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Co-Fredholm operators. I1

HARI BERCOVICI

Sz.-NAGy and Folag [16] proved that the operators T of class C, and of finite
multiplicity have the following property:

(P) any injection Xc{T} is a quasi-affiniti.

In [3] we showed that property (P) also holds for weak contractions of class
C,. In sec. 4 of the present note we shall characterize the class 2 of C, operators
‘having property (P).

UcHiyaMma [18] has shown that some quasi-affinities intertwining two contrac-
tions of class Cy(N) induce isomorphisms between the corresponding lattices of
hyper-invariant subspaces. This is not verified for arbitrary operators of class C,
(cf. Example 2.10 below). For operators of the class 2 we show (cf. sec. 4) that
any intertwining quasi-affinity induces isomorphisms between the corresponding
lattices of invariant and hyper-invariant subspaces. However the other results proved
in [18] for operators of the class Cy(V) hold for arbitrary operators of class C,;
this is shown in sec. 2 of this note. In sec. 2 we also show which is the connection
between the lattice of hyper-invariant subspaces of a C, operator and the correspond-
ing lattice of the Jordan model.

In sec. 3 of this note we prove a continuity property of the Jordan model.
This is useful when dealing with operators of class 2.

In [16] B. Sz.-NaGy and C. Folas made the conjecture that any operator T of
class C, and of finite multiplicity has the property:

(Q) Tiker X and T, x« are quasisimilar for any Xc{TY.
This conjecture was infirmed in [3], Proposition 3.2, but was proved under the
stronger assumption X¢ {T}” for any operator T of class C, (cf. also UcHivamA [19]).

Uchiyama began the study of the class of operators satisfying the property (Q)
showing in particular that there exist operators of class Cq¢(N) and multiplicity 2
wich have this property (cf. [19]), Example 2). In sec. 5 of this note we characterise
in terms of the Jordan model the class 2 of C, operators having property (Q).

Received January 16, 1979.



4 H. Bercovici

In [3} the determinant function of a weak contraction was used for proving
various index results. In sec. 6 of this note we extend the notion of inner function
in order to find a substitute of the determinant function for the case of operators
of class 2. In sec. 7 it is shown that the class of generalised inner functions (defined
in sec. 6) naturally appears in the study of index problems. In sec. 8 we generalise
the notion of C,-fredholmness defined in [3]. All results of [3] are extended to this
more general setting. ’

1. Notation and preliminaries

Let us recall that Lat (T) and Lat, (T) stand for the lattice of all invariant,
respectively semi-invariant subspaces of the operator 7. We shall denote by
Hyp Lat (T) the lattice of hyper-invariant subspaces of 7. If McLat, (T), Ty
stands for the compression of T to the subspace M and u, (M) stands for the multi-

plicity of Tj,. The notations T<T", TQ T’ mean that T is a quasi-affine trans-
form of T”, respectively that 7 can be injected into T’ (cf. e.g. [15]).
The following result will be frequently used in the sequel.

Lemma 1.1. ’If T and T’ are operators of class Cy and T<T’ then T and T’
are quasisimilar.

Proof. Cf. [16], Theorem 1 or [4], Corollary 2.10.

Lemma 1.2. Let {m};>, be a sequence of pairwise relatively prime inner func-

tions. If the operator T= é S(m;) is of class Cqy, the Jordan model of T is S(m),
i=0

m=m1‘.

Proof. If Tis of class C, it follows that T is a weak contraction (cf. the proof
of [6], Lemma 8.4) and from the assumption we easily infer d.=m;. The conclusion
follows by [6], Theorem 8.7. ,

For two operators T and T° we denote by (7", T) the set of intertwining
operators

Ly | F(T',T)={X: T'X = XT).

Let us recall (cf. [3], Definition 2.1) that X¢€#(7", T) is a lattice-isomorphism
if the mapping MM—(XM)~ is an isomorphism .of Lat (T') onto Lat (7).

Definition 1.3. An operator T has p;operty (P) if any injection A€{TY} is
a quasi-affinity.
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We introduce the property (Q) as in [19]:

Definition 1.4. An operator T has property (Q) if for any AE{T} T |ker 4
and Ty, 4 are quasisimilar.
Obviously (P) is implied by (Q).

Lemma 1.5. The operator T of class C, acting on the Hilbert space © has the
property (P) if and only if there does not exist $'cLat(T), =9, such that T and
T|9’ are quasisimilar.

Proof. Let T be quasisimilar to T|9", H'¢Lat(T) and let X: H—+H " be a
quasi-affinity such that (7}9") X=XT. Then A=JX (where J denotes the inclusion
of & into ) commutes with T and ker A={0}. If T has the property (P) we infer
9'=(49)~=9. Conversely, if A¢{TY is an injection, T and T|(4$H)~ are quasi-
similar by Lemma 1.1. ‘

We shall denote by H;” the set of inner functions in H*. The set H; is (pre)-
ordered by the relation

(1.2) m=m’ if and only if [m(2)|=|m )|, |zl<1.
Obviously m=m" if and only if m divides m’. The relations m=m’ and m'=m
imply that m and m” differ by a complex multiplicative constant of modulus one;

we shall not distinguish between the functions m and m’ in this case.
Let us recall (cf. [4]) that a Jordan operator is an operator of the form

(1.3) SMy=@ S(my), m,=M()

where M is a model function, that is M is an inner function valued mapping defined
on the class of ordinal numbers and

m,=m,; whenever o= f;
(1.9) _

m,=my; whenever &= f;
(1.5 m, =1 for some ¢,

where & denotes the cardinal number associated with the ordinal number o

The Jordan model S(M) is acting on a separable space if and only if m,=1,
where o denotes the first transfinite ordinal number. In this case the Jordan operator
is determined by the sequence {m;};2,. If m,=1 for some n<w, we shall also
use the notation S(mqg, m,y, ..., m,_,) for S(M) (cf. [13]). If S(M) is the Jordan
model of the operator T of class C,, we shall use the notation m,[T]=M (&) (cf. [4]).
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2. Hyper-invariant subspaces of operators of class C,

In this section we continue the study of hyper-invariant subspaces for the class
C, begun by UcHIYAMA [18] (for the case of operators of class Co(N)). The following
Proposition extends [18), Theorem 3 and Corollaries 4 and 5 to the class of general
Jordan operators.

Proposition 2.1. Let T=S(M) be a Jordan operator acting on the Hil-
bert space

(21) 5(M) =& 5("14)3 m, = M(a)

(i) A subspace M H(M) is hyper-invariant for T if and only if it is of the form
2.2) M= mH*m HY, m]=m,,

and the functions M" and M” given by M"(2)=m, and M’'(x)=m,m] are model
Sfunctions.

(i) If M is a subspace of the form (2.2) then T'=T|M is unitarily equivalent
to S(M’) and T"=Tg, is unitarily equivalent to S(M"). In particular,

2.3) ' My = Mg Mpn
if M is hyper-invariant.

Gii) If WM,, M,cHyp Lat (T') are such that T|M, and T|M, are quasisimilar,
we have M, =MN,.

Proof. We shall denote by Py, , the projection of H* onto $(m,), by Fs(m.)
the projection of H(M) onto H(m,) and by J, the inclusion of H(m,) into H(M).
By the lifting Theorem (cf. [12], Theorem I1.2.3) {T'}" is strongly generated by the
operators (T), where Yy€H™, and the operators 4;, given by

2.4 { Age = Ty Py Poimyy  If 2= P;
. Agy = Jp(mglm) Py, if o= B,
:and therefore the subspace M H(M) is a hyper-invariant subspace if and only

1t is invariant and A,;MCIM for each « and B. Let us assume that M is hyper-
:dinvariant. Because Aa,S)JI:Ps(mz) MM we have

{2.5) M=M,

where I, €Lat (S(m,)), say M,=m] H*Om, H?; therefore M is of the form (2.2).
Now let « and f be ordinal numbers such that a«<f; the conditions 4,,McIN
and A4, MM are equivalent to Ps(m’)‘JJI,CEDI,, and (m,/mg)M;CM,. We infer
memy H® and (m,/mgymz€m, H® so that m=m; and m,/m]=my/mj, respec-
tively; therefore M’ and M ” are model functions.
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Conversely, let M be given by (2.2) and assume M’ and M” are model func-
tions. It easily follows that Ps(,,,ﬁ)ﬂﬁ,,cﬂltﬁ and (m,/mg)M;IM, whenever a<p.
Thus A4,McB for each « and B so that McHyp Lat (T) and (i) follows.

To prove (ii) let us remark that, if M is given by (2.2), we have T[IMM= P S(m)|M,
and Tnl=@& S(m)mt, where WM,=m; H2om,H?* and S(m,)|M, is unitarily
equivalent to S(m;) while S(m)yn. is unitarily equivalent to S(m;). If M is hyper-
invariant then S(M’) and S(M ") are Jordan operators and therefore they are the
Jordan models of 7” and T”, respectively. In particular my =my=my/my=my/mz.
and (2.3) follows.

Finally, if M,, M,cHyp Lat(7) and T|M,, T|M, are quasisimilar it fol-
fows that 7|9, and T|M, have the same Jordan model. By (ii) 9, is determined
by the Jordan model of* T|M,. Therefore M,=M, and (iii) follows.

Remark 2.2. The proof of Proposition 2.1 can be applied with minor changes
to the description of Hyp Lat (T) when T= ¢ S(m;) and {m;};c, is a totally
jeJ

ordered subset of H;>.
For further use let us note that the general form of a subspace McHyp Lat (7)) is

.5) 93?=j?l(m}’H26ij2), m;=m; for jcJ

where mj=m; and m;/m]=m/m;, whenever m;=m,.
Remark 2.3. Let the subspaces I; be given by

(2.6) - M; = @ (m;@@H*6mM,H?), j=1,2.

Then )

MMM, = D (my(2)V my(x) H2O m, H?),
Q@ {

M VM, = B (my () Amy(e) H2O m, H?);
in particular MM, if and only if m (¢)=m,(x) for each a.

We shall now characterize the Jordan operators having a totally ordered lattice
of hyper-invariant subspaces thus extending [18], Theorem 6.

Proposition 2.4. The lattice Hyp Lat(T), T=S(M), is totally ordered if
and only if one of the following situations (i), (ii) occurs:

n n—1 n
i) my = (l—z:_i] and mae{l, (i] s (z—a ) } for each «, with la]<l1

az 1-az 1-—-az
and a natural number n.

(i) my=exp [ZE{—Z'] with |a|=1, t=0, and m,=m, whenever m,# 1.
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Proof. For two inner divisors m, m’ of my we have (ran m(T))~ c(ran m’(T))~
if and only if m=m’ (cf. [4]), Lemma 1.7). If Hyp Lat (T") is totally ordered it fol-
lows that the lattice of divisors of mr=m, is also totally ordered. Therefore we
have either mo=( lz—a ] (la]<1, n a natural number) or m0=exp(t ii;]

(lal=1, 1=0).

z—a
1—az
decreasing function of z. By Proposition 2.1 and Remark 2.3, Hyp Lat (T') is iso-
morphic to the lattice of natural number valued decreasing functions k(o) such
that k(x)=n(x) and n(x)—k(x) is also decreasing. Assume there exists «, such
that m=n(@)¢{n, n—1,0} and define k,(x)=max{n@—1,0} and k()
=min {m, n(«)}. Then we have k;(0)=n—1=k,(0)=m and k;(e)=m—1)<
<k,(ag)=m so that k; and k, are incomparable. Thus we necessarily have
n(@)e{n,n—1, 0}. Conversely, if n(x)€{n,n—1, 0} for every a, let us take two
functions k,, k, of the type considered before. If k, and k, would not be compara-
ble there would exist a<f such that #(B)0 and, by example, k,(e)<k,(a),
k,(B)=k,(B). From the assumption it follows that n(x)=n(f)+1 so that n(f)—
—ky(B)=n(0)—ky{x)=n(f)+1—k,(«) and therefore k,(¢)—1=k,(f). Now k,(B)=
=k, (a)=k,(x)—1=k,(B), a contradiction. This shows that Hyp Lat (7) is totally
ordered in this case.

