New generalizations of Banach's contraction principle

M. HEGEDŰS

Many research papers have appeared on different generalizations of Banach's contraction principle. A. MEIR and E. KEELER [2] studied mappings $f: X \rightarrow X$ of a metric space (X, ϱ) having the property that for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $\varepsilon \leq \varrho(x, y) < \varepsilon + \delta$ implies $\varrho(f(x), f(y)) < \varepsilon$. In the present paper we consider the following generalization of a restriction of this definition. For $x, y \in X$ let $d_f(x, y) = \text{diam} \{x, y, f(x), f(y), f^2(x), f^2(y), \ldots\}$. Here "diam" abbreviates diameter.

The mapping $f: X \to X$ is called a generalized Meir—Keeler contraction if $d_f(x, y) < \infty$ for $x, y \in X$ and if for every $\varepsilon > 0$ there exist ε' , ε'' such that $0 < \varepsilon' < \varepsilon < \varepsilon''$ and $d_f(x, y) < \varepsilon''$ implies $\varrho(f(x), f(y)) < \varepsilon'$.

Lj. B. ĆIRIĆ [1] studied mappings $f: X \to X$ for which $d_f(x, y) < \infty$ and there exists a constant α , $0 \le \alpha < 1$, such that

$$\varrho(f(x), f(y)) \leq \alpha \max \{ \varrho(x, y), \varrho(x, f(x)), \varrho(y, f(y)), \varrho(x, f(y)), \varrho(y, f(x)) \}$$

for x, $y \in X$. In the present paper we consider the following class of mappings wider than that considered by Ćirić.

The mapping $f: X \to X$ is called a generalized Banach contraction if $d_f(x, y) < \infty$ for $x, y \in X$ and if there exists a constant α , $0 \le \alpha < 1$ such that $\varrho(f(x), f(y)) \le \le \alpha d_f(x, y)$ for all $x, y \in X$.

It is obvious that every generalized Banach contraction is a generalized Meir-Keeler contraction. The function $f(x) = \sin x$ on $X = [0, \pi/2]$ is a generalized Meir-Keeler contraction which is not a generalized Banach contraction. This may be seen in the following way. Firstly, if $\sin x$ were a generalized Banach contraction on $[0, \pi/2]$, then we would have $|\sin x| \le \alpha |x|$ for all $x \in [0, \pi/2]$ with some α , $0 \le \alpha < 1$. But this is impossible, since $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Secondly, for any given ε , $0 < \varepsilon \le 1$ let ε' be a number such that $\sin \varepsilon < \varepsilon' < \varepsilon$. Denote $\varepsilon'' = \arcsin \varepsilon'$. If $x, y \in \left[0, \frac{\pi}{2}\right], y \le x$ and $|x-y| \le \varepsilon''$, then $|\sin x - \sin y| = \int_{y}^{x} \cos t dt = \int_{0}^{x-y} \cos (x+t) dt \le y$

Received May 15, 1979.

 $\leq \int_{0}^{x-y} \cos t \, dt = \sin (x-y) \leq \sin (\arctan \varepsilon') = \varepsilon'. \text{ Consequently, } \sin x \text{ is a generalized}$

Meir—Keeler contraction on $\left[0, \frac{\pi}{2}\right]$.

Now we give an example of a generalized Banach contraction which is not of Ćirić type. In fact, let $X = \{1, 2, 3, 4\}$ and $\varrho(1, 2) = 3.9$, $\varrho(1, 3) = 3.7$, $\varrho(1, 4) = 4.0$, $\varrho(2, 3) = 3.9$, $\varrho(2, 4) = 3.9$, $\varrho(3, 4) = 3.0$. Furthermore, let f be defined on X by the equalities f(1)=2, f(2)=3, f(3)=4, f(4)=4. Then $\varrho(f(1), f(2)) =$ $= \max \{\varrho(1, 2), \varrho(1, f(1)), \varrho(2, f(2)), \varrho(1, f(2)), \varrho(2, f(1))\}$. However, it is easy to verify that in this case $\varrho(x, y) \leq 0.99d_f(x, y)$ for all $x, y \in X$.

The objective of the present paper is to prove the following theorems.

Theorem 1. Let $f: X \to X$ be a generalized Meir—Keeler mapping. Then there exists at most one fixed point of f, and $\{f^n(x)\}_{n=1}^{\infty}$ is a Cauchy sequence for every $x \in X$. If X is complete, then for every $x \in X$, $f^n(x)$ converges to the unique fixed point of f as $n \to \infty$.

Theorem 2. Let $f: X \to X$ be a generalized Banach contraction with constant α , let $x_0 \in X$ be fixed, and let $\delta_n = \text{diam} \{f^n(x_0), f^{n+1}(x_0), \ldots\}$. Then

$$\delta_n \leq \frac{\alpha^n}{1-\alpha} \, \varrho(x_0, f(x_0)) \quad (n = 0, 1, ...),$$

$$\delta_n \leq \frac{\alpha}{1-\alpha} \, \varrho(f^{n-1}(x_0), f^n(x_0)) \quad (n = 1, 2, ...).$$

If X is complete, then

$$\begin{split} \varrho(z, f^n(x_0)) &\leq \frac{\alpha^n}{1-\alpha} \, \varrho(x_0, f(x_0)) \quad (n = 0, 1, \ldots). \\ \varrho(z, f^n(x_0)) &\leq \frac{\alpha}{1-\alpha} \, \varrho(f^{n-1}(x_0), f^n(x_0)) \quad (n = 1, 2, \ldots), \end{split}$$

where z denotes the unique fixed point of f.

