT2 if there exist T£0> and 
X£{T}' such that TX and T2 are quasisimilar to T|ker X and TKERXT, respectively. 

Lemma 7.8. If Ti0> and §€La t (J ) then TQ(Ts®T6±). 

Proof. The operator S=T@T^&> by Proposition4.4 and the operator X 

defined by X(ju © d) = y © 0 commutes with S. It is easy to see that S|ker X is 
unitarily equivalent to T and SK„X* is unitarily equivalent to r s © T^j.; Lemma 
7.8 follows. 

By Theorem 4.1 and Remark 7.2 (iii), yTi=0 if and only if yTa=0 if TXqT2. 

The connection between Q and y is stronger than that, as it will be shown in the 
following propositions. 

Theorem 7.9. If TX, T2£0> and TxQT2 then yTi=yTi. 

Proof . It is enough to show that for and X£ { J } ' we have yr(ker X) = 

=yT(ker X*). Let T be acting on $ and let S(M) be the Jordan model of T. As 
shown in the proof of Theorem 4.1 we have 

(7.7) § = V Zj, §>j = (mj(T)$)-£HypLat(T). 
j so 

For each natural j we have XfyjC&j and Arj=A'|§J€{7,|§J}'. Because T\9)} 
is of finite multiplicity, we infer by [3], Corollary 2.6, and Lemma 7.3, 

(7.8) y ( k e r ^ ) = y ( k e r^ ) . 

3 
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Because obviously Xmj(T)\ktTX=0, we have ker X}^>(mj(T) ker X)~ and, 
as in the proof of Theorem 4.1, we infer ker X = V ker X,. Therefore, by Lemma 7.4 

js о 
applied to 7|ker X it follows that 

(7.9) у(кегЛГ)= V K b « * , ) . 
JM о 

We have XfP6\ka X*=P6jX*P6j\ker X*=PSX* |ker X * = 0 so that 
PSj(ker X* )cker X*. Because РЪТ* = Т£Р^ we shall have Р&Т*\кет X* = 

= (Tg\ker Х?)Р^\кет X*. This relation implies that (Г*|кег Х*)я , where 

R j = (ker(PSj|ker**))J- = ker X* Q (ker X* n§/)€Lat (TkerA»); 

is quasisimilar to some restriction of 7$ |кег X* and therefore 

(7.10) y(%) = у (ker X*). 

Now V %=ker X* © (ker X* П ( П S/)) = kerX* so that from (7.8—10) 
yso jso 

and Lemma 7.4 applied to TkcrXt we infer у (ker X*)= у у (ft7) s V y(kerZ?) = 
jSO /SO 

= V У (ker Xj)=у (ker X). 
j so 

By the same argument applied to T* instead of T we infer у (ker X)^y(ker X*). 
The Theorem follows. 

Corollary 7.10. If and §€Lat (J) then ут=Ут(Ь)+Ут(Ь±)-

Proof. Obviously follows from Corollary 7.6 and Theorem 7.9. 

Corollary 7.11. Let T£0> be acting on § and let § ,€Lat (T ) be such that 

So=§, (0=7сand П §j={0}- Then yT= 2yT(Rj), where ft; = 
JSO j=0 

= b j e b j + 1 ( 0 s s / < ~ ) . 

Proof. By Lemma 7.4 and Remark 7.5 we have у т = V У г (£>/)• Because 

b f + 1 = b t ® & j and tt^Lat (TSJ-+1) we have y r ( §/ + 1 ) =y r ( § J ± ) +y r ( « J ) by the 

Corollary 7.10. By induction it follows that yT (S/+1 )= ^ Уг(Я,)- Corollary 7.11 
n = 0 

follows. 

Corollary 7.12. Let T4&> be acting on Then T^SP0 if and only if 

Л Ут(Ь]) = 0 for each decreasing sequence {§m}~=0c:Lat (7") smcA that p) bj = 
jSO jsо 
= {0}. 