Now let us consider the case m,(z)=exp [t —-] Then m,(z)=exp (t (a)———)

n(x)
Let us consider the first situation. Then m,=[ ) where n(x) is a

where t(x) is a positive number valued decreasing function. Again by Proposition
2.1 and Remark 2.3, Hyp Lat (T) is isomorphic to the lattice of positive number
valued decreasing functions s(«) such that s(x)=t(x) and t(x)—s(x) is also decreas-
ing. Assume there exists oo such that #(x)¢ {z,0} and let us take O<e¢<
min {#(xg), t—#(ag)}. Then the functions s,(¢)=max {#(x)—¢,0} and s,(0)=
=min {#(«), #(xe)} are such that s5,(0)=1(0)—e=>s,(0)=1(x,) and

s1(at) = 1(og) —€ < 55(at) = t(x0);

therefore s, and s, are incomparable. Thus we necessarily have t(x)€{t, 0} if
Hyp Lat (T) is totally ordered.

Conversely, let us assume #(x)€ {t, 0} for each a. If s is a function of the type
considered above and #(x)>20, we have s(0)=s(x) and t—sO)=t(x)—s(®)=
=t—s(a) so that s(e)=s(0). Thus s(e)=s(0) if #()¢0 and s()=0 if 2(a)=0.
It is obvious that Hyp Lat (T) is totally ordered in this case also. The Proposition
is proved.

UcHryaMA [18] has shown that two quasisimilar operators of class Cy(N) have
isomorphic lattices of hyper-invariant subspaces. This result is also verified, as we
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shall see in sec. 4, for operators of class C, having property (P). The same thing
is not true for arbitrary operators of class C, (cf. Example 2.10). However we can
find a connection between Hyp Lat (T) and Hyp Lat (S) if S is the Jordan model
of the C, operator T. This allows us to extend [18], Corollaries 2 and 5 to arbitrary
operators of class Cy.

Theorem 2.5. Let T be an operator of class C, acting on the Hilbert space
$ and let S=S(M) be the Jordan model of T. Let ¢: Hyp Lat (S)—~Hyp Lat (T).
be defined by

(2.8) (M) = re Xr 5 XM

and let : Hyp Lat (T)~Hyp Lat (S),
V.. Hyp Lat(T*) - Hyp Lat(S¥)

be defined by analogous formulas.

(i) There exist Ye#(S,T) and Xc#(T,S) such that Y(MM)=(YM)~=
=X"1(M), McHyp Lat (T). In particular S|\ (M) is unitarily equivalent to the
Jordan model of T|IM.

(ll) IPO(P = idHprat (S)-
(i) ¥, (@D) = (Y (YL, McHyp Lat (7).

Proof. By [4], Theorem 3.4, there exists an almost-direct decomposition
29 H=V9h. 9HELat(T),

such that T|$, is quasisimilar to S(m,) and H,4,19+, if « and g are different
limit ordinals and m, n<w. If we put

(2.10) = (BV Hy)L€Lat(T*)
Fa
we also have $=V HF by [4], Lemma 1.11; because

(2.11) Tox(Pgr19) = (Pgr|9)(T1H)

and obviously Pgx|9, is a quasi-affinity, Tg* is also quasisimilar to S(m,). We
choose quasi-affinities X,: Sm)—~9,, Y. H—+H(m,) such that (T|HHX,=
=X,S(m,) and S(m,)Y,=Y,Tg+ and moreover

(212) ’ 2 ”Ya+n” = 1: Z "Xa+n” = 1

n<eo n<ow
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for each limit ordinal «. Then we can define quasi-affinities X¢# (T, ), YeF(S, T’
by the formulas

(2.13) Xh= 3 X,h,, h = ©h, €H(M),
Yh= @ J,Y,Pg:h, heH.

‘Indeed, from (2.12) it follows that X and Y are bounded (of norm =1).
Let us remark that Y,(Pg:|9,)X,€{S(m,)} is a quasi-affinity such that by
‘Sarason’s Theorem {10] we have

(2.14) Y, (Pgx|9) X, = u,(S(my), u.cH=, uAm,=1.
If McHyp Lat(S) we obviously have y(p(M))cIM. Now, let M be given
by (2.2) and denote M,=m, H :em,H> Then, by (2.14),
XX~ o (YxXMm)- =Fx,m)- = (YGPSZ X, M) =
= (1, (S(m))M,)~ = M, and therefore M = (YXM)~  y(p(W));
ithis proves (ii).
Let us consider the operators Rg,€ {T}" defined by

{(2.15) { ;ﬂa _ ;}?’gi (7;3 }),;P%: . ifif aaé >ﬁ ﬂ
ga = Ap\Mg/My) Lo Ly )
-and let Ag,€{S}" be defined by (2.4). Then, for a=p,
YRy, = JpYy Pz Xy Py Yo Pz =

= Jpus(S(mp)) Ps (mg) Ya Py =

= 15(S)J5 Py mp) Poma YPz = 4 (S) Aga Y Py
:and because A;,YP(g+)1 =0 we obtain
(2.16) YRy, = up(S) Ag, ¥

in this case. The relation (2.16) is proved analogously when a=p. If t¢ Hyp Lat (T)
and M=(YN)~ we infer from (2.16) u4(S) Az, MMV, Because w,Am,=1 we
infer by [3], Corollary 2.9, that u,(S(m,))|(4, M)~ is a quasi-affinity; therefore
WM (1, (S(m,)) (A D) ™)~ =(A4,, D)~ =(ﬁ5(m 2P ~. As in the proof of Proposi-
tion 2.1 it follows that M= M,, M,=m, H*©m,H?cLat (S(m,)) and for a<p,

ugmiemgH? and u,(m,/mg)mzem, H?. Because u,Am,=1, usAmg=1 we also
have u,Am} =1, usAmg=1 so that from the preceding relations we infer m, €my H?,
Tespectively (m,/mg)mz€m; H2. By Proposition 2.1 we proved

{2.17) (Y®)~cHyp Lat (S) whenever 9<¢Hyp Lat (7).



C,-Fredholm operators. 11 11

Analogously we infer
Q.17 (X*MN)~ ¢HypLat(S*) whenever 9tcHypLat(T™).

If MecHyp Lat () we have X*(ML)c(YN)L. Indeed, if heM, geNL, we
have (Yh, X*g)=(XYh, g)=0 because XYhe9. An analogous argument shows that

(2.18) : Y (L) < (P(O)+, NcHyp Lat (7).
In particular we have

i i i
THRL < SHX*RL)™ < SHY, (L) < SHEOY)L < S ML
Because Pyq 1 ¥ |9+ has dense range and Sygy L (PygyL Y[R =(Pyay L Y[R Ty o

it follows that S*|(¥Y M)+ < T*|M+. By [16], Theorem 1 (cf. also [4], Corollary 2.10)
the operators T*|JL, S*|[(X*RL)~, Sy, (ML), SH(Y ()L and S*(YM)*L are
pairwise quasisimilar. Because S* is also (unitarily equivalent to) a Jordan operator
it follows by Proposition 2.1 (iii) that (X*R4)~ =y (R =Y (9))*=(YRN)*+. This
proves the assertions (i) and (iii) of the Theorem.

The following Corollary extends [18], Corollary 5, to arbitrary operators of
class C,.
T X
07"
triangularization of T with respect to the decomposition 9 =IM B M+, Mc Hyp Lat (T),
we have )
2.19) My = My Mpa.

Proof. If Y is as in Theorem 2.5, T” is quasisimilar to S|y (M) and T” is
quasisimilar to S, L. The Corollary follows by Proposition 2.1 (ii).

Corollary 2.6. If T is an operator of class Cy on  and T=[ is the

Corollary 2.7. Let T and T’ be two quasisimilar operators of class C,, let S be
their Jordan model and let n: Hyp Lat (T)—~Hyp Lat (T”), ¢: Hyp Lat (T)—~
-Hyp Lat (S), ¥': Hyp Lat (T")—~Hyp Lat (S) be defined by formulas analogous
to (2.8).

() Won=\y; in particular T\ and T'|n(M) are quasisimilar for
MeHyp Lat (T).

(i) If McHyp Lat (T"), W eHyp Lat (T’) are such that T|M and T'|M’ are
quasisimilar, then Ty,+ and T, 1 are also quasisimilar.

Proof. The inclusion (/ on)(M)cy(M) is obvious for WMEHyp Lat (7).

Then by Theorem 2.5 (i) we infer T|iméS|(¢’o;1)(ﬂll)%S|l,l/(9J2)<T|ﬂJI. By [16],
Theorem 1, T|M, S| on)(IMR), S|Y (M) are pairwise quasisimilar and the equality
Y on=y follows by Proposition 2.1 (iii). Now it is obvious by Theorem 2.5 (i)
that T|M and 77 |y(M) are both quasisimilar to S|y (M); (i) follows.
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To prove (ii) we remark that, by Theorem 2.5 (i), S|y (%) and S|Y’'(M’) are
quasisimilar and therefore ¥ (M)=y'(M’) by Proposition 2.1 (iii). Again by Theo-
rem 2.5 it follows that Ty, 1 and T” g, ) are both quasisimilar to S ;. where =y (M) =
=’(M’). ‘Corollary follows.

Corollary 2.8. LetT, S, @,y be as in Theorem 2.5 and let ¢,: Hyp Lat (S*)—~
—~Hyp Lat (T*) be defined by a formula analogous to (2.8). Among the spaces
NeHyp Lat (T) such that T|N is quasisimilar to S|M for a given MEHyp Lat (5),
@ (M) is the least one and (¢* (M) is the greatest one.

Proof. If TR is quasisimilar to S| we have Yy(M)=M by Theorem 2.5
(i) and Proposition 2.1 (iii) and therefore @(@M)=¢(Y(N))cR. Now, by Corol-
lary 2.7, T|9% and S|M are quasisimilar if and only if Ty and Sg1 are quasi-
similar. Because ¢, (M) is the least hyper-invariant subspace of T* such that

T, Ly and Sg are quasisimilar, the last assertion of the Corollary follows.

Corollary 2.9. Let T, S, ¥, ¢, @, be as before. The following assertions are
equivalent:
(i) o is a bijection;
(ii) ¢, is a bijection;
(i) @ @)=, (M*) for McHyp Lat (S);
(v) if My, N.€Hyp Lat (T) and T|N,, TN, are quasisimilar, we have N; =N, .

Proof. By Theorem 2.5 (ii) ¢ is a bijection if and only if ¥ is one-to-one.
By Theorem 2.5 (i) and Proposition 2.1 (iii) ¥ is one-to-one if and only (iv) holds.
Thus the equivalence (i)<>(iv) is established.

By Theorem 2.5 (iiij) we have ¢, (MY)=y M)+ so that Y is one-to-one if
and only if ¥, is one-to-one. This establishes the equivalence (i)« (ii).

