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Finite homogeneous algebras. I 

BÉLA CSÁKÁNY and TAT'JANA GAVALCOVÁ 

1. Preliminaries. Following MARCZEWSKI [7], an operation /: Ak-*A is called 
homogeneous if h(f(x1, ..., xk))=f(h(x1) h(xk)) for every permutation h and 
any elements ..., xk of A. An algebra (A; F) is said to be homogeneous if each 
operation f£F is homogeneous. 

In this paper, we shall describe all finite homogeneous algebras up to equiv-
alence. This is the same as determining all clones of homogeneous operations on 
finite sets. In the present Part I we shall 

(1) list all minimal clones consisting of homogeneous operations (it turns out 
that this list contains at most three items on any finite set, and the dual discriminator 

* function d, introduced by E. Fried and A. F. Pixley, always generates such a minimal 
clone); 

(2) determine all clones of homogeneous operations containing the minimal: 
clone generated by the dual discriminator. 

Let us start with notions and notations. The symbol n means the set 
{0,1, ..., n—1}. For the sake of simplicity, we shall consider algebras of the form 
(n; F) only. The following description of homogeneous operations was given by 
MARCZEWSKI [7]: for a homogeneous A>ary operation/on n, f(a1, ..., ak)=ai where 
l^i^k, or, possibly, f{ax, ..., ak)=ak+1 if ak+1 is the unique element of n distinct 
from ax, ..., ak, in such away that the index of the value of f(ax, ..., ak) depends-
upon the pattern of equalities in the sequence (at, ..., ak) only. A homogeneous 
operation / is called a pattern function provided /(al5 ..., ak) always belongs 
to { a l s a k } . 

Several kinds of homogeneous operations will play an important role in the 
sequel: Pixley's ternary discriminator p, the dual discriminator d, the switching 
function s, the A:-ary near-projection lk where 3 (they are defined on any set); 
further, the (n—l)-ary operation rn, defined on n for nS2, and Swierczkowski's 
ternary function/0, defined on 4. Let us recall their definitions: 
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p(a, b,c) — c if a = b, and p{a, b,c) — a otherwise; 
d(a, b,c) = a if a = b, and d(a, b,c) = c otherwise; 
s{a, b, c) = c if a = b, s(a, b, c) = b if a = c and s(a, b,c) = a 

otherwise ; 
lk(ax, ..., ak) = ax if ax, ..., ak are pairwise distinct and 4(ûi> •••> ak) = ak 

otherwise ; 
/•„(&, ..., = a„ if {ax, ..., an.x, an} = n and r„(%, ..., an_0 = ax 

otherwise ; 
finally, 

/o(l, 2, 3) =/„(0, 1, 1) =/0 ( l , 0, 1) =/0 ( l , 1, 0) =/o(0, 0, 0) = 0 

{see [8], [7], [9], [3], [2]). 
A set of operations on a set n is called a clone if it contains all trivial opera-

tions (i.e., all projections) and it is closed under superposition. For any set F of 
operations on n, we say that F produces the operation g and we use the symbol 
F-*g if S be obtained from operations in F and the projections by superposi-
tion (in this case, one can also say that g is a term function of the algebra (n; F)). 

In the case F= { / } we write f-*g. Obviously, the relation — is transitive. For 
the negation of F—g we write F-t-g. An algebra (n; F) is functionally complete 

if the set FU (0,1,..., n — 1} (i.e., F together with the constant miliary operations) 
produces each possible operation on n. The clone [F] generated by F is the set of * 
all operations F produces. We write [/i,/2, ...] instead of [{/i,/2, ...}]. The 
algebras (n; F) and (n; G) are said to be equivalent if [F]=[(?]. A clone Fis called 
minimal if the clone of all projections is the unique one which is contained in T 

properly; this means that T contains a non-projection, and any non-projection in 
T produces every other non-projection. 

In the next lemma we collect the basic facts about how the above-mentioned 
homogeneous operations produce each other: 

Lemma 1. On a finite set n, the following hold: 

(1) P -*" / for any pattern function f. 

(2) Ij lk for j^k. 

(3) rn - /„_! for n> 3. 
(4) lk + d for n > 1. 
(5) d -+- lk for n > 2, n ^ k. 