Proof. Let us assume Т€&*0. By Corollary 7.10 we have yT=yT(S,)+yT(§/) 

so that by Lemma 7.4 we infer у т = у т + Л Ут(§/)- Because уг6Г0 it follows that 
JS0 

0= л У г (§,')• 
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Conversely, if Tf* let S(M) be the Jordan model of T. By the proof of [5], 
Theorem 1, there exist §j€Lat (T) such that §J+1cr§7-, Q §7 = 0 and the Jordan 

js o 
model of T i s © S(mk). Because y T ( & f ) = 2 y(mk)£r> from the relation 

kmj k<j 
i T ^ y A & ^ + yri&j) we infer (yr)„=(77-(0J))M and therefore A 

; so 
Corollary 7.12 is proved. 

We shall prove now a partial converse of Theorem 7.9. 

Theorem 7.13. (i) If T, T'£âP are weak contractions and yr = y r., then 

TqT'. 

(ii) If T, T'^S? are such that y r = y r then there exists S^SP such that TQS 

and SQT'. 

Proof . Let S(M) and S(M') be the Jordan models of T and T', respectively. 
The condition yT=yT,_ is equivalent to dT — dT,; let us denote d=dT = dT,. If 
we denote dj = dlm0m1...mj_1, d_j = d/m'0m'1...>nj_1 for 1. = / < a n d d0=d, we 
have A d j= A d „ j = 1 and by Theorem 4.1 and Proposition 4.4 the operator 

jmo jso 

(7.11) K= © S(dj) 
j=- oo 

has property (P), that is, We define now an operator X£{K}'byX( © hj) — 
+ oo 

- © kj where 

~ ¡kj^wkj-1 i f 

( ) 1 = (dj/dj .Jhj^ if 0. 

It is easy to see that ker X= ©" ker (X\i) (dj)) and ker X*=(B ker (¿7,)). 
7=0 7=0 

For 
ker (X | $ (dj)) = dj+1H2QdjH2 

sothat S(i/,)|ker (Z|§ (dj)) is unitarily equivalent to S(dj/dJ+1) = S(mj) and there-
fore A"|ker X is unitarily equivalent to S(M). We can analogously verify that 
KkctX* is unitarily equivalent to S(M'). 

Let us remark that the minimal function of K coincides with the common 
determinant function of T and T'. 

(ii) Let S (M ) and S(M') be the Jordan models of T and T', respectively. The 

equality yT=yr- is equivalent to 2 y('nj) = £ y(m'j)- By Proposi t ion 6.7 we can 
7 =0 7=0 

CO CO 

find y, -6f such that 2 '/¡j = "t('"<) a n d 2 'hi=7(mj)> 0 ̂  f, /< Because 
7 = 0 ¡ = 0 

3* 
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= y ( m i ) we have y u t r and therefore y i j = y ( m i J ) for mij=d{yij)^H". We define 
the operator 

(7.13) 5 = © Í © S(mu)) = © S„ S, = © S(mu), 0 S i < » . 
¡ =0 Y/= 0 ' i=0 7=0 

Because y(w,)= y ( m u ) , the operator Sj is a weak contraction and y s = 
; = o ' 

=Ys(m,)> 0 — ° ° (cf. Lemma 7.3). By the proof of (i) we can find operators K^SP 
acting on and contractions Xtd {A"'}' such that 

(7.14) m0[Kt] = m„ 

/¡f'|ker X{ and Kl „ x * are unitarily equivalent to and S;, respectively. The 

operator K= © Kl is of class C0, X= © X£{K}' and K\ksx X, KketX* are 
¡ =0 ¡=O 

unitarily equivalent to S(M), S, respectively. 
Let us show that Kf̂ SP. The spaces = ® Öi © • • • © Ö; are invariant for 

oo 

T, V © and m0[K\S<l]=miJrl, 0=£/<<*>. Because 7 ^ we have A ™,+i=l 
¡ S O 1 = 0 ¡ s o 

and by Proposition 4.6 it follows that K ^ . In particular 5 also has the property 
(P) by Proposition 4.4 and therefore we proved that TQS. The relation SQT' is 
proved analogously. The Theorem follows. 