T|p@) and T|(p,®*))* are both quasisimilar to S| so that (W)=
=(p, (M1))L if (iv) holds. Conversely, if (iii) holds and T[R,, T|N, are quasi-
similar, by the preceding Corollary we have @(M)CR;c(p,(WML)L=p (M),
Jj=1,2, where M=y @)=y (N,). Thus N,;=N,=¢(@N) and the Corollary is
proved.

Example 2.10. Let S=Sm)® and T=S® S(m), where mcH and
S(m2)® denotes the direct sum of R, copies of S(m?). By [2], Corollary 1, S is
the Jordan model of T. The subspaces ker m(T), ran m(T) are hyper-invariant for
T and T|ker m(T), T|ran m(T) are both quasisimilar to S(m)®. By Corollary 2.9
it follows that in this case ¢ is not onto, ¥ is not one-to-one.

If we take in particular m(z)=2z2 (|z|<1) it is easily seen that
card (Hyp Lat (T))=9 and card (Hyp Lat (S))=5. Thus Hyp Lat(7) and Hyp
Lat (S) are not isomorphic. Moreover, one can verify, by the proof of Propositi-
on 2.4, that Hyp Lat (T) is not totally ordered while Hyp Lat (S) is totally ordered.
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3. A theorem on monotonic sequences of invariant subspaces

If T is an operator of class C,acting on H and H;€Lat (T) aresuchthat H;CH; .4,
Jj=0,1,..., and 9=V 9;, itis clear that my is the least common inner multiple
jz0

of the functions Mz, j=0,1, .... The following Theorem shows that the same
thing is verified for all the functions appearing in the Jordan model of T.

Theorem 3.1. Let T be an operator of class C, acting on the Hilbert space
$ and let {9;};cLat(T) be such that H;CH;s1, 0=j<oo, and H=V 9;.
: j=0

Then
(3.1) m,[T] = 1\2/1 m,[T|H;]

Jor each ordinal number o.

i i

Proof. Because T|9H;<T|9;+1<T it follows that m,[T|H;)=m,[T|H;..]=
=m,[T] for each a (cf. [4], Corollary 2.9). Let us consider firstly the case a=w
and denote m= V m,[T|9;]; then m divides m,[T]. Because m,[T|H;] divides

m we have #Tq(m(r)s,)-—l‘ns (m)=a (cf. [4], Remark 2.12). Because obviously
(m(MH)~-=V om(T)$5, we infer pr(m)=pyems-=Ro 8= and therefore
j=

m,[T] divides m by [4], Definition 2.4, Thus m,[T]=m and (3.1) is proved for
a=w.

Now let us recall that by [4], Theorem 3.3, there exists an orthogonal decom-
position
(3.2 S$=0 M, McLlat(T),

such that T, is quasisimilar to @ S(m,,;[T]) for each limit ordinal . If
J<ow A
we define ®;=(Py 9;)~ we obviously have im(,=j\§/0 K]; and T,’§j<l Tg, so that

T |Rj<'T |$; by [4], Corollary 2.9. Again by [4], Corollary 2.9 we infer m,[T|];]=
=m,[T|9;], <o, and therefore it will be enough to prove the relation (3.1)
for =M, and H;=8K;, that is for T acting on a separable space.

We may assume that T is a functional model, that is

(3.3) $ =9(0) = H* o OH*()

where U is a separable Hilbert space, @ is a two-sided inner function, @€ H;* (£ (2)),
and

(3.4 Th = S(O)h = Py 1h, 1(2) = z, h€H(O).
With eac_h subspace $; we can associate by [12], Theorem VIL.1.1 a factorisation
3.5) 0 =0Poew
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such that the functions O and @? are two-sided inner,
3.6) $; = 0P HX (WO OH*(N),

and T|9; is unitarily equivalent to S(@{). The inclusion $;C$H;;, is equivalent
to OP H2 (W) OF), H*(U) and therefore

3.7 0P = 02,Q; for some Q;€H (L))

The condition $= V 33] is equivalent to H2()= V OPH?(). In partic-
ular, if »cl, we have hm lu—Po®pzayull =0. It is easnly seen that Pe(»panpu=
=09 0P 0)*u. Indeed, 1t is enough to verify that the scalar product

(u—0P ()02 0y u, O (2)z"v)

vanishes for v€U and natural »; this is a simple computation. Thus we have
u=1lim 6P P (0)*u, uc. Because the functxons 0P eY(0)*u are uniformly

jroo

bounded we also have uAwA...Au,=lim (OP)"(OP(0))\" (... Au,),
- .

Uy, Uy, ..., u,€ U, and therefore

NAG LS AU ERTY

Because _V (0PN H2(UA") is invariant with respect to the unilateral shift on

H2QUM) we necessarily have

(3.8) HXUMN) = (@}2))/\"H2(II/\").
j=0
The subspaces ’
(3.9) ) = (0P "HUA")© ON"HE(UA")

are invariant with respect to S(@"") and because O M=(@P)""(OMM s a
regular factorization, S(©"")|H7 is unitarily equivalent to S((@P)""). By (3.7)
we have (OP)""=(@¥ )" Q}" and therefore $Hjc$},, for 0=j<co. Finally,
relation (3.8) shows that $(0"")= ‘Vo 9} and therefore

j=

(.10 me[S(ON)] = V molS (O17) Hi1.

By [6], Corollary 3.3, and relation (2.5) we have m,[S(O")]=m,[T1m,[T]...

m, [T} and mo[S(O)|H])=mo[S(OP)")]=mo[T|$1my[T|D]...m,_,[T|H,].

Let us put m=V m[T|H;] for k<w; then m divides m,[T] and relation (3.10)
jz0

shows that
mo[TYm, [T]...m, [T} =memy...my_y, 1=n-<o.
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Therefore we have necessarily m,[T]=m, and (3.1) is proved for a<w. The:
Theorem follows.

Remark 3.2. The relation (3.1) is not verified if the sequence {§,};~, is replaced
by an arbitrary totally ordered family of invariant subspaces. Indeed, let us take a.
Jordan operator T=S(M) such that m,=1, where 2 denotes the first uncount--
able ordinal number. The subspaces 5a=ﬁﬂa H(mg) for a<Q are separable and.

HS(M)= V $,. The relation (3.1) is not verified in this case because m,[T|H,]=1

while it 1s pos51b1e to have m,[T]=1. However the relation (3.1) is verified for-
a<w and for any totally ordered family {§;};¢, of invariant subspaces such that.
H= V $;. Indeed, if $ is separable we can select an increasing sequence {9; };_,

such that H= V 55 and then apply Theorem 3.1. If § is not separable, the proof”

of Theorem 3. 1 shows how to reduce the problem of verifying (3.1) to the separa--
ble case.

Let us recall that for a contraction T of class Cy and for a subspace ¢ Lat, (T):
such that T, is a weak contraction, dr(9) denotes the determinant function of T
(cf. [3], Definition 1.1).

Corollary 3.3. Let T be a weak contraction of class Cy acting on $ and let
9H€Lat (T), 0=j<-oo.

0) If 9,C9;41 and V H;=9, we have dr= V dr (9))-

(i) If $;,59;+, and m §,=(0}, we have A "ar($)=1.

Proof. (i) Obviously V ar(9;) d1v1des dy. Now, my[T19;1m [T|H;]... m,[T|9;].
divides V dr(9;) for every natural n; by Theorem 3.1 it follows that m,[T]m,[T]...
.m [T] d1v1des V dr(9;) and therefore dy divides _V dar(9)).
(ii) Since T*i 1s also a weak contraction we infer by (1) dr= V dr(93). Because:

dr=dr(9;)dr(9;") (cf. [6], Proposition 8.2) we obtain

dT = (j/z\0 dr(ﬁj)) ‘ (j\z/o dT(g)}L)) = (j/z\o dT(sjj)) . dT'
The Corollary follows.

Proposition 3.4. Let T be an operator of class C, acting on the separable
Hilbert space . Then

3.11) A m;[T]=1

<o



16 H. Bercovici

if and only if for any sequence {$;}7—,CLat (T) suchthat $;59;.,and ( $;={0},
Jj=0
we have

(G.12) A, molT19,]=1.

Proof. As shown in the proof of [5], Theorem 1, there exists a decreasing
sequence {9;};_,CLat (T) such that () H;={0} and my[T|H;)=m;[T] so that
FE

(3.11) follows from (3.12).
Conversely, let us assume (3.11) holds. For any natural number k we have the

.decomposition
= (m(T)H;)" e = VEDNE, my = m,[T).

Because obviously mg[Twt] divides m;, it follows by [12], Proposition IIL6.1, that
(3.13) molT[9H;] divides my[T|M¥).m;, 0=j < o,

Now, Bec(m(T)H)~ and T|(m(T)$H)~ is an operator of finite multiplicity,
in particular a weak contraction (cf. [6], Theorem 8.5). Because ﬂ ‘Dt" c ﬂ 9= {0}
‘we infer by the preceding Corollary /\ dT(iUt") 1, in partlcular /\ mo[Tl‘.)Jl] 1.
By (3.13) /\ mo[T|9H;] necessarily d1v1des m,, and the relation (3. 12) follows from

the assumptlon The Proposition is proved.

4. Operators of class Cy having property (P)
L J

In [16], Theorem 2, the operators of class Cy and of finite multiplicity were
shown to have property (P). In [3], Corollary 2.8 we extended this result to the class
of weak contractions of class Cy. We are now going to characterise the class of C,
operators having property (P).

Theorem 4.1. Let T be an operator of class C, acting on the Hilbert space $.
Then T has property (P) if and only if

(4.1) A m[T]=1.

j<o
In particular, if T has property (P), § is separable and T* also has property (P).

Proof. Let us assume (4.1) holds and denote m;=m;[T]. For each j<w
the subspace

“2) $; = (my(1)9)"
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is hyper-invariant for T and pur(9;)<oo (cf. [4], Remark 2.12). If A¢{T} is an
injection then A4|9;€{T'|9;}" is also an injection and by [16], Theorem 2,

“43) (49)™ > (49H)™ = 9;.
We have (jV $;)t= N ker m;(T*)=%H° and the minimal function m® of
<o j<o

T*9® divides m], j<w. By the assumption we infer m°=1 so that $°={0}
and therefore \/ 9;=9. From (4.3) we infer
<o

(44) (49)" > V 9,=5

that is, 4 is a quasi-affinity. The injection A being arbitrary it follows that T has
property (P).

Conversely, let us assume that (4.1) does not hold. We claim that there exist
an inner function m such that 7 and T@® S(m) are quasisimilar. If $ is separable
we may take m=] A m;[T] and apply [1], Lemma 3. If § is nonseparable we may

<o

take m=m,[T]. Then T@® S(m) and T have the same Jordan model so that they
are quasisimilar. Let us take a quasi-affinity X such that

(4.5) (TeS(m) X = XT.

Let us put '
4.6 M= (X*{0}oH(m))-, N=9H0M.

Then MeLat(T*) and T*M is quasisimilar to S(m)*. If P, and P, denote
the orthogonal projections of $HH(n) onto H, H(m), respectively, the operator

%)) Y=PX|%
satisfies the relation '
4.8 TY = Y(T|N).

We claim that Y is a quasi-affinity. We show firstly that ran Y* is dense in .
Indeed, because Py X*|{0}d H(m)=0 (by the definition (4.6) of M and RN), we have

4.9 ranY* = Pa X*(HD {0}) = Pa X*(HDH(m))
which shows that
4.10) (ranY*)~ = (Py(ran X*)~)~ = P H = N.