(6) Ij -+- lk for j > k, n ^ k. 

Proof . (1) is a result in [4]. 
(2). It is sufficient to establish /;-WJ+1, and this is given by the identity 
(/ + lC*l» •••> xj> Xj + j) = lj(lj(xx, X3, ..., Xj, Xj+1), lj(x2, X3, ..., Xj, Xj+j), X4, ..., + 

0 ) « L-lixl> •••> xn-1) = rn{xn-l> •••> *3> x2> rn(xn-1, •••» x2> 
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To prove (4)—(6), we use the following fact. Let f , g be operations on n and 
f-*g\ then, for any natural number t, the subalgebras of (n;/) ' are closed under 
the (componentwise performed) operation g. 

(4). Observe that cr= {<1, 0, 0), <0,1, 0>, (0, 0, 1)} is a subalgebra of <n; Ik)3 but 
d({ 1, 0, 0>, <0, 1, 0>, <0, 0, 1 » = <0, 0, 0)$(T. Hence lk^d is impossible. 

Concerning (5) and (6), we present the crucial subalgebras only: 

2. Minimal clones of homogeneous operations. In this section, our main tool is 
the following fact: 

Lemma 2. For n^3, every non-trivial pattern function on n produces d or 

some lk with k^n. 

Proof. It was proved in [2] (see the proof of Lemma 5 there) that any non-
trivial pattern function on n produces d or an lk which is non-trivial; but lk is trivial 

The clones in the title of this paragraph are given by 

Theorem 1. The minimal clones consisting of homogeneous operations on a 

finite set n ( « > ! ) are the following: 

[/„] and [d], if 5; 

[/J, [d] and [/J, if n=4; 
[/J, [d] and [r3], if « = 3; 
[ 5 ] , [d] and [rj, if n = 2 . 

Proof. First we prove that, for «S3, [/„] is minimal on n. Take a non-trivial 
/ with /„—/; it is sufficient to show /— /„. As pattern functions produce pattern 
functions only, by Lemma 2 we have f-*d or f-*lk for a suitable k^n. From 
f-*d it follows /„ — d, contradicting Lemma 1(4); therefore f-*lk holds. Now 
k<n is impossible by Lemma 1(6), i.e., /—/„, which was needed. 

For n^3, the minimality of [d] can be proved by an analogous argument; 
here we have to apply Lemma 1(5) instead of (4). 

For nS5, there is no other minimal clone of operations on n. In order to 
show this, we shall verify that each non-trivial homogeneous operation g on n 
produces l„ or d. There are two possibilities: 

a) g—r„. Then, by Lemma 1(3) and (2), we have £-*-/„. 
b) g-*+rn. If, in addition, g is a pattern function, then Lemma 2 applies in 

the above manner. If g is not a pattern function, then we can identify variables 
of g (if necessary) so that we obtain an (n—l)-ary g' satisfying g'(a1 an_1)=an, 

(5) 

(6) 

{<fc-1,0), ..., <2, 0), <1, 0), <0, 0), <0, 1>} c (n; d)% 

{ < ; -2 , 0), ..., <2, 0), <1, 0), <0, 0), <0, 1)} c <n; /,>«. 

if k>n. 
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whenever {a1; a„_ l5 a„}=n, i.e., a„ is the unique element of n distinct from 
at, ..., a„_i. Now, if there exist two variables of g' whose identification furnishes 
a non-trivial pattern function, then, applying Lemma 2 for g' again, our claim 
follows. Suppose that g' turns into a projection by identifying any two of its vari-
ables. By a result of Swierczkowski, g' always turns into the same projection ([8]; 
see also [5], pp. 206—207; note that g' is at least quaternary). Hence g' equals r„ 
up to permutation of variables, implying g—r„, contrary to the hypothesis. 

Next we prove that [/„] is minimal on 4. Let /<>-*/ and suppose /-+-/0- Then 
<4;/0) and (4;/) are not equivalent. A homogeneous non-trivial algebra (4; F) 
is not functionally complete iff it is equivalent to <4 ;/„) (see [2]); therefore, (4;/) 
is functionally complete. Now, <4 ;/0) is functionally complete a fortiori, a contra-
diction. 