Remark 7.14. If T and T' have finite multiplicities, then the operator K used 
for the proof of (i) also has finite multiplicity. Thus we obtain a new proof of Proposi-
tion 3.2 of [3]. 

8. Co-Fredholm operators 

The results of sec. 7 suggest the following generalization of [3], Definition 2.2. 

Definition 8.1. Let T and T' be operators of class C„ and let T). 

Then X is called a (TT)-semi-Fredholm operator if X|(ker X ) x is a (r'|(ran X)~, 
^(kerx)±)-Iattice-isomorphism and either T|ker X^SP or Tke[Xt£0> holds. A (T\ 7 > 
semi-Fredholm operator X is (T\ T)-Fredholm if both T|ker X and TketXt have 
property (P). If X is (7", r)-Fredholm, its index is defined as 

(8.1) ind(X) = (yT(kerX), yr. (ker X*)) £ f x f . 

If X is (T\ 7>semi-Fredholm but not (T ' , 7>Fredholm, we define 

(8.2) ind(X)=: + oo if T\kcrXi&-, 

= - ~ if nKtX^3P. 
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Let us remark that for r|ker X^SP^ and T'kerX»€^o> ind (X) is uniquely deter-
mined (modulo the relation by the element yr(ker X)—yT,(ktx X*)£% (cf. 
sec. 6). 

In order to distinguish the operator introduced by Definition 8.1 from the 
operators considered in [3] we shall denote by 4>(T', T) and a<P{T\ T) the set of 
(7", 7>FredhoIm and (T\ 7>semi-Fredholm operators, respectively. If T' = T we 
write <P(T), and a<P(T) instead of <P(T, T), o<P(T, T), respectively. 

Obviously &(T',T)cz$(T',T) and for X&(T',T) we have 

(8.3) md{X) = y { j (X ) ) 

if ind (X) is interpreted as an element of 10o and 

y(m/n) = y(m) — y(n) for m,n£H™. 

The following Proposition extends [3], Corollary 2.6 and Remark 2.7. 

Proposit ion 8.2. (i) If T, T'<i0> then <P(T', T) = J(T\ T) and 

(8.4) ind (X) ~ (yT, yT.) for XeJ(T\ T). 

(ii) If exactly one of the operators T and T' has property (P) then <P(T', T) = 0, 

o$(T', T) = J(T', T), and for X£S(T', T), 

i n d ( Z ) = + oo if 

= -oo if T'ig>. 

Pr oof. (i) because 7^ker^j_ and T'|(ran X) are quasisimilar and have the 
property (P) for any XiJ(T',T) (cf. Corollary 4.5 and Lemma 1.1) it follows 
that A'KkerA')-1- is a lattice-isomorphism by Proposition 4.8 (i). In particular 
yT((ker A')-L) = y7..((ran X) - ) . By Corollary 7.10 it follows that yT = yT(ker X) + 

+yr((ker Z)-1) and yr.(ker ^ - ^ . ( ( r a n X)~)=yT. so that 

7T + IT (ker X*) + y = yT,+yT (ker X) + y 

where y=y r((ker A')-L)=yr((ran A1)-). Because 

y = yrAyr 
we infer by Lemma 6.5 (ii): 

yT+yr(kerX*) = yr+yT(ker X); 

this means exactly ind (X)~(yT, yT,). 

(ii) As in the preceding proof T(kerx)-i- and 7"|(ran X)~ are quasisimilar and 
one of them must have the property (P) by Corollary 4.5. Then Corollary 4.3 and 
Proposition 4.8 (i) show that -Y|(ker X)1- is a lattice-isomorphism. To end the 
proof it is enough to show that <P(T', T ) = 0. Assume by example then 
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for any X£J(T', T), 7"|(ran X)~e3? so that by Proposition 4.4. The 
case is treated analogously. The Proposition is proved. 