Now let us show that ker Y*={0}. To do this let us remark that the sub-
space :
4.11) KR =kerY*@H(m) = ucHo9H(m); X*ucM}

is invariant with respect to (7@ S(m))*, (X*Q)~=M and (THM)X *m
=X*(T® S(m))*|] so that T*M and (T S(m))*|} are quasisimilar. By the
remark following relation (4.6), (T® S(m))*|{ is quasisimilar to S(m)*. But

2
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(T® S(m))*}{0}® H(m) is unitarily equivalent to S(m)* so that K= {0} H(m) by
[14), Theorem 2, and the injectivity of Y* is proved. Relation (4.8) and Lemma 1.1
show that T and T|M are quasisimilar. Because M= {0}, we have M=$H so that
T does not have property (P) by Lemma 1.5.

Theorem is proved.

Corollary 4.2. An operator T of class C, has property (P) if and only if there
does not exist T’ of class Cy on a nontrivial Hilbert space such that T and T® T’
are quasisimilar.

Proof. Let Tand T@® T’ be quasisimilar. Since T~ acts on a nontrivial space,
there exists a nonconstant inner function m such that T@ S(m)<' T. Because

obviously T % T® S(m), Teo S(m) and T are quasisimilar by [16], Theorem 1.
By the proof of Theorem 4.1 it follows that T does not have the property (P). The
converse assertion of the Corollary follows from the proof of Theorem 4.1.

Corollary 4.3. If T and T’ are two quasisimilar operators of class C,, then T
has property (P) if and only if T’ has property (P).

Proof. Theorem 4.1 exprimes the property (P) in terms of the Jordan model
so that the Corollary is obvious.

Proposition 44. Let T= [(1; g,,] be the triangularization of the operator T

of class Cy with respect to the decomposition H= ®9H", H'¢Lat (T). Then T has
property (P) if and only if T’ and T" have property (P).

Proof. Let S(M), S(M’), S(M”) be the Jordan models of T, T’, T”, respec-

tively. Let us assume that T has property (P). Because S(M ’)<l S(M) it follows
that m;, divides m, for each a (cf. [4], Corollary 2.9), therefore by Theorem 4.1 we
have A mj=1 and T has property (P). Analogously T”* has property (P) because
j<o
T* has property (P) and it follows by Theorem 4.1 that T” also has property (P).
Conversely, let us assume that T’ and T” have property (P) so that

4.12) A mj= A mj=L1

j<o. i<o

We consider firstly the case u;.<-<o. In this case the space
4.13) 9; = (o0} (T)9) cHyp Lat (1), j <o,

is contained in $’@(M](T")H")~ so that up(H;)<e<> and by [16], Theorem 2,
T|9; has property (P). Because A mj=1 we have \ $;=9 (cf. the proof of

j<ow j<o
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Theorem 4.1) and the first part of the proof of Theorem 4.1 shows that T has prop-
erty (P).
Considering the operator T* instead of T, it follows that T has property (P)

in the case p;.<eo also.

We are now considering the general case pp.=pp-=¥8,. Let us define the hyper-
invariant subspaces $; by (4.13). The operator T|§' @ (m[(T”)$"”)~ has prop-
erty (P) because prs g (rngn-<< and from the first part of the proof of our
Proposition it follows that T|H; also has the property (P). Because V ;=9

we infer as in the first part of the proof of Theorem 4.1 that T has property P).
The proposition is proved.

Corollary 4.5. If T is an operator of class C, having property (P) and
MeLat, (T), then Ty, also has property (P).

Proof. We have MM=UEB, U, B¢Lat (T) and T|U has property (P) by
Proposition 4.4. Again by Proposition 4.4 and Theorem 4.1 it follows that T,; has
property (P) because To=(T|U)*|9M.

Proposition 4.6. Let T be an operator of class Cy acting on 9 and let
$H;cLat (T) be such that H;CH;41, j<w, Ho={0} and H= V 9;. Then T has
property (P) if and only if TR » 8;=9;1109; (j<w) have property (P) and
“4.14) A [T l]_l

i<o

Proof. If T has property (P) then T, have property (P) by Corollary 4 5.
By Theorem 4.1 and Proposition 3.4 we infer the necessity of (4.14).

Conversely let us assume that Tg %, have property (P) and (4.14) holds; let us
put m;=my[Tg1]. If we define )

(4.15) L; = (m;(T) $)~€Hyp Lat (T)
then, as in the proof of Theorem 4.1, from (4.14) we infer \/ £,=% and the first

i<o
part of the proof of Theorem 4.1 shows us that it is enough to prove that T|2;
have property (P). Now, obviously £;C$; so that by Corollary 4.5 we have only
to show that T'}$H; have property (P). This easily proved inductively since the tri-

angularization of T'|9;,, with respect to the decomposition $;.,=9;®RK; is of
the form T15j+1=[g|5f ]A,;f] The Proposition follows.

Corollary 4.7. Let T Jbe an operator of class C, acting on $ and let
HicLlat (T) be such that 9;11C9;, j<w, HDo=9H and () 9;={0}. Then T has
property (P) if and only if TRJ, KR;=9;09;+1 (j<w), h:z;;property (P) and
(4.16) A mo[T19;]= 1.

J<o

2%
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Proof. By Theorem 4.1, T has property (P) if and only if 7* has property (P).
Therefore we have only to replace T by T*, $; by Sj;-'- and apply the preceding Prop-
osition.

We are now going to extend [18], Theorem 1, and [3], Corollaries 2.4, 2.8 and
2.9 to the case of C, contractions having property (P).

Proposition 4.8. Let T and T’ be two quasisimilar operators of class C, acting
on 9, &, respectively, and having property (P). Let us define

¢: Hyp Lat(T) - HypLat(T") and n: Hyp Lat(7T’) -~ Hyp Lat(T)
by
@.17) M= V XM W= V YR
Xes (T, T) YES(T,T)
(1) Each injection A< S(T’, T) is a lattice-isomorphism.

(ii) EM)=(4IM)~ =B~'M, Mc Hyp Lat (T), for any quasi-affinities A¢ F(T’, T),
BeA(T,T).

(iii) & is bijective and n=¢"1.

Proof. (i) If A€#(T", T) is an injection, T is quasisimilar to 77|(4%$H)~ so
that 7" and 77 [(49)~ are quasisimilar. Now T has property (P) so that (49)~ =9’
by Lemma 1.5 and A4 is a quasi-affinity.

Let &', 8”¢Lat(7) be such that (AR)~=(4K]")~=8K*; then we also have
(AR)~=8* with RK=8K'VK”. The operators T|R’, T|R” and T|R are quasi-
similar to T’|{*. By Proposition4.4 T|R has the property (P) and therefore
K=8/"=8 by Lemma 1.5. Thus we have shown that the mapping K& —~(4AK)~ is
one-to-one on Lat (7). Because we have shown that 4 is a quasi-affinity, the same
argument can be applied to T'*, T* and 4* thus proving, via [3], Lemma 1.4, that
A is a lattice-isomorphism.

(ii) Let us take any quasi-affinities A< # (T, T) and B<S(T, T’); by (i) 4
and B are lattice isomorphisms. For each M€ Hyp Lat (T'), BA€ {T'} so that BAD M
and since T|M also has property (P) by Proposition 4.4 and BA|Me{T|M} is
one-to-one, we infer by (i) (BAM)~ =M. Now, B is a lattice-isomorphism so
that we infer
4.18) BL(M) = (AM)~.

If XeJ(T', T), we have BX€{T} so that BXIMcM and by (4.18) XM
CB () =(4M)—; it follows that (M) (AM)~. Because the inclusion (AW~ <
c &) is obvious, (ii) is proved.

(iii) If Ac# (T, T), B #(T, T’) are quasi-affinities we have by (ii) (BAM)~ =M
and (ABR)~=N for any McHyp Lat(7T), NeHyp Lat (7). Because, again by
(i), EO)=(AM)~ and p(M)=(BRN)~, (iii) follows.
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The Proposition is proved.

Corollary 4.9. Let T, S, ¢, Y be as in Theorem 2.5. If T has property (P),
@ is a bijection and Yy=¢ L.

Proof. Obviously follows from the preceding Proposition.
The following result extends [3], Proposition 2.3, to the class of C, operators
having property (P).

Proposition 4.10. Let T, T’, T” be operators of class C, acting on 9, O,
9”, respectively, and let Ac S (T, T"), BEF(T, T") be such that AH <(BH")".
If T has property (P) then

0 (A7'BH)) =9 and (i) (A9’ NBH")™ D 49"

Proof. Because (ii) easily follows from (i), we have only to prove (i). We may
assume that 4 is one-to-one, B is a quasi-affinity and 7 has the property (P). Indeed,
we have only to replace 7, T/, T”, 4, B,by T|(BS")™, Tier gyt > Tgrerny L Al(ker )+,
B|(ker B)*, respectively. Now the operator T” has property (P) being quasisimilar
to T (cf. Corollary 4.3) and 7~ has property (P) being quasisimilar to T|(49")~
(cf. Proposition 4.4). Then the operators 7"®7” and T’'®T are quasisimilar
and have property (P) by Proposition 4.4. The operator X: $'@H"-H®H
given by ‘

4.19) X(Weh")=hKo(Ah'—Bh"), Woh"c¢H o,

is an injection. Indeed, X(W'@®h”)=0 implies A’=0 -and BA”"=AK =0, thus.
h”=0 by the injectivity of B. Because Xc¢ £ (T"®d T, T'®T") it follows by Prop-
osition 4.8(i) that X is a lattice-isomorphism. In particular X(X~1(H’® {0})) is
dense in ' {0}. But

X(X-1(9'@{0}) = {K®0; h'€$’ and Ah" = Bh” for some h"}
so that (i) follows and the Proposition is proved.

Corollary 4.11. Let T, T’, T”, A and B be as in the preceding Proposition.
If T’ is multiplicity-free then A= (BS") contains cyclic vectors of T".

Proof. Let us denote by P the orthogonal projection of ' @&$ onto $.
From Proposition 4.10 it follows that 4~1(B$”)=PX(X1($’ & {0})) is dense in:
$’ (where X is defined by relation (4.19)). Let us denote Hy=(X"2(H'® {O}))O
©ker (X|X~2(9'® {0p))cLat, (T'® T"). Then we have

T’ (PX|9e) = (PX[90) (T"® T")g,

and by Lemma 1.1 T and (T"@7T")g, are quasisimilar; in particular (I"&® T")g
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is also multiplicity-free. If A, is any cyclic vector of (I"@ T”) then PXho€ 471 (BSH")
is a cyclic vector of T’. Corollary follows.

Finally let us remark that the result of [4] concerning the quasi-direct decom-
position of the space on which a weak contraction acts can be extended, via Prop-
osition 4.8 (i), to the class of C, operators having property (P).

Corollary 4.12, Let T be an operator of class C, having property (P) and
acting on the (necessarily separable) Hilbert space  and let @ S(m;) be the Jordan
j<w
model of T. There exists a decomposition of

(4.19) =V 9;

j<oe

into a quasi-direct sum of invariant subspaces of T such that T\|9; is quasisimilar
to S(m,).

Proof. Cf. the proof of [4], Proposition 3.5.

5. Operators of class Cp having property (Q)

The following Lemma extends [19], Proposition 3, to the entire class of C,
operators.

