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On the Jordan model of Co operators. II 

HARI BERCOVICI 

The existence of the Jordan model for operators of'class C0 was established 
in [9] and [10] for operators of finite multiplicity, in [4] for operators acting on 
separable Hilbert spaces and in [2] for operators acting on nonseparable spaces. 
In Sec. 2 of this note we give a common description of these three types of Jordan 
models. We also find a direct definition of the inner functions appearing in the 
Jordan model. 

B. SZ.-NAGY and C. FOIA§ have shown in [9], Sec. 7, that the space § on which 
an operator T of class C0(N) is acting admits a decomposition into an approximate 
sum of invariant subspaces for T such that T\§>j is multiplicity-free. In Sec. 3 
of this note we extend this result to operators of class C0 of arbitrary multiplicity. 
In fact we prove the existence of an almost-direct decomposition (cf. Theorem 3.4). 
Moreover, in the case of weak contractions (which contains the case discussed in 
[9]) we show that there exists a quasi-direct decomposition (cf. [7], ch. III). The 
main ingredient in Sec. 3 is a generalization of [4], Proposition 2. 

Acknowledgement. The author is very indebted to Dr. L. Kerchy for his valuable 
remarks, and in particular for two suggestions that helped to simplify the proofs 
of Theorems 2.7 and 3.4. 

1. Preliminaries 

We begin with some known facts about cardinal and ordinal numbers (cf. [12]). 
Here 0 is considered as ordinal number so that each ordinal a is the ordering type 
of the well-ordered set of ordinals {/?: P<ct}. An ordinal number is a limit ordinal 
if it has no predecessor. Each ordinal number is of the form a+n with a a limit 
ordinal and n<a>, where ca is the first transfinite ordinal. For each ordinal number 
a we denote by a the associated cardinal number. 
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Lemma 1.1. For each cardinal number K we have X=card {a: 

Proof. Let us denote A={a: a<K } and let /? be the ordinal number cor-
responding to A. Then $=card A and so that |5=card Now let 
y be the first ordinal number such that y=K; then y$A so that ySp and there-
fore N = y£j5=card A. The Lemma follows by the Cantor—Bernstein theorem. 

Remark 1.2. The preceding proof shows that j?=y=the first ordinal with 

Corol lary 1.3. If are cardinal numbers and X2 is transfinite, we have 

X2=card {a: K^a-c i^ } . 

Proof. By Lemma 1.1 we have K2=card {a: a<K2 }=card {a: ac^J-l-
-1-card {a: + where K=card {a: Because K2 is 
transfinite Xi or K must be transfinite and we have K2=max {Ki, because 
Ni ̂  K2. The Corollary is proved. 

Corollary 1.4. If K is a transfinite cardinal number then K'=card {a: a = 
is the first cardinal greater than X. 

Proof. We have only to apply the preceding Corollary for and K2 = 
=the successor of X in the series of cardinal numbers. 

Now let us recall that the multiplicity fiT of the operator T acting on the Hil-
bert space § is the minimum dimension of a subspace 931 such that §>= V T"W. 

nso 
It is obvious that 
(1.1) Ht = dim 
so that the equality 

(1.2) fiT — dim § 

holds whenever dim or 
Lemma 1.5. We have fiT=piT* for any operator T of class C0. 

Proof. For /iT<s0 see [10], Theorem 3. Therefore if we also have 

fiTt = Ho and the equality pT=pT* follows from (1.2). 
i 

Let us recall that the operator T can be injected into T' (T< T') if there exists 
an injection X such that T' X= XT. If there exists a quasi-affinity X such that 
T'X=XT we say that T is a quasi-affine transform of T' (7X7" ) . 

i 
Lemma 1.6. If T and T are two operators of class C0 and T-<T', we have 

If T<T' then nT=pT. 
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Proof. Let T, 7" be acting on respectively, and let X be any injection 
such that T'X=XT. Then X* has dense range; if is such that V r '*"SR=S' 

we have V 7"*nJV*9Jl=$ and obviously dim (Z*9Jl)-Sdim 9JI. Therefore 
NSO 

H r* so that nT^nT . by Lemma 1.5. If 7X7" , we may assume X has dense range 
so that n r S [ i T obviously also follows. The Lemma is proved. 