Example 8.3. The relation ind (X)~(yT, yT) obtained in Proposition 8.2 
cannot be improved. By example, if y r - f r it does not follow that yT(ker X) — 

=yT.(kerX*) for each X£S(T', T). Indeed, let us take T' = S(M)£0> such that 
y r = (0 , H), and T= © S(w) . Then y r =Vr+v ( w o ) so that y T = y T - by 

jsl 
the choice of yT. The inclusion X: © § (w,)— © § is one-to-one and 

j so 
yr(ker X*)=y(m0)^ 0. 

Lemma 8.4. For any two contractions Tand T' of class C0 we have o<P(T, T'Y = 

= o<P(T'*, T% $(T, T')* = 4>(T'*, T*) and 

(8.5) ind (X*) = -ind (X)~ , X£ cr$(T, T') 

{here -(y,y')~ =(y'~ ,y~)). 

Proof. Cf. the proof of [3], Lemma 2.10. 
The following Theorem extends [3], Theorem 2.11 to this more general setting. 

Theorem 8.5. Let T. T', T" be operators of class C0, A£a<P(T', T), 

B£o$(T",T'). If ind (/4) -find (B) makes sense we have BA^a<t>(T", T') and 

(8.6) ind (BA) - ind (A) + ind (B). 

Proof. We have to follow the proof of [3], Theorem 2.11, replacing weak 
contractions by contractions having property (P) and using Proposition 4.10 instead 
of [3], Proposition 2.3. Only relation (8.6) needs some comments if A and B are 
C0-Fredholm. With the notation of the proof of [3], Theorem 2.11 we have 

(8.7) yr(ker BA) = yr(ker A) + y r (SO ([3], relation (2.18)), 

(8.8) yT (& ) = y r m ([3] relation (2.20)), 

(8.9) yr-(ker (BA)*) = yr»(ker B*)+yT> (§>t) (relation (2.18)*), 
and 

(8.10) ker B = § ! © § ! , keri4* = S Î©§J (relation (2.19)). 

We infer, with the notation y=yT-(&i)=7r (Sa)» that 

y T (ker BA) + y=yT (ker A) + y r ( §0 + y=y r (ker A) + yr (ker B) 
and 

y j" (ker (BA)*)+y = y T- (ker B*)+yT (Sî)+y = y T (ker A*) + yT. (ker B*). 

By addition we obtain 
y r (ker BA) + yT. (ker A*) +y r . (ker B*)+y = 

= yT- (ker (BA)*)+y j (ker A)+y T. (ker B)+y 
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and since y^y r (ker 2?)Ayr(ker A * ) , Lemma 6.5 (ii) implies 

yT(ker B A ) + y T . ( k e T A * ) + y T - ( k e r B * ) = 

= yr»(ker C&4)*)+yr(ker A ) + y T - (ker B ) . 

The last relation is equivalent to (8.6). The Theorem follows. 
The proof of [3], Theorem 2.12 is easily extended to the general setting. 

Proposition 8.6. Let Tbe an operator of class C0 acting on the Hilbert space § 
and let X€ {T}' be such that T\(X§>)~ £0>. Then Y=I+X£$(T) and(T\ker Y)gTketyt. 
In particular ind (F)~(0, 0). 

Proof. We have shown in the proof of [3], Theorem 2.12 that ker 7=ker (F|U), 
U=(X!r>)_, and that (:T|U)kermu)t and TknYt are similar. This shows that 
(T|ker Y)QTket Y*-

In fact we shall prove a more general perturbation theorem. 

Theorem 8.7. Let T, 7" be two operators of class C0 acting on respec-

tively, and let us take X£a<P(T', T), Y£S(T\ T). If T'\{YSr>)-£0>, we have 
X-h Y£o<P(T', T) and 

(8.11) ind (X+Y) ~ ind ( * )+ (? , y), y = yr-((F§)-). 