Lemma 5.1. Let T andT’ be two quasisimilar operators of class C,. Then T
has property (Q) if and only if T' has property (Q).

Proof. Because (Q) implies (P), by Corollary 4.3 it is enough to prove the
Lemma for T and T having the property (P). Let XeS(T, T'), YeF(T',T) be
two quasi-affinities. By Proposition 4.8 (i) X and Y are lattice-isomorphisms. Let
us take A€{T’}; then B=XAY¢{T}. Obviously ker B=Y ~!(ker 4), X being an
injection. Because Y is a lattice-isomorphism we have (Y (ker B))~=ker 4 so
that Y|ker B is a quasi-affinity from ker B into ker 4. Because

Ylker B€ #(T'|ker A, T|ker B)

it follows by Lemma 1.1 that T'|ker B and T’ |ker 4 are quasisimilar. Analogously
Tyer g+ and Ty, 4 are quasisimilar. If T has the property (Q), the operators T[ker B
and Ti,.p. are quasisimilar and it follows from the preceding considerations that
T’|ker A and Ty, .. are quasisimilar. Since A¢{T’}’ is arbitrary it follows that 7"
has the property (Q). The Lemma is proved.

Lemma 5.2. For any inner function m and natural number k the operator
T=S(m,m,...,m) has the property (Q).
e, e —

k times
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Proof. By the lifting Theorem (cf. [12], Theorem II.2.3) any operator X¢€ {T}
is given by

.1 Xh = PgAh, heH = H(M)BH(M)S...®H(m)

ktimes

where A=l[a;],.; ;< is an arbitrary matrix over H>. As shown by NORDGREN [9]
(cf. also Sz{cs [17] and Sz.-NAGyY [11]) there exist matrices B, U, ¥ which determine -
by formulas analogous to (5.1) operators Y, K, L in {T} such that

(5.2) (det U)(det V)Am = 1;
(5.3) AU = VB,
(5.4) B = [bijlléi,j§k7 b‘j = 0 for 1 #j.

From (5.2) we infer as in [8] that K and L are quasi-affinities and therefore
lattice-isomorphisms by Proposition 4.8 (i). From (5.3) we infer

(5.5 XK=LY

so that K(ker Y)cker X and K l(ker X)cCker ¥; because K is a lattice-iso-
morphism it follows that (K(ker Y))~=ker X and therefore Tjker X and T|ker ¥
are quasisimilar Analogously Tke,x* and Ty« are quasisimilar. We have

Y= @ b;;(S(m)) and ker Y= EB (ker b;;(S(m))) so that T|ker Y is unitarily
equwalent (cf. [15], p- 315) to @ S(m;), where m;=mAb;;. Analogously we

can show that T, y, is unitarily equlvalent to 65 S(m;). We have shown T|ker Y
i=

and Ty..y. are unitarily equivalent; we infer that Tiker X and Ty x« are quasi-
similar. Because X is arbitrary in {T}’, the Lemma follows.

Lemma 5.3. If T® S has the property (Q) then T and S also have the prop-
erty (Q).

Proof. It is obvious since {T® S} >{TYdIUId{SY}.
The following Theorem characterizes the class of C, operators having the prop-
erty (Q) in terms of the Jordan model.

Theorem 5.4. An operator T of class C, has property (Q) if and only if
® Am=1, my=mT], and

j<o
(i) the functions my/my, my/m,, ... are pairwise relatively prime.

In particular, if T has property (Q), then T acts on a separable Hilbert space
and T* also has property (Q).
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Proof. Let T have property (Q). Then T also has property (P) so that the
necessity of (i) follows by Theorem 4.1. By Lemma 5.1 the Jordan model S(M) of
T also has the property (Q) so that S:' =8S(m)® S(m;,,), j<w, must have prop-
erty (Q) by Lemma 5.3. The matrix

0 mj/mj,y
(5.6) A= [0 0 ]
determines an operator X¢{S’}’ by the formula
5.7 Xh = Pg Ah, he9;= H(m)OH(M;+1).
Obviously

ker X = $(m,)® {0}
so that S’|ker X is unitarily equivalent to S(m;). Now
ran X = ((m;/m;,) H*o m; H*) & {0}
so that ker X*=$(m;/m;,,) ® H(m;.,) and it follows that S, x+ is unitarily equiv-
alent to S(m;/m;.)® S(m;.1). The Jordan model of S(m;/m; )@ S(m;4y) is
S((m;fm; IVm; )@ S((mj/m; ) Amy )

by [2], Lemma 4. Because S’ has the property (Q) this Jordan model must coincide
with S(m;) so that (m;/m;,,)Am;,,=1. In particular m;m;,, and m,/m,,, are
relatively prime for k=j; (ii) is proved.

Conversely, let us assume that conditions (i) and (ii) are satisfied. Let us denote
(5.8 fu; =myimyy,, j<o.

Then by Lemma 1.2, S(m,) is quasisimilar to @ S(u;), S(m,) is quasisimilar

<o

to @ S@up,..,S(m) is quasisimilar to @ S(u;) so that T is quasisimi*

1sj<o k=j<w
lar to .
(5.9) S=@ T/, T'=!S@, uj, ..., u).
{th.)li J+1times

Because the functions uy, 1, ... are pairwise relatively prime we have (mo/u;) Au;=1
so that (mefu)(T¥)=0, k=j, and (me/u))(T’) is a quasi-affinity. This implies that

9 =Hu)OHu)®... 09 (u;) = (ran (myfu;)(S))~

J+1times

is a hyper-invariant subspace of S. We are now able to prove that S, and therefore
T, has property (Q). Any operator X¢€{SY has the property X$'c$’, j<w, so
that X= @ X’, X’¢{T’yY. By Lemma 5.2, T’|ker X and T/, are quasisimi-

i<o
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lar. But obviously ker X= @ ker X/, ker X*= 63 ker X”* so that Slker X=
J<
=@ T’lker X’ and Skerx*—@ Tiopysn; it follows that Slker X and Sy, y»

<o

are quasisimilar. The Theorem 1s proved
We are now able to give a complete description of the lattice of hyper-invariant:
subspaces of an operator of class Cy having property (Q). :

Proposition 5.5. An operator of class C, having property (P) has property
Q) if and only if

(5.10) Hyp Lat(T) = {(ran m(T))~: mEH*, m = my[T1}.

Proof. As usuval S(M) denotes the Jordan model of 7. Assume (5.10) holds;
by Proposition 4.8 (iii), (5.10) also holds for S(M). In particular,

kerm;,,(S(M)) = EB ((mym;.)H* O mH)® +1§ $H(m)
is of the form (ran u(S(M)))~ for some inner divisor u of m,. Because ran u(S(m,))=
=(my/m;+ ) H2OmyH? we must have u=my/m;,,. We have also

.11 (mo/mj)Amyyq =1

because u(S(m;4,)) must have dense range. From (5.11) we infer (m;/m;)Am;,,=1,
Jj<w. By Theorem 5.4 it follows that T has property (Q).

Conversely, let us assume that T has property (Q). By the proof of Theorem
5.4, T is quasisimilar to

(5.12) : S=j® S/ on $= B 9,
< <o
where
(5.13) S" et S(ujs uj, LEAE ] uy')’ 51 5(”_})@5(“))@ @5(“_’),
J+1times J+1times
(5.14) u; =miim;,q,
and
(5.15) & = ((mo/u,;)(S) H)~€Hyp Lat (S).
Let us take McLat(S) and denote M;=((my/u;)(S)M)~. We claim that
(5.16) M= O M, and M;=MN .
J<a

The 1nclus1on Mo @ M; is obvious. Now, the minimal function m of Sy,
N= ime( @ Mm;)= ﬂ ker (mofu;)”((S|M)*) divides myfu;, j<w, so that mAu;=1.
It follows that m= 1 9l {0} and (5.16) is proved.
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Moreover, by (5.16), M, is a hyper-invariant subspace of S7 if McHyp Lat ().
By Proposition 2.1 (i) we have M;=MoM}® ... @M where MI=u;H*Ou; H?
j4+1 times
so that 932i=u;-(Sj)$5j. Let us denote by lm the limit of an arbitrary converging
subsequence of {ugy] ... u}, . ,; we shall have (m/uj)Au;=1so that M;=(m(S%)$%)~.
Using (5.16) we infer M=(m(S)H)~ and by Proposition 4.8 (iii) the proof is done.
Let us denote by Z% the lattice Lat(S(m,m, ..., m)) (m€H>, 1sk<w). The
T rimes

‘preceding proof also characterizes Lat (7) for T having property (Q).

Corollary 5.6. Let T be an operator of class C, having the property (Q). Then
Lat (7)) is isomorphic to  [] .?u’;“, where u;=m;[T]/m; [T}, j<co.

j<o
Proof. The decomposition (5.16) was proved for any McLat (S). The Corol-
lary follows by Proposition 4.8 (i).

Example 5.7. There are operators T of class C, for which (5.10) hblds with-
-out property (P). In fact it can be shown that a Jordan operator S(M) satisfies
the condition (5.10) if and only if (mg/m)Am,=1 for each ordinal number o.

Proof. The necessity of the condition (my/m,)Am,=1 is proved analogously
‘with the proof of (5.11). Conversely, let us assume (my/m,)Am,=1 and let
MeHyp Lat (S(M)) be given by (2.2). Then m,/m] divides my/m; so that my/m
divides mo/m, and therefore (mg/m))Am,=1. We infer (my(S(m,))H(m)) =
= (m/(S(m,)) (m{jm)(S(m,))$ ()~ =m H:Sm H? because (my/m)(S(m,) is
a quasi-affinity (cf. [12], Proposition 111.4.7). We infer

M = (ran my (S(M)))~.

Remark 5.8. As shown by Example 2.10, property (5.10) is not stable with
respect to quasisimilarities.

6. Generalized inner functions

Let us recall (cf. [7]) that a function m€ H® has a factorization
6.1) m = cbs

where ¢ is a complex constant of modulus one, b is a Blaschke product

p &, A Z - o
(6.2) b(z)—]k]lakl a2 lal<l 2 (=la))<
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and s is a singular inner function, that is

6.3) 5(2) = exp [— [ nz—zf—zdu(t))

where u is a finite Borel measure on [0, 2r), singular with respect to Lebesgue meas-
ure. Let us denote by ¢(z) the multiplicity of the zero z in the Blaschke product
(6.2), that is, -

6.4 6(2) = card {k: q, = z}.
The convergence condition in (6.2) is equivalent to
6.5) II2'16(2)(1—12|)<<><>.

We shall denote by I' the set of pairs y=(o, #), where u is a finite Borel meas-
ure singular with respect Lebesgue’s measure on [0, 27}, ¢(2) is a natural number
for |z|]<1 and the condition (6.5) is satisfied. With respect to the adition (g, 1)+
+(o’, W)=(6+0’, u+p’), I becomes a commutative monoid. The set I is ordered
by the relation (6, p)=(c¢’, ¢’) if and only if 6=0¢" and pu=yp’. Moreover, in I
are defined the lattice operations:

(o, )V (o', ) = (aVa’, pVy),
(o, WA (0’, ') = (e N\o’, pAy)

where pV ', pAp’ have the usual sense and ¢V’ =max {0, ¢’}, 6 A¢’=min {0, ¢"}.
A mapping y: H*—~I is defined by y(m)=(o, u), where o is given by (6.4) and
¢ by (6.3) if m has the decomposition (6.1). We have also a mapping 6: I'~H;”
defined by
a a—zY® etz

©6) 6oy = I (o) ol [ SEauw)
where y=(o, pt). Then yod=id and 6(y(m))=cm with ¢ a complex constant of
modulus one.