If T is an operator of class C0 we shall use the notation 

0 - 3 ) M ™ ) = ^T|(ran m(T))-> 

where denotes the set of inner functions in H°°. We shall consider the set H°° 

(pre)ordered as in [2]. Namely, we write m iSm2 if mx divides m2 or, equivalently, 
if |i»j1(z)|sj/M2(z)| for |z|<l. 

The following Lemma also follows from [8], Theorem III.6.3; we prove it for 
the sake of completeness. 

Lemma 1.7. If T is an operator of class C0 and m1,m2^mT, then 

(ran m!(T))~ c:(raa m2(T))~ if and only if m1^m2. 

Proof. If m1^m2, we have m1=m2m3 so that obviously ran w1(7 ,)cran m2(T). 

Conversely, if (ranw1 (7 , ) )~c(ranm2 (T) )~, we have (mT/m2)(T)m1(T)=0 and 
therefore mT^(mT/m2)ml. The Lemma follows. 

Corol lary 1.8. The function ¡.iT is decreasing on H™. 

Proof. Obviously follows from Lemma 1.6 and the proof of Lemma 1.7. 

i 
Corollary 1.9. If T and T' are operators of class C0 and 7X7" , we have 

pT(m)^pr(m), If T<T', we have pT{m)^pr{m), 

Proof. If X is any injection such that T'X=XT, we also have m(T')X= 

Xm(T), m£H~, and therefore r|(ran m(T))~<T'\(mn m(T'))~. If X is a quasi-
affinity we have (Xran m(r ) ) -= (ran m(T'))~ so that T|(ran m(T))~ 

-<r'|(ran m(T'))~. The Corollary follows by Lemma 1.6. 
We shall see that the converse of Corollary 1.9 is also true. 
Let us recall that for an operator T of class C„ acting on § and for /€§, 

stands for the minimal function of T\5)f, where 

(1.4) s , = V T'f. 
JJSO 

The following result is proved in [4], Proposition 1. 

Proposit ion 1.10. The set {/: mf—mT} is dense in 
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In fact, from the proof of [10], Theorem 1, it follows that {/: mf=mT} is 
a dense G¿. 

Finally let us recall the definition of approximate sums and quasi-direct sums 
(cf. [6] and [5], ch. III). Let § be a Hilbert space and {$>j} j€ } be a family of subspaces 
of § such that 

( 1 .5 ) S = V 
¡íJ 

We say that § is the approximate sum of if for each subset KczJ we have 

(1.6) ( V § / ) n ( V § ; ) = {0}. 
itK UK 

We say that H is the quasi-direct sum of j if for each family {Ka}aiA of sub-
sets of J we have 

( 1 . 7 ) n ( V S y ) = V S y , K = f ] K a . 
aíA j€Ka jíK aíA 

We shall introduce an intermediate notion. Namely, we shall say that § is 
the almost-direct sum of if the relation (1.7) holds whenever K=0. 

Lemma 1.11. Let be a family of subspaces of § such that (1.5) holds. 

9) is the almost-direct sum of {ŐjJye/ if and only if we have 

(1.8) S = V S ; > where = ( V j€J-

Proof . If § is the almost-direct sum of {§/}ygj, we have 

v S ; = v ( v ^ ( n ( v z j y = ({O»-L = 
jíJ jiJ k^j JtJ 

Conversely, if (1.8) holds and {K^aiA are such that p) Ka=0, then 
OSA 

( n ( V v ( V V ( V SJ) 
OÍA j(.Ka aíA jíKa OÍA JÍKa 

and because U { j : j$Ka}=J, we have V ( V § ; ) = V i>j—i>- The Lemma 
aíA a(A jíJ 

follows. 

2. Jordan models 

De f in i t ion 2.1. A model function is a function M which associates with every 
ordinal number a an inner function M(a) such that 

( i ) M ( ß ) ^ M ( a ) w h e n e v e r ä ^ /5; 

(ii) M(oi) = M(ß) whenever ä = ß; 

(iii) M(a ) = 1 for some' a. 
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If M is a model function, the operator S(M) acting on § ( M ) is defined as 

(2.1) S(M) = © S(mJ, ma = M(cc). 
a 

Lemma 2.2. Let {m^aiAaH~ be a totally ordered family of nonconstant func-

tions. Then the multiplicity of T= © S(ma) equals card A. 
oZA 

Proof. If A is finite, the assertion follows from [9]. If A is infinite, it follows 
from the inequality pT,eT,^pr that pT is also infinite so that / i T =dim(© §(m0)) 

by (1.2). Therefore, card A c a r d A •X0=card A. The Lemma follows. 