Proof. We shall prove firstly that (J f+F ) ( § ) is dense in each cyclic sub-
space of T' contained in ( ( X + F ) § ) _ . The same argument applied to (X+ Yf 
will show, via [3], Lemma 1.4, that (X+F)|(ker (X-f F ) ) x is a lattice-isomorphism. 

In proving this we may assume that £>'=XJrjVF$ so that ker X*=(PkecXt F§)~; 

it follows that TkecXt,-<T'\(Y§>)- so that necessarily TkerX^ (cf. Corollary 4.5). 
Analogously we may assume that T|ker so that X is C0-Fredholm. 

The injection J: ker F—§ is C0-Fredholm, J£<P(T, r|ker Y) by the assump-
tion of the Theorem, and therefore, by Theorem 8.5, XJ£4>(T', T|ker F); in 
particular T k^ x j y ,=T^0> where U=ker (XJ)*=(X(ker F) ) x . 

Let us take /€ ( (Z+F )§ ) -and denote § ' ,= V T'Jf. Because 
js 0 

PuWMtn, n s » 

and Pu(X+Y)dJ?(T^,T) are such that ran (Pu|§;)c(ran Pn(X+Y))~ we infer 
by Corollary 4.11 the existence of a cyclic vector g of T'\9)'f such that Pug= 
=PU(X+Y)h for some h£Sj. Then the difference g'=g-(X+Y)he(r<in XJ)~ = 
=(Ar(ker Y))~ and because XJ is a C0-Fredholm operator we infer the existence 
of /T6ker F such that Xh' is cyclic for T'|P>',. Let us denote 

So = S»VS». and Z = {X+ F)| §0 £ J'iT', T\§„). 
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Then (Z§0 )~ indeed, because A'£ker У, we have Zh'=Xh' and there-
fore (Z% 0 ) -z>b ' x l f=&f, in particular g '€ (Z§ 0 ) - . Now g=g'+Zh£(Z?>0)- so 

that (Z§ 0 ) -z>b ' g=b ' f By Proposition 8.2 (ii) Z£o4>(T', Г|§0) so that bf= 

= ( 2 f t ) - = ( ( A r +y ) f t ) - for some &£Lat (:r|§0)czLat (T). The first part of the 
proof is done. 

Let us assume that Г|кег Then ker ( j f + F ) c I - 1 ( i ' S ) and 

ч гГ|кег X * l 
т\х-Чюг) = [ 0 т \ 

where Тг < Г '|(У§)" so that Тх has the property (P) (cf. Corollary 4.5). By Proposi-
tion 4.4, r p f - ^ F S ) - ) ^ and therefore T|ker (X+Y)Ç&>. Analogously 
rkervc+ry>£& i f Tkttx*^ so that in any case X+Y€o<P(T', T). Conversely, 
because X=(X+Y)-Y, T\ker X£0> whenever Т\кет (X+Y)£&> and 
whenever Therefore ind (X)d { + — if and only if 

i n d ( Z + y ) e { + ~ , 

and in this case ind (X)=ind ( X + У). 
It remains to prove that (8.11) holds whenever X£ Ф(Т', T). To do this let us 

remark that Р ( Ш х € Ф ( Г ( ' ш ± , Г ) and ind (P(ï^±)=(y, 0), where у = у г ( ( У 0 ) " ) . 
Because obviously P(Vs>)±(X-\-Y)=P{Yi})i_X we infer by Theorem 8.5 

(8.12) ind (X+ Y)+(y, 0) ~ ind (P ( y s )x X) ~ ind (X)+(y, 0) 
so that 

y T(ker ( X + У ) ) + y + у г- (ker (P ( y s )x JQ*) = 

= y r (ker (ЯГ+ Yf)+y j (ker P ( W x X) 
and 

У Г (ker P(Yg>)± X)+yT. (ker X*) = 

= у т . ( к е г ( Р ( Ш х ^ Г ) + у г ( к е г Х ) + у . 