Let us recall that, for a function f€ H*, the function f~ is defined by f~ (z)=
f(?j. For y=(o, u)€I' we shall define the element y " =(¢”,p")eI' by ¢ (2)=
=¢(z) and u"=poj where j: [0, 2n]—~[0, 2n] is given by j(r)=2n—t.

Let us list some properties of the mapping y.

Lemma 6.1. (i) y(mymy)=y(m)+y(my), my, myc H;>.

(i) y(m)=y(my) if and only if my=my; y(m)=y(my) if and only if m, and
m, differ by a complex multiplicative constant of modulus one.

(i) y(m™)=y(m)", meH;".
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(iv) If {m;};_o,C H, then the family {mgm,...m;};_, has a least inner multiple
m if and only if 5’ y(m)Er and in this case y(m)= f’ y(m;).
Jj=0 j=0

Proof. (i), (ii) and (iii) are obvious. To prove (iv) let us assume firstly that
{mym,...m;};_, has a least inner multiple m. Then obviously y=y(m) if and only

if y= 3 y(m;) for each natural n. Consequently f y(my)€Er and y(m)= Z.:. y(m;).
j=n j=0 j=0

Conversely if y= f y(m)Er then &(y)=mymym,...m; for each j so that the
J=0
family {mym,...m;}7., has a least inner multiple. The Lemma is proved.
We shall now introduce the class .# of (not necessarily finite) Borel measures
i on [0, 2x] for which there exists a finite Borel measure v singular with respect to
Lebesgue measure such that u<v, where the absolute continuity u<v is under-
stood as

6.7 = \'{ (uAnv).

We shall denote by .#, the class of o-finite measures p€.# and by ./#_ the
class of measures u€.# which take the values 0 and < only.

Lemma 6.2. (i) If p€# and v is a finite measure such that p<v, we have a
decomposition

(6.8) dy = fdv

where f: [0, 2n]—[0, + o] is a Borel function.
(ii) Every p€.# admits a unique decomposition p=pg+u_, where uy€M,,
b €M and u, and p_ are mutually singular.

(i) If {u}ieoc A then 2 pe .
j=o0 -

Proof. (i) The measure p,=pAnv is finite, p,<v, and by the Radon—
Nikodym theorem we have du,=f,dv, where f,: [0, 2n]—[0, n] is a Borel func-
tion. Because p,=pu,,, we have f,=f,,, dv-a.e.; replacing f, by f,=£f,VfaV...VS,
we may assume f,=f,,,. Now it is clear that the function f=lim f, satisfies the
relation (6.8).

(ii) Let v and f be as before; let us denote A={¢; f(t)=+ <} and f_=fy,,
Jo=f(1—x4.). Then we may take du,=fy dv, du_ =1 dv.

(iii) Let us take finite measures v; such that p;<v;; then f u;<v, where

i=0

v is defined by
y= 3 2=9yv,([0, 27)).
Jj=0
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"Remark 6.3. Obviously, every measure u of the form (6.8) belongs to . if
v is a finite singular measure on [0, 27].

Lemma 6.4. If p;,v,eM,j=0,1,..., are such that S’ = Z'”vj then there
j=0 i=0
exist €M, i,j=0,1, ..., such that 3 p;=p;, > wi;=v;, ,j=0,1,....
i=0 i=0

Proof. Let ustake a finite singular measure « such that y; <, v;<a,j=0, 1, ....
By Lemma 6.2 we have

6.9 du; = fidx, dv; =g;de, 0=j< oo,
By the hypothesis we have

(6.10) 2 f, Z‘ g; da-ae.

It will be enough to find Borel functions 4;; such that

ca

(6.11) Shy=f, Sh;=g devae, 0=ij<e,
. ji=0 i=0

and then to define dy;;=/h;;da.
If the sum (6.10) is dx-a.e. finite we may define 4;; inductively by

j-1
Ihoo =fol\go, hoj= [fo—kzt; hOk)/\gja 1=j<oo;
i-1
(6.12) 1hi0=fi/\(g0_ tho): l =i<eo;
k=0
j-1 i-1 )
lh,l=(fl—20 h"]/\(gj—k%hkj], 1§l,j<0°.

If the sum (6.10) is not dx-a.e. finite we can find increasing sequences {f™},,
{9}y such that f-—- hm fl‘"), gj=1lim g da-ae., 0=i,j<ec, and f o=
i=0

n-»co
= 2’g‘"’<oo do-ae., 0=n<oo.

Let A be defined by (6.12) with f;, g; replaced by £, g?) in case n=0, and by
[0 £, gD o) in case nz=1. We can take h;= 2 K? and the Lemma
follows.

We shall now introduce the class I of “generalized inner functions”. An ele-

ment y of I is a pair y=(o, ) where p€.# and o is a natural number valued func-
tion defined on {z; |z[<1} such that

(6.13) S (1—|z)) <ce.

o(z)#0
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The subclass [yl consists of the pairs y=(a, u)€I" such that p¢.#,. Anal-
ogously with I, I’ is a commutative monoid and an ordered set in which the latfice
operations are defined. For y=(c, p)€I" we define y =(¢",u )¢ as in the
case y€I. Any y=(o, w)¢I’' has a decomposition

(6.19) ? = YotVms Vo= (0 p)€l, v.. = (0, 1)
where p=py+pu,, is the decomposition of p given by Lemma 6.2 (ii).

Lemma 6.5. (i) Iy is the set of simplifiable elements of I, that is yeIy if
and only if y'+y=y"+y implies y'=y” for y’,y"€T.
(i) Y +y=y"+y implies y'=y" whenever y_=y Ay”".

Proof. (i) It is obvious that y’+y=y”+4y implies y’=y” whenever y€rl,.
Conversely, if y¢ Ty, we have 0=y_ and O+y=y_+7.

(ii) By (i) we can simplify y, from the equality y'+y=y"+y and we obtain
Y +7.=7"+7y.. Now the assumption implies y’+y_=7" and y"+y.=%"; the
Lemma follows.

We shall consider the cartesian product # =I"XI* and on 4 we define the
relation “~* by
(6.15) (»y) ~0%y) if and only if y+y; =7"+n.

The relation ““~” is not an equivalence relation; however, as shown by Lemma
6.5 (i) the restriction of “~* on Hy=I¢X I, is an equivalence relation. The
quotient %,=,/~ is a group- the group of formal differences y—y’, y, y’€f.
We may assume [,C%, identifying the element ycI, with the class of (7, 0) in

Hol ~.
We shall now describe the connection of " and I’y with I.

Proposition 6.6. (i) If {y;}j_,CTI are such that

(6.16) VE Vs, 0=j<ee, ‘/\0?j=0,
Jj=
then
6.17) y = _Zoy,.ef‘.
_)=

Conversely, each ycI' has a representation of the form (6.17) such that (6.16) is
satisfied.

(i) If {y;}; o<l satisfy (6.16) and, moreover,
(6.18) @i =7+ DANG— 4D =0, j#Kk,

then the element y defined by (6.17) belongs to ['y. Conversely, each y€l, has a
representation of the form (6.17) such that (6.16) and (6.18) are verified.
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Proof. (i) If y;=(o;, u), 0=j<o, we have pu= 5[1,-6«/1 by Lemma 6.2

(i11); it remains to show that o= 2 o; is finite and the condition (6.13) is satisfied.
i=0
But A ¢;=0 imply that for each 7, 6;(z)=0 for some j and the finiteness of
j=0

‘o is obvious. The condition (6.13) is satisfied because ¢(z)>0 implies a(_,(z)?va
and therefore

2 (A=lzh) = 2 oy(D(A—lz]) <.

a{2)#0 Jzi<1

Conversely, if y=(o, #) we define

(=0 |if =j
- (=0 I o=

if 6(2)=j, 0=j<oo.

To define p; let us write du=f-dv for some finite measure v and put du;=f;-dv,
where

6.20 fo=in, gy=(r= ZajArG D, 1=)<e

It is obvious that y;=(g;, ;) satisfy (6.16—17).
(ii) Let us put y;=(o;, #;); from (6.18) we infer the existence of a sequence

of pairwise disjoint Borel subsets A;C[0,2n] such that tO 2n]= G A4; and

i=0
H; ( U A4,)=0. If p= 2 uj, we have pu(4)=(uo+m+...+p)(4;)<e; thus pu
is 0- ﬁmte Conversely, let us take y=(o, perl, and define o; by (6.19). If du=f-dv
and v is finite, f is dv-a.e. finite so that [0, 2n]= U A; where A;={x; f(x)€[ ], J+ Hr
We define =

= g;“ (k+1)" fra,

and du;=f;-dv. It is clear that y;=(g;, u;) satisfy the conditions (6.16—18).
Proposition 6.6 is proved.

Proposition 6.7. If {y;}io, {vi}y;oc T are such that 3 y;= 3 yi€l" then
ji=o i=o
there exist {ij}osi j<eCI such that 3 y,=vi, 3 yi;=7;, 0=i,j<eo.
j=0 i=0
Proof. If y;=(0;, 1)), v;=(0}, i), 0=j<eo, we shall define y;;=(o;;, 1;)),

where y;; are given by Lemma 6.4 and ¢;; are defined by formulas analogous to
(6.12) with f; and g; replaced by o; and o}, respectively. The Proposition follows.
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7. Co-dimension of a subspace

We shall denote by 2 the class of C, operators having the property (P). If
Te? and S(M) is the Jordan model of T we have A y(m;)=0, m;=m;[T], by
<o

Theorem 4.1 and Lemma 6.1. This fact and Proposition 6.6 suggest the following
Definition.

Definition 7.1. The dimension y; of the operator T€Z is defined as

.1) pr = f y(m), my=m,[T]

If T is an operator of class C, and M¢Lat, (T) is such that Tp€2, then the
T-dimension y(M) is defined as .

(7.2) rr@) = y(W) = 1.

Remark 7.2. (i) Because m;[T*]=m;[T]" (cf. [4], Corollary 2.8) we have
Yr+=77, T€P. Moreover, if T is of class Co and IMcLaty (T) is such that Tp€2?,
then

(1.3) P () = yr (D).

(i) It is clear that y;=0 if and only if T acts on the trivial space {0}.

(iii) The dimension yy is a quasisimilarity invariant of T. Indeed, y; is defined
in terms of the Jordan model.

We shall say C,-dimension instead of T-dimension if no confusion is possible.
‘The usual dimension is a particular case of the Cy-dimension. Indeed, the operator
T=0€ £ (9) is a C, operator and each subspace Mc$H is invariant for 7. By
Theorem 4.1, T|MM has the property (P) if and only if dim M<o< and in this
case pr(M)=(c, 0) where ¢(0)=dim M and o(z)=0 otherwise.

Lemma 7.3, An operator TEP is a weak contraction if and only if ypel
.and in this case »

1.4 yr = y(dy).

Proof. Obviously follows from Lemma 6.1 (iv), [6], Theorem 8.5 and [3], Defi-
nition 1.1.

By Proposition 6.6, Theorems4.1 and 5.4, we have {y;; T¢?}=I and
{yr; T has the property (Q)}=1I,. It is natural to define &, by

(7.5) TcP, if and only if T€¢# and y.¢T,.

