## New generalizations of Banach's contraction principle

M. HEGEDỨS

Many research papers have appeared on different generalizations of Banach's contraction principle. A. Meir and E. Keeler [2] studied mappings $f: X \rightarrow X$ of a metric space $(X, \varrho)$ having the property that for every $\varepsilon>0$ there exists a $\delta>0$ such that $\varepsilon \leqq \varrho(x, y)<\varepsilon+\delta$ implies $\varrho(f(x), f(y))<\varepsilon$. In the present paper we consider the following generalization of a restriction of this definition. For $x, y \in X$ let $d_{f}(x, y)=\operatorname{diam}\left\{x, y, f(x), f(y), f^{2}(x), f^{2}(y), \ldots\right\}$. Here "diam" abbreviates diameter.

The mapping $f: X \rightarrow X$ is called a generalized Meir-Keeler contraction if $d_{f}(x, y)<\infty$ for $x, y \in X$ and if for every $\varepsilon>0$ there exist $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ such that $0<\varepsilon^{\prime}<$ $<\varepsilon<\varepsilon^{\prime \prime}$ and $d_{f}(x, y)<\varepsilon^{\prime \prime}$ implies $\varrho(f(x), f(y))<\varepsilon^{\prime}$.

Lj. B. Ćtrić [1] studied mappings $f: X \rightarrow X$ for which $d_{f}(x, y)<\infty$ and there exists a constant $\alpha, 0 \leqq \alpha<1$, such that
$\varrho(f(x), f(y)) \leqq \alpha \max \{\varrho(x, y), \varrho(x, f(x)), \varrho(y, f(y)), \varrho(x, f(y)), \varrho(y, f(x))\}$
for $x, y \in X$. In the present paper we consider the following class of mappings wider than that considered by Ćirić.

The mapping $f: X \rightarrow X$ is called a generalized Banach contraction if $d_{f}(x, y)<\infty$ for $x, y \in X$ and if there exists a constant $\alpha, 0 \leqq \alpha<1$ such that $\varrho(f(x), f(y)) \leqq$ $\leqq \alpha d_{f}(x, y)$ for all $x, y \in X$.

It is obvious that every generalized Banach contraction is a generalized MeirKeeler contraction. The function $f(x)=\sin x$ on $X=[0, \pi / 2]$ is a generalized MeirKeeler contraction which is not a generalized Banach contraction. This may be seen in the following way. Firstly, if $\sin x$ were a generalized Banach contraction on $[0, \pi / 2]$, then we would have $|\sin x| \leqq \alpha|x|$ for all $x \in[0, \pi / 2]$ with some $\alpha$, $0 \leqq \alpha<1$. But this is impossible, since $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. Secondly, for any given $\varepsilon$, $0<\varepsilon \leqq 1$ let $\varepsilon^{\prime}$ be a number such that $\sin \varepsilon<\varepsilon^{\prime}<\varepsilon$. Denote $\varepsilon^{\prime \prime}=\arcsin \varepsilon^{\prime}$. If $x, y \in\left[0, \frac{\pi}{2}\right], y \leqq x$ and $|x-y| \leqq \varepsilon^{\prime \prime}$, then $|\sin x-\sin y|=\int_{y}^{x} \cos t d t=\int_{0}^{x-y} \cos (x+t) d t \leqq$
$\leqq \int_{0}^{x-y} \cos t d t=\sin (x-y) \leqq \sin \left(\arcsin \varepsilon^{\prime}\right)=\varepsilon^{\prime}$. Consequently, $\sin x$ is a generalized Meir-Keeler contraction on $\left[0, \frac{\pi}{2}\right]$.

Now we give an example of a generalized Banach contraction which is not of Cirić type. In fact, let $X=\{1,2,3,4\}$ and $\varrho(1,2)=3.9, \varrho(1,3)=3.7$, $\varrho(1,4)=4.0, \varrho(2,3)=3.9, \varrho(2,4)=3.9, \varrho(3,4)=3.0$. Furthermore, let $f$ be defined on $X$ by the equalities $f(1)=2, f(2)=3, f(3)=4, f(4)=4$. Then $\varrho(f(1), f(2))=$ $=\max \{\varrho(1,2), \varrho(1, f(1)), \varrho(2, f(2)), \varrho(1, f(2)), \varrho(2, f(1))\}$. However, it is easy to verify that in this case $\varrho(x, y) \leqq 0,99 d_{f}(x, y)$ for all $x, y \in X$.

The objective of the present paper is to prove the following theorems.
Theorem 1. Let $f: X \rightarrow X$ be a generalized Meir-Keeler mapping. Then there exists at most one fixed point of $f$, and $\left\{f^{n}(x)\right\}_{n=1}^{\infty}$ is a Cauchy sequence for every $x \in X$. If $X$ is complete, then for every $x \in X, f^{n}(x)$ converges to the unique fixed point of $f$ as $n \rightarrow \infty$.