The proofs will be based on the following

Lemma. Let $f: X \to X$ be a generalized Meir—Keeler mapping, and let $x_0 \in X$, $\delta_n = \text{diam} \{ f^n(x_0), f^{n+1}(x_0), \ldots \}$. Then $\delta_n = \sup_{k>n} \varrho(f^n(x_0), f^k(x_0)) \ (n=0, 1, \ldots)$.

Proof. It is sufficient to consider the case n=0. If $\delta_0=0$, then the statement of the lemma is obvious. If $\delta_0>0$, then choose δ'_0 , δ''_0 in such a way that we have $0<\delta'_0<\delta''_0$ and $\varrho(f(x), f(y))<\delta'_0$ if $d(x, y)<\delta''_0$. Now let $k, l\ge 1$. Since $\delta_{\min\{k-1, l-1\}}\le \delta_0<\delta''_0$, we have $\varrho(f^k(x_0), f^l(x_0))<\delta'_0<\delta_0$. This immediately implies the assertion of our lemma.

Proof of Theorem 1. Let z' and z'' be fixed points of f. If $\varrho(z', z'') = \varepsilon > 0$, then choose ε' , ε'' such that $0 < \varepsilon' < \varepsilon < \varepsilon''$ and $\varrho(f(x), f(y)) < \varepsilon'$ if $d_f(x, y) < \varepsilon''$. Since z', z'' are fixed points, $d_f(z', z'') = \varrho(z', z'') = \varepsilon < \varepsilon''$. Consequently, $\varrho(z', z'') = \varrho(f(z'), f(z'')) < \varepsilon' < \varepsilon$, a contradiction. Therefore we must have $\varrho(z', z'') = 0$, i.e., that z' = z''.

Now let $x_0 \in X$ be fixed and use the notations of Lemma. We have to prove that $\delta_n \to 0$. It follows from the definition of δ_n that $\delta_0 \ge \delta_1 \ge ... \ge 0$. Consequently, $\delta_n \to \varepsilon$ for some $\varepsilon \ge 0$. Assume that $\varepsilon > 0$, and choose ε' , ε'' so that we have $0 < \varepsilon' < < \varepsilon < \varepsilon''$ and $\varrho(f(x), f(y)) < \varepsilon'$ if $d_f(x, y) < \varepsilon''$. Let n_0 be so large that $\delta_{n_0} < \varepsilon''$. If $k, l > n_0$, then $\varrho(f^k(x_0), f(x_0)) < \varepsilon' < \varepsilon$, since $d_f(f^{k-1}(x_0), f^{l-1}(x_0)) = \delta_{\min\{k-1; l-1\}} \le \le \delta_{n_0} < \varepsilon''$. Therefore, $\delta_{n_0+1} \le \varepsilon'$, a contradiction since $\delta_n \downarrow \varepsilon$. Hence $\varepsilon = 0$, and $\{f^n(x_0)\}_{n=1}^{\infty}$ is a Cauchy sequence.

Now let X be complete. Then $f^n(x_0)$ converges to an element z of X. We have to prove that z is invariant under f. Let $\delta_n^* = d_f(f^n(z), f^n(z))$. We must prove that $\delta_0^* = 0$. Assume the contrary, i.e., that $\delta_0^* > 0$, and choose $\delta_{0'}^{*'}, \delta_0^{*'}$ so that $0 < \delta_0^{*'} < < \delta_0^* < \delta_n^{*'}$ and $\varrho(f(x), f(y)) < \delta_0^{*'}$ if $d_f(x, y) < \delta_0^{*'}$. If $k \ge 1$, then for all large enough n, $d_f(f^{k-1}(z), f^{n-1}(x_0)) < \delta_0^{*'}$ since $f^n(x_0) \to z$ as $n \to \infty$. For such n we have $\varrho(f^k(z), f^n(x_0)) < \delta_0^{*'}$. If we let n tend to ∞ , then we obtain that $\varrho(f^k(z), z) \le \le \delta_0^{*'}$. Consequently, according to Lemma, $\delta_0^* \le \delta_0^{*'}$, a contradiction. Therefore z is a fixed point of f.

Proof of Theorem 2. The inequalities involving δ_n imply the other two inequalities. The second inequality concerning δ_n is an immediate consequence of the first. To prove the first, we observe that $\delta_n \leq \alpha^n \delta_0$. This is so since for $k > 1 \geq n$ we have $\varrho(f^k(x_0), f^l(x_0)) \leq \alpha \delta_{n-1}$. Consequently, $\delta_n \leq \alpha \delta_{n-1}$. We obtain from this by recursion that $\delta_n \leq \alpha^n \delta_0$. Now let k = 1, 2, ... Then

$$\begin{aligned} \varrho(x_0, f^k(x_0)) &\leq \varrho(x_0, f(x_0)) + \varrho(f(x_0), f^k(x_0)) \leq \\ &\leq \varrho(x_0, f(x_0)) + \delta_1 \leq \varrho(x_0, f(x_0)) + \alpha \delta_0 \end{aligned}$$

on the basis of what we have just observed. According to Lemma we therefore have $\delta_0 \leq \varrho(x_0, f(x_0)) + \alpha \delta_0$, i.e., $\delta_0 \leq \frac{1}{1-\alpha} \varrho(x_0, f(x_0))$. This is the inequality to be proved for n=0. For n=1, 2, ... we obtain from this and from what we have observed at the beginning of our proof that $\delta_n \leq \alpha^n \delta_0 \leq \frac{\alpha^n}{1-\alpha} \varrho(x_0, f(x_0))$.

References

- LJ. B. ĆIRIĆ, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 283-286.
- [2] A. MEIR and E. KEELER, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329.

DEPT. OF MATHEMATICS, K. MARX UNIV. OF ECONOMICS DIMITROV TÉR 8 1093 BUDAPEST, HUNGARY