Lemma 74. If T€Z is acting on H and H;cLat (T) are such that H;C9H;44,
0=j<o, and \/ $;=9, we have

a.6) vr=V 7e(S).
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Proof. Because T|5,-<i T, we have m[T|H;}=my[T] for each natural num-
ber k; therefore y(m[T|9;)=y(m[T]) and the inequality yr=V y7(9; fol-
jzo

lows. Now, by Lemma 6.1 we shall have V yr(H)= Z"' y ( V m[T|H;]) for each

natural number n; by Theorem 3.1 we 1nfer V yT(51)> Z’ y(m,[T]). Since » is
arbitrary the inequality V r(9)=yr follows Lemma 7. 4 1s proved.

Remark 7.5. From (7.3) it follows that Lemma 7.4 also holds under the
assumption $;€Lat (T™) instead of §H;€Lat (T), 0=j< .

Corollary 7.6. If T, T'¢2, we have yrgpr=7r+7r -
Proof. By Remark 7.2 (iii) it is enough to prove the Corollary for T=S(M),
=S8(M’). For each j the space &;=9;®H;€Lat (TDT"), where H;=H(m))P
SHm)®...09(m;), H;=9m)®H(Mm)®..®H(m) and H(M)= V Hi»
HM')= V 9;- By Lemma74 we have ypqp= V Yrer(§)), ¥r= V 71(55,),
Y= V yT (Sj ). By Lemma 7.3 and [3], Theorem 1. 3 the Corollary follows
We shall now introduce a relation ¢ on the class 2, connected to index problems.

Definition 7.7. For Ty, T,¢# we write T,oT, if there exist T€% and
Xe{TY such that Ty and T, are quasisimilar to T'|ker X and T, y., respectively.

. Lemma 7.8. If T€Z? and HeLat(T) then To(Tg®Tgy1).

Proof. The operator S=T7@T4€¢# by Proposition 4.4 and the operator X
defined by X(u@v)=v®0 commutes with S. It is easy to see that S|ker X is
unitarily equivalent to 7" and Sy, x. is unitarily equivalent to Tg® Ty5.; Lemma
7.8 follows.

By Theorem 4.1 and Remark 7.2 (jii), 7r,=0 if and only if ?r,=0 if Ty0T,.
The connection between ¢ and y is stronger than that, as it will be shown in the
following propositions.

Theorem 7.9. If T,, T,€? and T,0T, then V1, = V1,

Proof. It is enough to show that for T€¢# and X€{T} we have yr(ker X)=
=yr(ker X*). Let T be acting on $ and let S(M) be the Jordan model of T. As
shown in the proof of Theorem 4.1 we have

.7 H= j\z/o 9 H; = (mj(T)g))—EHYP Lat(T).

For each natural j we have X9;,C$; and X;=X|9;€{T|9;}. Because T|H,;
is of finite multiplicity, we infer by [3], Corollary 2.6, and Lemma 7.3,

(1.8) y(ker X ;) = y(ker X7").

3
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. Because obviously Xm;(T)lker X=0, we have ker X;>(m;(T) ker X)~ and,
as in the proof of Theorem 4.1, we infer ker X=V ker X;. Thereforc by Lemma 7.4

=0

applied to Tlker X it follows that
(1.9 y(ker X) = V y(ker X;).

We have XjPg |ker X*=Pg X“P5 [ker X*=Pg X*|ker X*=0 so -that
Py (ker X*)cker X* Because P ,T T* Py we shall have Py T*lker X*=
“(Ts Iker X})Pg Iker X*. This relation 1mp11es that (T*|ker X *)a , where

= (ker (Pg | ker X*))t = ker X*© (ker X*NH;)€Lat (Tye, x9),
is quasisimilar to some restriction of nglker X} and therefore |
(7.10) P(])) = y(ker X7).
Now V K;=ker X*© (ker X* ﬂ( ﬂ H7))=ker X* so that from (7.8—10)
and Lemma 7 4 applied to 7y, x« WE mfer y(ker X*)= V Y(R)= V y(ker X})=
—jVo y(ker X;)=y(ker X).

By the same argument applied to T instead of T we infer y(ker X)=y(ker X*).
The Theorem follows.

Corollary 7.10. If T€? and $HeLat(T) then yr=yr(O)+7r (D).
Proof. Obviously follows from Corollary 7.6 and Theorem 7.9.

Corollary 7.11. Let T€P be acting on $ and let $;€Lat(T) be such that
80=9, $,59,51 0=j<=) and () §;=(0}. Then ‘yT=j§yT(Rj), where ;=
=909+ 0=j<). ‘

Proof. By Lemma 7.4 and Remark 7.5 we have yr= V 7r($j). Because

=9 ®f]; and K;cLat (Ts},,) we have yr(9j,)= yT(Sb-L)+yT(RJ) by the
Corollary 7.10. By induction it follows that yr(ﬁ F)= Z’ yr(8,). Corollary 7.11
follows.

Corollary 7.12. Let T€P be acting on '5 Then T<P, if and only if
/\ 77r(9;)=0 for each decreasing sequence {9,}_,cLat(T) such that ﬂ 9=
o)

Proof. Let us assume T€2,. By Corollary 7.10 we have yr=y7(9;)+77r(H})
so that by Lemma 7.4 we infer yy=y7+ A y7(9,). Because yp€l, it follows that
i=0

0= _/2\0?7(55,')-
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Conversely, if T4¢ P,, let S(M) be the Jordan model of 7. By the proof of [5],
Theorem 1, there exist $;€Lat (T) such that $;,,C9;, ﬂ $;=0 and the Jordan

model of T|H; is @ S(m). Because yr(9H7)= 2’ y(mk)el" from the relation

=779 +1r(9)) wé infer (yp) o =(7(9)).. and therefore /\ 1r(9) =) #0.

Corollary 7.12 is proved.
We shall prove now a partial converse of Theorem 7.9.

Theorem 7.13. () If T,T'¢®? are weak contractions and 7Vyr=yy., then
ToT".
) Gi) If T,T’¢ are such that yr=yr then there exists SE€P such that ToS
and SoT’.

Proof. Let S(M) and S(M’) be the Jordan models of T and T”, respctively.
The condition y;=v;.. is equivalent to dy=dr.; let us denote d=dy=dp.. If
we denote d;=dlmomy...m;_;, d_;=d[mym;...m;_, for 1=j<e and d,=d, we
have A d;= A d_;=1 and by Theorem 4.1 and Proposition 4.4 the operator

j=0 ji=0

AR , K= & Sd)

j=—o

has property (P), that is, K€2. We define now an operator X¢ {K} by X( EB h;)
j=-
= 69 k; where

i=—oo

k, =P hi_y if j=1,
(7.12) {‘ NS J

= (d;ld;_)h;_, if j=0.

It is easy to see that ker X = EB ker (X9 (d)) and ker X*= @ ker (X*|9 (d))).
For j=0
ker (X19 (d,)) = d; ., H2O d; H?
so that S(d))|ker (X |9 (d))) is unitarily equivalent to S(d;/d;,,)=S(m;) and there-
fore Klker X is unitarily equivalent to S(M). We can analogously verify that
K., x+ is unitarily equivalent to S(M").
Let us remark that the minimal function of K coincides with the common

determinant function of 7 and 7.
(ii) Let S(M) and S(M ") be the Jordan models of T and T, respectively. The

equality yr=7, is equivalent to Z‘ y(m J)— y(m_,) By Proposition 6.7 we can
i=o
find y,.jef‘ such that > y;;=y(m;) and Z’yij:y(mj), 0=i,j<eo. Because ;=
j=0 i=0

3*
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=y(m;) we have y;;€I' and therefore y;;=y(m;;) for m;=06(y;;)¢ H>. We define
the operator
01y 5=@(B5m) =B, 5=@Stmy), 0=i<.

i=0 i=0 j=0

j=0

Because y(m)= 2' y(m;;), the operator S, is a weak contraction and Vs, =

=V s(myy» O=i<o (cf. Lemma 7.3). By the proof of (i) we can find operators K'c¢2
acting on $; and contractions X;€{K‘} such that

(7.14) mo[Ki] =m,, 0=i =< oo,

Kilker X; and K} xx are unitarily equivalent to S(m;) and S;, respectively. The
operator K-G) K' is of class Cy, X= 69 Xe{K}Y and Klker X, K, x. are

i=0
unitarily equivalent to S(M), S, respectlvely

Let us show that K€#. The spaces K;=9,09D,D ... H; are invariant for
T, V ]= 6} $; and my[K|K]t]=m;,,, 0=i< . Because T€ZP we have A mia=1

i=0 i=0

and by Propos1t10n 4.6 it follows that Kc#. In particular S also has the property
(P) by Proposition 4.4 and therefore we proved that ToS. The relation ST’ is
proved analogously. The Theorem follows.

Remark 7.14. If T and T’ have finite multiplicities, then the operator K used
for the proof of (i) also has finite multiplicity. Thus we obtain a new proof of Proposi-
tion 3.2 of [3].

8. Cy-Fredholm operators

The results of sec. 7 suggest the following generalization of [3], Definition 2.2.

Definition 8.1. Let T and 7~ be operators of class C, and let Xe#(T”, T).
Then X is called a (T, T)-semi-Fredholm operator if X|(ker X)* is a (T”|(ran X) ™,
Taex 1)-lattice-isomorphism and either T|ker X€2 or T, 4x.€%2 holds. A (T", T)-
semi-Fredholm operator X is (7", T)-Fredholm if both T|ker X and T} . have
property (P). If X is (T, T)-Fredholm, its index is defined as

3.1 ind (X) = (yr(ker X), yr.(ker X*))e ' x I
If X is (T, T)-semi-Fredholm but not (77, T)-Fredholm, we define
8.2) ind(X) =+ if T|kerX¢Z;

== if Tiex+42.
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Let us remark that for Tlker X€ 2, and Ty, 3x€%P,, ind (X) is uniquely deter-
mined (modulo the relation “~”) by the element y(ker X)— 1y, (ker X*)€%, (cf.
sec. 6).

In order to distinguish the operator introduced by Definition 8.1 from the
operators considered in [3] we shall denote by ®(T”, T) and ¢®(T’, T) the set of
(T, T)-Fredholm and (T, T)-semi-Fredholm operators, respectively. If T'=T we
write (7)), and o®(T) instead of & (T, T), o® (T, T), respectively.

Obviously #(T', T)c ®(T’, T) and for XeF(T’, T) we have

(83) ind (X) = y(j(X)
if ind (X) is interpreted as an element of %, and
y(m/n) = y(m)—y(n) for m,ncH.
The following Proposition extends [3], Corollary 2.6 and Remark 2.7.
Proposition 82. (i) If T,T'€®? then &(T', T)=5(T", T) and
8.9 ind (X) ~ (yg, yr) for XeSL(T',T).