Theorem 2. Let $f: X \rightarrow X$ be a generalized Banach contraction with constant $\alpha$, let $x_{0} \in X$ be fixed, and let $\delta_{n}=\operatorname{diam}\left\{f^{n}\left(x_{0}\right), f^{n+1}\left(x_{0}\right), \ldots\right\}$. Then

$$
\begin{gathered}
\delta_{n} \leqq \frac{\alpha^{n}}{1-\alpha} \varrho\left(x_{0}, f\left(x_{0}\right)\right) \quad(n=0,1, \ldots), \\
\delta_{n} \leqq \frac{\alpha}{1-\alpha} \varrho\left(f^{n-1}\left(x_{0}\right), f^{n}\left(x_{0}\right)\right) \quad(n=1,2, \ldots) .
\end{gathered}
$$

If $X$ is complete, then

$$
\begin{gathered}
\varrho\left(z, f^{n}\left(x_{0}\right)\right) \leqq \frac{\alpha^{n}}{1-\alpha} \varrho\left(x_{0}, f\left(x_{0}\right)\right) \quad(n=0,1, \ldots) . \\
\varrho\left(z, f^{n}\left(x_{0}\right)\right) \leqq \frac{\alpha}{1-\alpha} \varrho\left(f^{n-1}\left(x_{0}\right), f^{n}\left(x_{0}\right)\right) \quad(n=1,2 ; \ldots),
\end{gathered}
$$

where $z$ denotes the unique fixed point of $f$.
The proofs will be based on the following
Lemma. Let $f: X \rightarrow X$ be a generalized Meir-Keeler mapping, and let $x_{0} \in X$, $\delta_{n}=\operatorname{diam}\left\{f^{n}\left(\dot{x}_{0}\right), f^{n+1}\left(x_{0}\right), \ldots\right\}$. Then $\delta_{n}=\sup _{k>n} \varrho\left(f^{n}\left(x_{0}\right), f^{k}\left(x_{0}\right)\right)(n=0,1, \ldots)$.

Proof. It is sufficient to consider the case $n=0$. If $\delta_{0}=0$, then the statement of the lemma is obvious. If $\delta_{0}>0$, then choose $\delta_{0}^{\prime}, \delta_{0}^{\prime \prime}$ in such a way that we have $0<\delta_{0}^{\prime}<\delta_{0}<\delta_{0}^{\prime \prime}$ and $\varrho(f(x), f(y))<\delta_{0}^{\prime}$ if $d(x, y)<\delta_{0}^{\prime \prime}$. Now let $k, l \geqq 1$. Since $\delta_{\min \{k-1, l-1\}} \leqq \delta_{0}<\delta_{0}^{\prime \prime}$, we have $\varrho\left(f^{k}\left(x_{0}\right), f^{l}\left(x_{0}\right)\right)<\delta_{0}^{\prime}<\delta_{0}$. This immediately implies the assertion of our lemma.

Proof of Theorem 1. Let $z^{\prime}$ and $z^{\prime \prime}$ be fixed points of $f$. If $\varrho\left(z^{\prime}, z^{\prime \prime}\right)=\varepsilon>0$, then choose $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ such that $0<\varepsilon^{\prime}<\varepsilon<\varepsilon^{\prime \prime}$ and $\varrho(f(x), f(y))<\varepsilon^{\prime}$ if $d_{f}(x, y)<\varepsilon^{\prime \prime}$.

Since $z^{\prime}, z^{\prime \prime}$ are fixed points, $d_{f}\left(z^{\prime}, z^{\prime \prime}\right)=\varrho\left(z^{\prime}, z^{\prime \prime}\right)=\varepsilon<\varepsilon^{\prime \prime}$. Consequently, $\varrho\left(z^{\prime}, z^{\prime \prime}\right)=$ $=\varrho\left(f\left(z^{\prime}\right), f\left(z^{\prime \prime}\right)\right)<\varepsilon^{\prime}<\varepsilon$, a contradiction. Therefore we must have $\varrho\left(z^{\prime}, z^{\prime \prime}\right)=0$, i.e., that $z^{\prime}=z^{\prime \prime}$.