Similarly, a non-trivial homogeneous functionally incomplete algebra <3; F) 
is equivalent to <3; r3) (see [2]), hence the minimality of [/-3] on 3 follows. 

Furthermore, every non-trivial homogeneous operation g on 4 produces one 
of /4, d and /„, showing that there are no other minimal clones of homogeneous 
operations on 4. Indeed, if g is a pattern function, Lemma 2 applies. If g fails to 
be a pattern function, then an appropriate identification of variables of g leads 
to a ternary g' satisfying g'(a a2, a3)=ai, whenever {a1, ..., a4}=4. As we have 
g'^, a2, a3)—at ( lS/^3) if card {flj, a2, a3}<3, and the pattern of equalities in 

, a2, a3) determines the value of /', the operation g' is defined uniquely by the 
sequence <g'(0,1,1), g'( 1, 0,1), g'(l, 1, 0)> (of course, g'(0, 0, 0)=0 always). Let 
us denote g' by fk (k—0,1, ..., 7) if this sequence is the dyadic form of k (i.e., 
4g'(0,1, l )+2g' ( l , 0, l )+g ' ( l , 1, 0)=£). This notation is consistent with the orig-
inal definition of f0. We have to verify that every fk produces one of /4, d and /0. 

One can check the following identities: 

(a) fz(x,y, z) = r4(x, y, z); 

(b) My, x, z) =fe(z, y, x) =f3(x, y, z); 

(c) fi(y,z,f1(z,y,xj)= fi(y,/4(z, x,y),z) = p(x, y, z); 

(d) f'i{y,fi(y, z, x), x) =f7{y,f7(y, z, x), x) = d(x, y, z). 
From (a) and Lemma 1(3) and (2), it follows /3—/4. From (b), /5—/4 and 

/6—/4. Further, (c) together with Lemma 1(1) implies f i ^ d and / 4 — f i n a l l y , 
(d) shows /2—d and f7-*d. The case n=4 is settled. 

In the case n=3 we can proceed similarly. Any non-trivial homogeneous 
function g on 3 is either a pattern function — then we use Lemma 2 — or not. In 
the latter case g produces a binary g' in the usual way such that g'(aj, a2)=a3 when-
ever {alt a2, a3}=3, and g'(a, a) = a. Clearly, g'=r3, hence g—r3, as required. 

All minimal clones we have found are distinct. This is implied by Lemma 1(4) 
and the fact that pattern functions produce merely pattern functions. 



Finite homogeneous algebras. I 61 

The case n=2 of Theorem 1 can be realized by casting a glance at the diagram 
of the lattice of all clones on 2, due to POST (see, e.g., [6]; note that R2(X) = 
= x + l mod 2 and d(x, y, z)=xy+xz+yz mod 2 on 2). 

3. Homogeneous dual discriminator algebras. After WERNER [9], an algebra (n; F) 

is said to be a discriminator algebra (or quasi-primal algebra) if p£[F]. Analogously, 
an algebra (n; F) will be called a dual discriminator algebra if d(E[F]. In this para-
graph we determine all homogeneous dual discriminator algebras up to equivalence, 
i.e., for any n, we determine all clones of homogeneous operations on n containing d. 

From now on, n is fixed and « s 3 . 
Call a ternary operation m on n a majority operation if, for any x,y€ n, 

m(x,x,y)=m(x,y,x)=m(y,x,x)=x holds. The dual discriminator is a majority 
operation. The following theorem of BAKER and PIXLEY [1; Corollary 5.1] is basic 
for our considerations (see also [9]): 

Let (n; F) be a finite algebra such that F produces a majority operation and 
let g be an arbitrary operation on n. If every subalgebra of (n; F)2 is closed under 
the (componentwise performed) operation g, then F produces g. 

For a clone T on n, let ST stand for the set consisting of base sets of all sub-
algebras of (n; T)2. Let J5" be the set of all clones on the set n containing d. We 
call a set P of subsets of n2 complete if there exists a clone Tfc Ĵ " such that P=ST 

(i.e., if there exists a dual discriminator algebra on n such that P is the set of all 
subalgebras of the direct square of this algebra). Denote by Sf the set of all com-
plete sets. 