(i) If exactly one of the operators T and T’ has property (P) then ®(T’, T)=9,
e®(T’, T)=F(T", T), and for XcF(T", T),
ind(X)=+4o if T¢2,
=—o if T4
Proof. (i) because Ty, xy1 and T’|(ran X)~ are quasisimilar and have the
property (P) for any X¢ S (7', T) (cf. Corollary 4.5 and Lemma 1.1) it follows
that X|(ker X)* is a lattice-isomorphism by Proposition 4.8 (i). In particular

yr((ker X)1)=yr((ran X)~). By Corollary 7.10 it follows that yr=yr(ker X)+
+yr((ker X)) and yp.(ker X*)+yr{(ran X)~)=y;. so that

yr+yr (ker X*)+y =y +yp(ker X)+y
where y=y((ker X)*)=y5((ran X)~). Because

= yrAvr
we infer by Lemma 6.5 (ii):

Yr+7yr (ker X*) = yr +yr(ker X);

this means exactly ind (X)~(yr, v1)-

(ii) As in the preceding proof T, )1 and T’|(ran X)~ are quasisimilar and
one of them must have the property (P) by Corollary 4.5. Then Corollary 4.3 and
Proposition 4.8 (i) show that X|(ker X)* is a lattice-isomorphism. To end the
proof it is enough to show that &(7’, T)=0. Assume by example T'¢Z; then
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for any Xc £ (T’, T), T’|(ran X)~€2 so that T, 4.§¢% by Proposition 4.4. The
case T¢2 is treated analogously. The Proposition is proved..

Example 8.3. The relation ind (X)~(yz,yr-) obtained in Proposition 8.2
cannot be improved. By example, if yr=y;. it does not follow that y;(ker X)=
=yplker X*) for each Xe¢ S (T, T). Indeed, let us take 7'=S(M)€Z such that
=0, 1), p€A_, and T=Jg S(m;). Then yr.=yr+y(my) sothat yr=yy by

the choice of yr. The inclusion X: @ 9 (m)—~P 9 (m;) is one-to-one and
Jj=1 j=o0 .
yT:(keI' X*) =y(n10) ?50.

Lemma 8.4. For any two contractions T and T’ of class Cywe have 6 ®(T, T')* =
=¢®(T'*, T, &(T, T"Y*=d(T"*, T*) and

(8.5) ind (X*) = —ind (X)~, X€o®(T,T")
(here —(3,7")" =", 7))

Proof. Cf. the proof of [3], Lemma 2.10.
The following Theorem ‘extends [3], Theorem 2.11 to this more general setting.

Theorem 85. Let T,T’, T” be operators of class C,, A€c®(T’,T),
Bco®(T”, T’). If ind(4)+ind (B) makes sense we have BACe®(T”,T’) and

(8.6) ind (BA) ~ ind (4)+ind (B).

Proof. We have to follow the proof of [3], Theorem 2.11, replacing weak
contractions by contractions having property (P) and using Proposition 4.10 instead
of [3]; Proposition 2.3. Only relation (8.6) needs some comments if 4 and B are
C,-Fredholm. With the notation of the proof of [3], Theorem 2.11 we have

8.7 yr(ker BA) = yr(ker A)+7r(H)  ([3], relation (2.18)),
8.3) (D) = yr (93)  ([3] relation (2.20)),

8.9 yr-(ker (BA)*) = yp-(ker B¥) +y7.(H7) (relation (2.18)%),
and

(8.10) ker B=9,89,, kerA*= 909! (relation (2.19)).

We infer, with the notation y =y;(9,) =71-(93), that

yr{ker BA)+y=yr(ker 4) +yr (H1) +y=vr(ker A)+yr.(ker B)
and
yr- (ker (BA)*)+y = yp- (ker BY)+y7(91) +7 = yr (ker 4*) +yp-(ker BY).
By addition we obtain
vr(ker BA) +yr.(ker 4*) +yg-(ker B) +y =
= yp-(ker (B4)*) +yr(ker A)+y1-(ker B)+y
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and-since y=yg.(ker B) Ay (ker A*); Lemma 6.5 (ii) implies
. yr(ker BA)+yp (ker A*)+yp-(ker BY) =
= yp(ker (BA)*)+yr(ker 4)+y- (ker B).

The last relation is equivalent to (8.6). The Theorem follows. .
The proof of [3], Theorem 2.12 is easily extended to the general setting.

Proposition 8.6. Let T be an operator of class C, acting on the Hilbert space
and let Xc{T} be such that T|(X9)~€P. Then Y =I+X€ ®(T) and (T |[ker Y)oT . y+-
In particular ind (Y)~(0, 0).

Proof. We have shown in the proof of [3], Theorem 2.12 that ker ¥ =ker (Y |W),
U=(XH)~, and that (T|W), yu+ and T . are similar. This shows that
(T|ker Y¥) 0T erys-

In fact we shall prove a more general perturbation theorem.

Theorem 8.7. Let T, T’ be two operators of class C, acting on 9, &', respec-
tively, and let us take Xco®(T',T), YeS(T',T). If T'(YH)"€P, we have
X+Yeo®(T',T) and

@.11) ind (X+Y) ~ind ) +0,7), 7 = 7o ((VS)").

Proof. We shall prove firstly that (X+Y)($) is dense in each cyclic sub-
space of T’ contained in ((X+Y)$)~. The same argument applied to (X+Y)*
will show, via [3], Lemma 1.4, that (X+7)|(ker (X+Y))* is a lattice-isomorphism.

In proving this we may assume that ' =X9VY$ so that ker X*=(P,,, . Y$)";

it follows that T, X*-1<T’I(Y$3)‘ so that necessarily T, x€2 (cf. Corollary 4.5).
Analogously we may assume that T |ker X¢2 so that X is Cy-Fredholm.

The injection J: ker Y —~$ is Cy-Fredholm, J€ @(T, T|ker Y) by the assump-
tion of the Theorem, and therefore, by Theorem 8.5, XJ€ &(T”, T|ker ¥); in
particular T, ype=Ty€? where U=Kker (XJ)*=(X(ker ¥))*.

Let us take f€((X+Y)$)~ and denote o= \/0 T'if. Because

jE

Py|H:€ S (Ty, T'|97)

and Py (X+Y)EF(Ty, T) are such that ran (Py|H;)C(ran Py(X+Y))~ we infer
by Corollary 4.11 the existence of a cyclic vector g of T7|9} such that P,g=
=Py (X+Y)h for some h<$H. Then the difference g'=g-—(X+Y)hc(ran XJ)~ =
=(X(ker ¥))~ and because XJ is a Cy-Fredholm operator we infer the existence
of h'cker Y such that X4 is cyclic for T’|$,,. Let us denote

S = BV and Z = (X+Y)|H,€ ST, T|$0).
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Then (Z$Ho)~ ©9H; indeed, because h’cker Y, we have Zh'=XA" and there-
fore (Z9¢)~>Hxy=9,, in particular g’€(ZHo)~. Now g=g'+Zhe(ZH,)~ so
that (Z$)~09H,=9;. By Proposition 8.2 (ii) Z€ad(T’, T|Hy) so that $H,=
=(ZR)"=((X+7Y)K)~ for some Ke€Lat (T|H)cLat(T). The first part of the
proof is done.

Let us assume that T|ker X€2. Then ker (X+Y)cX~1(¥Y$H) and

T|ker X
TIX"((YSB)')=[ ';r ;1]

where T, < T’|(Y9)~ so that T; has the property (P) (cf. Corollary 4.5). By Proposi-
tion4.4, T[X*((¥YH) )2 and therefore Tlker (X+Y)€L. Analogously
Texsyp€? if Ty xs€P so that in any case X+Y€o®(T’,T). Conversely,
because X=(X+Y)—Y, Tlker Xc? whenever Tlker (X+Y)c? and T/, x.€P
whenever Ty x.y€2. Therefore ind (X)€{+ o, —<} if and only if

ind (X+ Y)€ {+ o0, — oo}

and in this case ind (X)=ind (X+7Y).

It remains to prove that (8.11) holds whenever X€ &(T”, T). To do this let us
remark that Py 1 € D(T(yg 1, T') and ind (Pyg,1)=(y, 0), where y=y5.((¥Y9)").
Because obviously Py 1 (X+Y)=Pyg1 X we infer by Theorem 8.5 '

(8.12) ind (X+Y)+(y, 0) ~ ind (Pygyt X) ~ ind (X)+(y, 0)
so that
yr(ker (X+Y))+7+7yr (ker (PygL X)*) =
) = yT' (kel' (X+ Y)*) + 'yT (ker P(YS))J‘ X)
and '
yr(ker Pygyt X)+7vr (ker X*) =
= yr.(ker (Pygyt X)*)+yr(ker X)+y.
By addition we obtain

613 {yr(ker(X+ Y))+7pg- (ker X*)+y+yp(ker Pygyt X)+yp-(ker (Pyg)t X)) =
' =y (ker (X+Y)*)+yr(ker X)+y+yr(ker Piygyr X)+7r (ker (PygyL X))
As shown in the proof of Theorem 8.5 (cf. relations (8.8—10)) we have
yr(ker PygyL X) = yr(ker X)+y7.((Y9)™) = yr(ker X)+y

and
P (Ker (PygyL X)) = yr. (ker X*)+9.

Moreover, as shown in the first part of this proof, we have yy(ker (X+Y ))é
=pr(X (YD) "))=yr(ker X)+y and analogously yr- (ker X*)=yy.(ker (X+¥)*)+7.
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All these relations show, via Lemma 6.5 (ii), that from (8.13) we may infer
yr{ker (X+Y))+7yp (ker X*)+7y = yp(ker (X+Y)*)+yr(ker X)+7.

The last relation is equivalent to (8.11). Theorem 8.7 is proved.
We shall prove now a partial converse of Theorem 8.5. For simplifying nota-
tions we shall consider the case of a single operator T of class C,.

Proposition 8.8. Let T be an operator of class C, acting on $ and let AC{T}’ ..
If there exist B, Cc {T'} such that AB,CAC®(T), we have Acd(T).

Proof. Because ker ACkerCA and ker A*cCker (4B)* we obviously have-
Tlker A, Ty., +€%. We shall now prove that the mapping K—~(4K)~ is onto-
Lat (T|(A9)~). As in the first part of the proof of Theorem 8.7 we take f€(4$)™
and remark that

Pagy-oups)-|DrE L (Tius)-oas)-> T19s)s

Pius)- o(unsy- A€ P (T agy-ouns)-> T);

an application of Corollary 4.11 proves the existence of a cyclic g€9, and of a
vector h€$ such that g— Ah€(4ABH)~. Because ABCP(T) we find 4’ such that
ABK is cyclic for T{H,_ . If 99=9,V9pw we obtain as in the proof of Theo--
rem 8.7 (490)~ D9, and therefore H,=(4K)~ for some KeLat (T'|H,)< Lat (7).

Analogously we can show, using the operator 4*C*¢ ®(T™*), that the mapping:
K-(4*R)~ is onto Lat(T*|(4*$)~). By [3], Lemma 1.4, Proposition 8.8 follows.

Example 8.9. For each pair (y,y)eI'XI' there exist a Cy-operator T and
Xe®(T) such that ind (X)=(y, y').

Proof. As in the proof of [3), Proposition 3.1, we take operators K, K'¢#
such that yx=7, yx-=7" and we define T=(K®I)®(K’®1I), where I denotes the:
identity on H?2, If U, denotes the unilateral shift on H?2, the required Cy-Fredholm:
operator is given by

X ={IUhHe(xU,).

The proof of [3], Proposition 3.4, can be applied to obtain the following result..

Proposition 8.10. For each operator T of class Cy we have o®(T)N{T} =
=&(T)N{T)" and ind (X)~(0,0) for Xe®(T)N{TY.

The operators X,, X defined in the proof of [3], Proposition 3.6, are such that
X,669(T), Xc®(T), and lim || X,—X[|=0. Thus we have the following result.

n-> oo

Proposition 8.11. The sets c®(T), ©(T) are not generally open subsets of
{TY, for T an operator of class C,.
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