Corol lary 2.3. If M is a model function, we have fis(M-) = a, where a is the 

first ordinal number such that mx = 1. 

Proof. If a is the first ordinal number with mx=1, it follows from Defini-
tion 2.1 (ii) that {fi: m ^ 1}={/?: so that the Corollary follows by Lemmas 
1.1 and 2.2. 

Def init ion 2.4. For any operator T of class C0 we define 

(2.2) MT(a) = mx[T] = A{m: pT(m) a} 

where " A " stands for the greatest common inner divisor. 
Let us remark that MT(0)=mo[T] coincides with the minimal function of T. 

MT is a model function. Indeed, the conditions (i) and (ii) of Definition 2.1 are 
obviously satisfied while (iii) is satisfied because MT(a)=l whenever a=dim£j 
(/¿ r ( l )=^ r^dim § by (1.1)). It is also clear by Corollary 1.9 that MT is invariant 
with respect to quasi-affine transforms. 

Proposit ion 2.5. If M is a model function we have Msm)—M. 

Proof. Let us put T=S{M), M'=MT, ma=M(a) and m'a=M'(a). Let us 
assume Because m(S(m'))=0 if and only if m^m' (moreover, 
S(m'))(ran m(S(m')))~ is quasisimilar to S(m'/mAm')), by Lemma 2.2 we have 

/zT(m) : ; nT(mp) el card {a; a ft} — ft. 

Conversely, let us assume m not Then /ir(w)^card {a: a ̂ /5} >/5. By (2.2) we 
infer m'p—nip and the Proposition is proved. 

Now let us recall the definition of a Jordan operator (cf. [2]). If X is a cardinal 
number and T is an operator, T (S ) denotes the direct sum of X copies of T. 

Definit ion 2.6. A Jordan operator, is an operator of the form 

(2.3) T= © S(m)Wm» 
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where h is a cardinal number valued function on //" such that 
(i) A = {m: h{ni)?±0} is a well anti-ordered set; 

(ii) {m£A: is a decreasing (possibly finite or empty) sequence; 

.(iii) h(m) > 2 h(m') whenever 2 H™! = ^o-m'^-m m'=~m 

Our condition (iii) slightly differs from condition (b) of [2], Definition 1. If we 
analyse the proof of [2], Theorem 1, we remark that the Jordan model obtained 
there satisfies the actual condition (iii). Indeed, if h(m) = 2 h(m') it is easy to 

m'>m 
:see that (with the notation of [2]) m is not a saltus point for /. 

Let us remark that, by Lemma 2.2, we have 

(2.4) pT(u) = 2 h(m), u£Hr 
unot mm 

i f T is the operator given by (2.3). 

Theorem 2.7. Each operator T of class C0 is quasisimilar to S(MT). 

Proof . From Corollary 1.9 it follows that MT is a quasisimilarity invariant 
Therefore, by [2], Theorem 1, it is enough to prove that for T a Jordan operator 
in the sense of Definition 2.6, T and S{MT) are unitarily equivalent. So, let T be 
given by (2.3) and denote mx—MT(a). It is enough to prove that 

(2.5) card {a; mx = m) = h(m), mZH™. 

Let us assume firstly that h(m)= 0. There exists a last m1£A={m': h(m')^0} 

such that m1SnjAm r . Thus for m'£A we have m(S(m'))=0 if and only if 
m1 (S(»j/ ) )=0. By Lemma 2.2 we infer nT(m)=fxT(mi) so that by (2.2) there is 
no a such that mx=m and (2.5) is proved in this case. 

Now let us assume 0 </j(m)<K0- Then the sum 

(2.6) k = 2 Hm') 
m'>m 

is finite by Definition 2.6 (iii). It is clear that p T (u )sk if and only if u^m and 
therefore if and only if nT(u)^k+n—1, n—h(m). We obtain 

™k = %+i =•••= >"fc+n-i = m. 

Analogously we obtain mk+n=m' where m' is the predecessor of m in A; thus 
{a: mx=m)={k, k+1, ..., k+n — 1} and (2.5) is proved in this case also. 