Lemma 3. S is an inclusion-reversing one-to-one mapping of 2F onto £P. 

Proof . The unique non-trivial part of this assertion is that S is one-to-one* 
Suppose TX,T2^ and STX=ST2. If f£T2 then every set in S r x ( =Sr 2 ) is 
closed under f hence, by the Baker—Pixley theorem, Tx-*f follows. This means 
/€7\ as 7\ is a clone. Therefore, T2<gTx (and by symmetry, 7\g7,). We get 
Tx=T2, which was needed. 

By virtue of Lemma 3, we can investigate complete sets instead of clones. 
First we establish some properties of complete sets. Subsets of n2 may be considered 
as binary relations on n. The following lemma is familiar: 

Lemma 4. Any complete set contains the complete relation; furthermore, it is 

closed under relation product, intersection and forming the inverse relation. 

For convenience, several kinds of subsets of n2 will bear special names. A set 
of form KXL with K, LQn, card K=k, card L = l is a block of size (k, I). A set 
of form {(/i,A>, ..., (ik,jk)}, where iL,...,ik are pairwise distinct as well as jx, ...,jk, 

is a string of size k. A set of form {<Wi>, <i2Ji>, <'iJi>, <W2>> •••» <Wi>} 
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(k, 1^2) is called a cross of size (k, I). Essentially, a string of size k is a partial 
permutation with a ̂ -element domain and a cross ̂ of size (k, /) is the union of two 
blocks of size (k, 1) and (1, /) with a non-empty intersection. Block of size m means 
a block of size (m, /) or (k, m); similarly for crosses. 

Lemma 5. Any complete set consists of blocks, strings and crosses; in par-

ticular, Sfi/] consists of all blocks, strings and crosses. 

Proof. A complete set consists of subsets of n2 preserved by d, and, by result 
of FRIED and PIXLEY [3; Theorem 2.4], d preserves a subset <r of n2 iff o is p-rec-

tangular, i.e., 
i'Ji), (hji), (k, l)e<* implies (i, l)£a for A ^ j2 

and 
(h,j),(i2,j),(k,l)£o implies (k,j)£a for h^h-

Clearly, blocks, strings and crosses are ^-rectangular and the converse can also be 
checked without trouble. 

From now on, we shall use the following notations: B is the set of all blocks 
and B' is the set of all blocks of size (k, I) with k, I¿¿n—1. The set of strings and 
crosses S, S' and C, C', resp., are defined analogously. Finally, let Cm be the set 
of all crosses of size (k, I) with k,l^m. Now Lemma 5 can be reformulated as 
follows: 

For any complete set P, the inclusion Pg jBUSUC holds; in particular, 
S ^ B U S U C . 

Next we clear up the structure of several further complete sets: 

Lemma 6. (1) lm+J=5U-SUCm for m=2, ..., n-l. 

(2) S[p] = BUS. 

(3) S[d,lm+1,rn] = B'US'UCm for m = 2, ..., n—2. 

(4) S[p,rJ = B'{JS'. 

Proof. (1) The following inclusions are obvious: £U5UCmgS[i/, /m + jgS[r f ] = 
= 5 U 5 U C . Take a set from C\Cm , i.e., across ofform {(ik,j\),..., (i1,ji), ...,(/1,7,)} 
with k>m (the case l>m can be settled similarly). Then /m+1((/m+1,y"1), ... 
•••> (h>(h> J'2))=('«+15/2) showing that our cross is not closed under /m+1. Thus, 
the set of all subalgebras of (n; d, lm+1)2 is 2?USUCm, as asserted. 

(2)—(4) can be verified in an analogous manner observing that no cross is 
closed under p, because we have p((h,jj), (ii,ji), (h>js))—(ja,js)l furthermore, 
no block, string and cross, each of size n—1, is closed under r„. Indeed, take, 
e.g., a block {/, / „ - J X l of size n - l and a j£L; then (h,j), (in-iJ) 

belong to this block but r n , j),..., (in-i,j)) does not. 
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Lemma 7. For the clone H of all homogeneous operations on n, SH=B'\J S\ 

Proof. By (4) of the previous lemma, SHQB'DS'. On the other hand,. 
SH contains all permutations of n, i.e. all strings of size n, since for any operation 
/homogeneity means that each permutation is a subalgebra of (n;/)2. Now we 
can apply Lemma4 in order to obtain all sets in B'US'. Namely, every string 
of size less than n—1 is the intersection of two permutations, every block of size 
(k, n) is the (relation) product of a string of size k and the complete relation, every 
block of size (n, 1) is the inverse of a block of size (/, « ) , and every block of size 
(fc, I) is the intersection of blocks of size (k, « ) and (n, I). 