By addition we obtain 

f y r (ker ( X + У ) ) + y r (ker X*)+y+yT (ker Р ( Ш х X ) + y r ( k e r (P(r^ * ) * ) = 

( ' ) 1 = y r (ker (X+ У )* )+y r (ker X)+y+yr (ker Р<г&)± X)+yr (ker (Р ( У& )± X)*). 

As shown in the proof of Theorem 8.5 (cf. relations (8.8—10)) we have 

yr(ker P(yS)j.X) ^ у г ( к е г * ) + у г ( ( У £ Г ) = y T (kerZ )+y 
and 

y j. (ker (P(Yb)± XT) yT. (ker X*)+y. 

Moreover, as shown in the first part of this proof, we have yr(ker ( X + Y ) ) ^ 
X ) + y and analogously yr.(ker A-*)SyT,(ker ( X + У ) * )+у . 
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All these relations show, via Lemma 6.5 (ii), that from (8.13) we may infer 

y , {ker (Jr+r ) )+y r (ker * * ) + ? = yr (ker (X+ Y)*)+yT (ker X)+y. 

The last relation is equivalent to (8.11). Theorem 8.7 is proved. 
We shall prove now a partial converse of Theorem 8.5. For simplifying nota-

tions we shall consider the case of a single operator T of class C0. 

Proposi t ion 8.8. Let Tbe an operator of class C„ acting on § and let A£ {T}'. 

If there exist B,Ci{T}' such that AB, CAf_<t>(T), we have A£<P(T). 

Proof . Because ker A a ker CA and ker A*aker (AB)* we obviously have 
J|ker A, TkcrAt££?>. We shall now prove that the mapping is onto 
Lat (r|04§)-). As in the first part of the proof of Theorem 8.7 we take f£(A§>)~ 

and remark that 
P u s ) - e MBS)-1 §/£ - e(ABS) - , r i S A 

-PuS)-Q(XBS)" -e(ABS)-» T); 

an application of Corollary 4.11 proves the existence of a cyclic g€&f and of a 
vector such that g—Ah£(ABSj>)-. Because AB£<P(T) we find h' such that 
ABh' is cyclic for T\§>g-M. If §0=§/IV§B/.' we obtain as in the proof of Theo-
rem 8.7 (A$>0)-zD$>f and therefore %f=(AR)- for some ft£Lat ( r|§ 0 ) cLat (T). 

Analogously we can show, using the operator A*C*(L<P(T*), that the mapping: 
is onto Lat(T*|(/i*§)-). By [3], Lemma 1.4, Proposition 8.8 follows. 

Example 8.9. For each pair (y, y ' ) 6 F x r there exist a C0-operator T and 

Xi<P(T) such that ind (X )= (y , y'). 

Proof . As in the proof of [3], Proposition 3.1, we take operators K, K'^SP 

such that yK=y, "?K'=y' and we define T= (K<2>I)® (K' 01), where I denotes the 
identity on H2. If U+ denotes the unilateral shift on H2, the required C0-Fredholm 
operator is given by 

X = (I®U%)®(I®U+). 

The proof of [3], Proposition 3.4, can be applied to obtain the following result. 

Proposi t ion 8.10. For each operator T of class C0 we have o&(T)C\{T}"= 

= <t>(T)C\{T}" and ind (Z )~ (0 , 0) for X£^(T)C\{T}". 

The operators X„, X defined in the proof of [3], Proposition 3.6, are such that 
Xn$ff<P(T), Xe<P(T), and lim ||—AT|| = 0. Thus we have the following result. 

Tl-*0O 

Proposit ion 8.11. The sets o<&(T), <P(T) are not generally open subsets of 

{T}',for T an operator of class C0. 
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