Finally let us assume /j(m)£K0- If k^a<h(m), where k is defined by (2.6), 
we have /¿t(m)=a if and only if u^m. Indeed, if «not Sm, we have ¡ iT (u)^h(m) 
by Lemma 2.2. Therefore 

<2.7) ma = m whenever k s a < h(m). 
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If a^h(m) and m' is the predecessor of m in A (if m is the first element of A we take 
m ' = l ) then, again by Lemma 2.2, pT(m') = £ h(m")— 2 h(m")+h(m) — h{m) 

m">m' m">m 
so that m ^ m . Therefore 

{a; ma = m} = {a; fc ^ a < h(m)} 

and (2.5) follows by Corollary 1.4 in this case. The Theorem is proved. 
Let us recall that / " » = / ( F ) for 

Corol lary 2.8. For each operator T of class C0 we have ¡iT{m)=fiTt(m~), 

and mC[[r*]=ffiC![7,]~ for each ordinal number a. 

Proof. Since pT(m) is a quasisimilarity invariant it is enough to prove the 
Corollary for T=S(M) and in this case the assertions of the Corollary become 
obvious. 

We are now able to prove the converse of Corollary 1.9. 

Corol lary 2.9. For two operators T, T' of class C0 the following assertions are 

equivalent: 

(i) T<T'\ 

(i)* T* < T'*; 

(ii) pT(m)^pr{m), m£Hr; 

(iii) /Ma[r]^ffia[7"] for each ordinal number a. 

Proof. (i)=>(ii) by Corollary 1.9. (ii)=>(iii) by Definition 2.4. 
(iii)=>-(i). Let us denote ma=ma[T], m'x=mx[T']. There exist (cf. [9]) isometries 

Rx: such that S(m'x)Rx=RxS(mx). If X and Y are two quasi-
affinities such that T'X=XS(MT.) and S(MT)Y— YT, the operator Z = Z ( © RX)Y 

a 
is an injection and T'Z=ZT. 

Finally, the condition mx[T]^mx[T'] is equivalent to mx[T*]^mx[T'*] by 
Corollary 2.8; it follows that the condition (i)+ is equivalent with (i)—(iii). The 
Corollary is proved. 

The following Corollary gives in particular a new proof of [11], Theorem 1. 

Corol lary 2.10. For two operators T, T' of class C0 the following assertions 

are equivalent: 

(i) 7 X 7 " ; 

(ii) 7 X 7 " and T'-<T; 

(iii) pT(m) = pT,(m), m£Hr I 

(iv) T and T' are quasisimilar. 

4 
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Proo f . (i)=>(iii) and (ii)=>(iii) by Corollary 1.9. (iii)=»(iv). By Definition2.4 
we infer mx[T]—ma[T'] so that T and T' are quasisimilar having the same Jordan 
model. (iv)=>(i) and (iv)=>(ii) are obvious. 

Coro l la ry 2.11. If T is an operator of class C0 on the Hilbert space § then 

each invariant subspace WlofT is of the form SOI=(X§)~ =ker Y for some X, Y£ {JT}'. 

Proo f . Let us denote by T' the restriction T|9K and by J the inclusion of 
i 

5DÎ into By Corollary 2.9 we have 7"*-<T* so that there exists an injection 
Z : 2TC-S such that T*Z=ZT'*. Then X=JZ*£{T}' and (X§)-=J(Z*&)~ = 

=J2R=2K. Analogously 9R-L = ( y * § ) - for some F * Ç { r * } ' so that 93î=ker Y. 

The Corollary follows. 
As shown by Proposition 2.5 and Theorem 2.7 the operators of the form S(M) 

with M a model function form a complete system of représentants for the class C0 

with respect to the relation of quasisimilarity. Sometimes it is more convenient to 
use Jordan operators as given by Definition 2.6. 

Propos i t ion 2.12. If M is a model function and 

(2.8) h(m) = card {a; mx = m], m£Hr, 

then the function h satisfies the conditions (i)—(iii) of Definition 2.6. 

Proo f , (i) A = {m: h (m) ^ 0} is the range of the decreasing function M defined 
on a well-ordered set so that obviously A is well anti-ordered. 

(ii) If h(m)<we infer m^ma for aëco. Therefore {m: 0-=/j(/w)<No} 
is the range of the function M on a segment of the natural numbers. 