In view of Lemmas 5 and 7, our task is reduced to determining all complete 
sets between US" and 5USUC. 

Lemma 8. All complete sets containing B'US' and contained in BiJ SUC 
are those listed in Lemma 6. 

Proof. It is sufficient to prove the following two propositions: 
(a) If a complete set contains B'US' and a block, or a string, or a cross, 

any of them of size n — 1, then it contains BUS. 
(b) If a complete set contains B'US' and a cross of size m, then it contains 

Cm; moreover, if m^n— 1, it contains even BUS. 

Indeed, suppose (a) and (b) are fulfilled, and let P be a complete set with 
5 ' U S ' g P ^ ^ U S U C . If P contains no crosses, then (a) implies P=B'\JS' or 
P=B[JS. Otherwise, let m be the maximum of the sizes of crosses in P. If there 
is a block or a string of size n — 1 in P, then in virtue of (a), (b) and the maximality 
of m we have P=B{JSUCm. In the opposite case, P=B'US'UCm by the same 
reason. 

It remains to prove (a) and (b). As for (a), one can check easily that all blocks 
and strings of size n—1 can be obtained from sets in B'US' and an arbitrary 
fixed block or string or cross, any of them of size n—l, by product, intersec-
tion and formation of inverse relation. Applying Lemma 4, the assertion (a) follows. 

(b) First let R be a complete set containing B'US' and an arbitrary cross 
£ of size (m, I) where 2 ^ / < m s n - l . Then any cross of the same size (m, /) can 
be obtained in the form n^n^ with appropriate strings n2 of size n; crosses of 
size (/, m) arise as inverses of the previous ones; crosses of size (m, m) can be rep-
resented as 7iC2 where and t2 a fe crosses of size (m, I) and (/, m), respectively, 
and 7i is a string of size « ; finally, an arbitrary cross of size lc2) with kx, k2^m 

is the intersection of a cross of size (m, m) and an appropriate block of size (kt, k2). 

Thus, Cm^R, as required. In the case m=n—1, the second part of (b) is a con-
sequence of (a). 

Secondly, let R be complete with i? ¡2 .B'US' and let R contain a cross of 
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size n. The preceding considerations show that we have two possibilities only, namely, 
7 ? = 5 ' U 5 , U C ' or R=B\JS\JC. The proof will be complete if we deduce that 
B'US'UC' is not a cbmplete set. Assume S F = f i ' U S ' U C ' for some homogene-
ous dual discriminator algebra (n; F). As SF is closed under rn, we have F-*rn 

by the Baker—Pixley theorem, hence, according to Lemma 1(3) and (2), F—l„ 

follows. However, as we have seen in the proof of Lemma 6(1), our cross of size 
n is not closed under /„, a contradiction. 

Now we are ready to formulate the main result of this paragraph. 

Theorem 2. The finite homogeneous dual discriminator algebras with more than 

one element are the following (up to equivalence): 

(2; d>, (2; p), <2; p, r2); 

<3; d), <3; p), <3; p, r3), <3; d, Z3>; 

<4; d), (4; p), <4; p, r4), <4; d, Z3>, <4; d, Z4>, <4; d, r4> 

and for n£5 

(n; d), (n; p), <n; p, ra>, <n; d, lk> (k = 3, ..., n), 

<n; d, rn), (n; d, rn, lk) (fc = 3, ..., n-2). 

The interval of clones between [d] and H—[p, rn] on n is the lattice with the 
diagram presented below: 

[P, 

[P, '"J 

[p] 

Id, 73] 

M 

n = 3 n = 2 n = 4 n e 5 

Proof . For « >2 , this follows immediately from Lemmas 6, 7 and 8. The 
case n—2 can be found in Post's work ([6], pp. 72—76). 
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