(iii) Let us assume /2(m)ëK0 and let a be the first ordinal number such that 
mx=m. By Lemma 1.1 S= 2 h(m'). If a is a finite number, the relation A (w )>a 

m'>m 

is obvious. If a is transfinite we infer by Corollary 1.4 and Definition 2.1 (ii) 

h(m) s card {/?; p = S} = S' > S = 2 h{m'), 

where a' is the successor of â in the series of cardinal numbers. The Proposition 
is proved. 

From now on we shall call Jordan operators the operators S(M) with M a 
model function and S(MT) will be called the Jordan model of the operator T of 
class C0. 

Remark 2.13. For any operator T of class C0' we have 

(2.9) H M J T ] ) S a. 

Indeed, we have only to verify (2.9) for T= S(M) and in this case (2.9) is obvious. 
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3. Decomposition theorems 

The following Lemma is essentially contained in [9], sec. 2. We prove it for 
the sake of completeness. Let us remark that Lemma 3.1 also follows from [11], 
Theorem 2. 

Lemma 3.1. Let T and T' be operators of class C0, both quasisimilar to S(m) 

(m£H{°) and let A be such that T'A = AT. Then A is one-to-one if and only if it 

has dense range. 

Proof . Let X and Y be two quasi-affinities such that TX=XS(m) and 
S{m)Y=YT'. The operator Y AX commutes with S(m) so that YAX=u(S(m)) 

for some uZH™ by Sarason's Theorem [7]. If A is one to one or has dense range 
then so does u(S(m)) and therefore uAm=l. Now 

XYAXY = Xu(S(m))Y = u{T)XY = XYuÇT) 

so that XYA = u(T) and AXY=u(T'). u(T) and u(T') are quasi-affinities because 
u/\m = l and r a n 3 r a n ii(T'), ker ,4 C ker M (7) SO that A is a quasi-affinity in 
both cases. 

The following result is a generalisation of [4], Proposition 2. 

Proposi t ion 3.2. Let T and T' be two operators of class C0 acting on 

respectively, X be a quasi-affinity such that T'X=XT, f£$> be such that mf=mT 

and £>0. Then there exist subspaces §>i> ®îi invariant for T and SDi* invariant 

for T'* such that: 

(i) Si = S/; 

(ii) \\P&tXf-Xf\\^e; 

(iii) S W ^ ^ S Î H , = ( X ^ V ; 

(iv) = § i fl SJlx = {0}, SÎV9JÎÏ = § j n 9 J i i = {0}; 

(v) Ps* X\ and Pm*X | DJÎj are quasi-affinities. 

Proof . The conditions (i)—(v) are not independent. Indeed, let us assume that 
(i) and (iii) are verified and i>$'jAr|§1 is a quasi-affinity. It follows that T'\(X^~ 

and (T*|§iT are both quasisimilar to S(mT) and i^ jK-X"^ - has dense range; 
by Lemma 3.1 also has dense range, that is (^§ ] )~ = (7>(XSl)-S1*)_. 
Then 93ii = ker P^X so that f l = k e r P . g ^ = {0}. Analogously 5*n9K? = 
= {0}. Now s , = ( j r s 1 ) - © a » î = ( / ' ( x 4 i ) - s î ) v ® ç = s î v a j ç and analogously 
Ô1VSR1=§. Obviously 93Î*=(Pm* X§)~={PwlXWIJ- and Wl = ( . P a i l X * = 

= (/>,„, Af*9R;f)- and it follows that T V ^ a « ! is a quasi-affinity. 

4* 
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It follows by the preceding remark that it will be enough to define by (i), 
to find § * satisfying (ii) and such that P&*Xis a quasi-affinity and then to 
define 2Rl3 by (iii). 

The operator has the cyclic vector Xf so that by [10], Theorem 2, 
( r 'KZg) ! ) - ) * has a cyclic vector k. Moreover, by Proposition 1.10, the set of cyclic 
vectors of (r ' lC^&i) - )* is dense in ( A ^ ) ~ so that we may assume 

(3.1) ||fc-*/||<e. 

We define V T'*"k so that and (ii) is verified by (3.1). Let us 
( ISO 

compute the minimal function m of (7"'* |§*)*. Obviously m divides mT,=mT. 

Now the operator F=P (XSi)-|ijj* satisfies the relation 

(3.2) (T'\(X&)-)*Y=YT'*\&1 

and ran Y^k; it follows that Y has dense range and from (3.2) we infer 
m~((7" |(A"§i)")*)F= Ym~ (T*|§*)=0 so that mT,[(XSii)-=mT divides m. Because 
(7,'|(X§1)~)* and T'* are both quasisimilar to S(mT) we infer by Lemma 3.1 
that 7 is a quasi-affinity. In particular, is a quasi-affinity. 
Proposition 3.3 follows. 

Lemma 3.3. Let T be an operator of class C0 acting on let S(M) be the 

Jordan model of T and let §'(c§) be a separable space. Then there exists a reducing 

subspace §0 for T such that T|§0 ' s quasisimilar to 0 SimJ) (ntj=M(j)) and 
j < CO 

Proof. Let X be any quasi-affinity such that 

(3.3) TX = XS(M). 

We shall denote by § 0 the least reducing subspace of T containing and 
© §(my)). The space § 0 is separable; let © S(m'j) be the Jordan model of 

j<a> j<(o 
We have m'j^mj by Corollary 2.9. Because § 0 3(A ' ( © 9>(inj)))- we have: 

j<(£> 

(3.4) © S(MJ) < T | S0 

and therefore mj^m'j again by Corollary 2.9. Therefore mj—m'j and the Lemma 
follows. 

Theorem 3.4. Let T be an operator of class C0 acting on § and let S{M) be 

the Jordan model of T. We can associate with each limit ordinal a a reducing sub-

space 9ya for T such that: 

(0 S = © & ; 
a 

(ii) T |§a is quasisimilar to © S(ma+j). 
j-CO 
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Proof . Let X be as in the preceding proof. We shall construct by transfinite 
induction reducing subspaces for each limit ordinal a such that: 

(3.5) © H.=>X(® © S(m.+ i ) ) ; 

(3.6) T\9)x is quasisimilar to © S{ma+j). 
j-^a 

Let § 0 be given by Lemma 3.3 (with § ' = ( Z ( © § ( » i j ) ) - ) and assume § a are 
j< 0) 

defined for a</?. Let us denote: 

(3.7) « = 

Then R reduces T; let us denote by S(M') the Jordan model of T\St. From the 
condition (3.5) we infer X * ( f t ) c © and therefore: 

ys/) 

(3.8) T*\&<®S(tn„+7y. 
y 

By Corollary 2.9 we infer: 
(3.9) M'(y)^m,+1. 

By Theorem 2.7 and Definition 2.2 we have for any ordinal y: 

(3.10) m0+y= A{m: fiT(m)^JTy} = 

= A { m : ^(T|fl)©(r|i')(m) = P+y}-
Now, 

(3.11) ^(r|it)ffl(r|C)(m) = S 

= HT\R(™) + P • ^O = L*T\si(M) + P 

since P is transfinite. Because: P + y=P+y, we infer: 

(3.12) mfi + 1 == A {m: /ir|J,(m) y} = M'(y). 

From (3.9) and (3.12) it follows that M'(y)=mp+y. An application of Lemma 3.3 
to T\$t shows the existence of a reducing subspace S^cft such that: 

(3.13) T\§>p is quasisimilar to © S(mp+j) 

and 
(3.14) 

Conditions (3.5—6) are obviously conserved. Theorem 3.4 follows now because from 
(3.5) we infer § = © & , . 

a 

The proof of the following theorem is a refinement of the proof of [4], Theo-
rem 1. 
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Theorem 3.5. Let T be an operator of class C0 acting on § and let S(M) 

be the Jordan model of T. There exists a decomposition of § into an almost-direct sum 

(3.15) § = V & 
a 

of invariant subspaces of T such that: 

(i) T\9)a is quasisimilar to S(mx) for each ordinal a; 
(ii) §a+n_L§0+m if a, P are different limit ordinals and m, n<co. 

Proof . Theorem 3.4 allows us to consider only the case where §> is separable. 
Let o be a sequence of vectors dense in §> and let {(Pj}jL0 be a sequence in 
which each <pk appears infinitely many times. We shall construct inductively sub-
spaces § 0 , ..., §„ , 93i„ invariant for T and JrjJ, ..., §*,' 931* invariant for 
T* such that 

(3.16) §„ = §/„, fnmn.1 and mfn = mr|OTn l ; §n* c 931^; 

(3.17) (5oV§1V...V§„)^ = 5mn*) (§o*V§iV...V§:)^=9Ji„; 

(3.18) |S0i„ is a quasi-affinity; 

(3.19) { ll-psBv$1v...vsBÇ>t-Ç>*ll < 2 fc = n/2 if n is even, 
H ^ s ï v s ï v . . . v J < 2~", k = (n —1)/2 if n is odd. 

To begin we put 93l_1 = 93i11=§j; the conditions (3.16—19) are obviously 
satisfied for n= — 1. Let us assume that the spaces §>j, §>*, 931 j, 9JÎ* have been con-
structed for j^n — l. From (3.17) and (3.18) we infer 

S o V ^ V - V S ^ V a j t , , ^ = ( S o V S i V . - . V ^ - O © ^ ; . , ^ - ! ) - = S 

and analogously §*V§*V...V€>*_1V99î*_1=g>. Therefore there exist w€&oV§iV... 
...V$n-i, and u * € $ * V $ * V . . . V s u c h that 

—u —u|| < 2~"~1, k = n/2 if n is even, 

||%-M*-el < 2~n~1, k = (n-l )/2 if n is odd. 

By Proposition 1.10 we can choose /„6®Zn_1 with i and such that 

Jll/n-f|| < 2~"~1 if n is even, 
(121) tll^n;.,/.-«'! < 2~"~2 if n is odd. 

Proposition 3.2 allows us to construct the subspaces § „ = § / , 93l„ and 931* 
such that 

(3-22) | | P S * P ^ L - P ^ . J n I I < 2~"~2; 

(3.23) ®ç = 9w;_1e(i»aC_ is11)- ait, = 9Jtn_1e(/,ffl.n_1 §„*)-; 

(3.24) Pm* 1aR„ is quasi-affinity. 
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Let us show that the conditions (3.16—19) are verified. (3.16) is obvi-
ous and (3.18) coincides with (3.24). For (3.17) we have (d0V$xV...V§n)-L = 
=(S0V§1V...V§ I I_1)-Ln§BJ-=aw:_ in5„ i=9KB*_1e(/'OTi.15 ( ))-=9Ji: by (3.23) and 
analogously (§£ V SftV...'V £>*)1=®l„. If n is even we have 

\\P^6lv...v9tl(pk-(pk\\ S IIu+fn-(pk\\ ^ \\u + v-q>k\\+\\v-fn\\ < 2 - " , 

by (3.20) and (3.21). If n is odd we have 

< l lu^+^-^ l l + l l ^ - P ^ ^ / J I + < 2"" by 

(3.20—22); thus (3.19) is also verified. 
From (3.19) we infer 

(3.25) § = V S; = V 
jsa j^ta 

If IVJ (say ¡'-=7 by example) we have and C3Jt* by (3.16), so that 
Therefore S*c=(V S,)"1 and (3.25) shows, by Lemma 1.11, that the 

i*J 
decomposition § = V is almost direct. To finish the proof let us remark that 

j<a> 
9Jl„+1=(§JV § i V . . . V ^ c 9 J l n by (3.17), so that m/n+i divides mfn. As in [4], 
Theorem 1, it follows that the Jordan model of T is © S(mj), where mJ=m/ . 

Theorem 3.5 is proved. 
In the case of weak contractions the result of Theorem 3.5 can be improved. 

Proposit ion 3.6. Let T be a weak contraction of class C0 acting on the (nec-

essarily separable) Hilbert space £> and let © S(mj) be the Jordan model of T. 
j<03 

There exists a decomposition 

(3.26) § = V 
j-<a> 

of § into a quasi-direct sum of invariant subspaces of T such that T\S)j is quasi-

similar to S(mj). 

Proof . Let X be a quasi-affinity such that TX=X( © S(mj)) and define 
]<m 

&j=(X&(mJ))~. Let {Ka}0£A be a family of subsets of the natural numbers and 
denote K= f") Ka. Because the mapping 9Ki-*(X9M)- is an isomorphism of the 

lattice of invariant subspaces of © S(mj) onto the lattice of invariant subspaces 
j<(0 

of T (cf. [3], Corollary 2.4) we have 

n ( v b j ) = m n ( © § K ) ) ) ) - = = V 
aZA JZKa a€A j£Ka JtK j(.K 

Proposition 3.6 follows. 
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