Now let $x_{0} \in X$ be fixed and use the notations of Lemma. We have to provethat $\delta_{n} \rightarrow 0$. It follows from the definition of $\delta_{n}$ that $\delta_{0} \geqq \delta_{1} \geqq \ldots \geqq 0$. Consequently, $\delta_{n} \rightarrow \varepsilon$ for some $\varepsilon \geqq 0$. Assume that $\varepsilon>0$, and choose $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ so that we have $0<\varepsilon^{\prime}<$ $<\varepsilon<\varepsilon^{\prime \prime}$ and $\varrho(f(x), f(y))<\varepsilon^{\prime}$ if $d_{f}(x, y)<\varepsilon^{\prime \prime}$. Let $n_{0}$ be so large that $\delta_{n_{0}}<\varepsilon^{\prime \prime}$. If ${ }^{\prime}$ $k, l>n_{0}$, then $\varrho\left(f^{k}\left(x_{0}\right), f\left(x_{0}\right)\right)<\varepsilon^{\prime}<\varepsilon$, since $d_{f}\left(f^{k-1}\left(x_{0}\right), f^{l-1}\left(x_{0}\right)\right)=\delta_{\min \{k-1 ; l-1\}} \leqq$ $\leqq \delta_{n_{0}}<\varepsilon^{\prime \prime}$. Therefore, $\delta_{n_{0}+1} \leqq \varepsilon^{\prime}$, a contradiction since $\delta_{n} \downarrow \varepsilon$. Hence $\varepsilon=0$, and $\left\{f^{n}\left(x_{0}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence.

Now let $X$ be complete. Then $f^{n}\left(x_{0}\right)$ converges to an element $z$ of $X$. We have to prove that $z$ is invariant under $f$. Let $\delta_{n}^{*}=d_{f}\left(f^{n}(z), f^{n}(z)\right)$. We must prove that $\delta_{0}^{*}=0$. Assume the contrary, i.e., that $\delta_{0}^{*}>0$, and choose $\delta_{0^{\prime}}^{*^{\prime}}, \delta_{0}^{*^{\prime \prime}}$ so that $0<\delta_{0}^{*^{\prime}}<$ $<\delta_{0}^{*}<\delta_{n}^{*^{\prime \prime}}$ and $\varrho(f(x), f(y))<\delta_{0}^{*^{\prime}}$ if $d_{f}(x, y)<\delta_{0}^{*^{\prime \prime}}$. If $k \geqq 1$, then for all large enough $n, d_{f}\left(f^{k-1}(z), f^{n-1}\left(x_{0}\right)\right)<\delta_{0}^{*^{\prime}}$ since $f^{n}\left(x_{0}\right) \rightarrow z$ as $n \rightarrow \infty$. For such $n$ we have $\varrho\left(f^{k}(z), f^{n}\left(x_{0}\right)\right)<\delta_{0}^{*^{\prime}}$. If we let $n$ tend to $\infty$, then we obtain that $\varrho\left(f^{k}(z), z\right) \leqq$ $\leqq \delta_{0}^{*^{\prime}}$. Consequently, according to Lemma, $\delta_{0}^{*} \leqq \delta_{0}^{*^{\prime}}$, a contradiction. Therefore $z$ is a fixed point of $f$.

Proof of Theorem 2. The inequalities involving $\delta_{n}$ imply the other two inequalities. The second inequality concerning $\delta_{n}$ is an immediate consequence of the first. To prove the first, we observe that $\delta_{n} \leqq \alpha^{n} \delta_{0}$. This is so since for $k>1 \geqq n$ we have $\varrho\left(f^{k}\left(x_{0}\right), f^{\prime}\left(x_{0}\right)\right) \leqq \alpha \delta_{n-1}$. Consequently, $\delta_{n} \leqq \alpha \delta_{n-1}$. We obtain from this by recursion that $\delta_{n} \leqq \alpha^{n} \delta_{0}$. Now let $k=1,2, \ldots$ Then

$$
\begin{aligned}
& \varrho\left(x_{0}, f^{k}\left(x_{0}\right)\right) \leqq \varrho\left(x_{0}, f\left(x_{0}\right)\right)+\varrho\left(f\left(x_{0}\right), f^{k}\left(x_{0}\right)\right) \leqq \\
& \quad \leqq \varrho\left(x_{0}, f\left(x_{0}\right)\right)+\delta_{1} \leqq \varrho\left(x_{0}, f\left(x_{0}\right)\right)+\alpha \delta_{0}
\end{aligned}
$$

on the basis of what we have just observed. According to Lemma we therefore have $\delta_{0} \leqq \varrho\left(x_{0}, f\left(x_{0}\right)\right)+\alpha \delta_{0}$, i.e., $\delta_{0} \leqq \frac{1}{1-\alpha} \varrho\left(x_{0}, f\left(x_{0}\right)\right)$. This is the inequality to be proved for $n=0$. For $n=1,2, \ldots$ we obtain from this and from what we have observed at the beginning of our proof that $\delta_{n} \leqq \alpha^{n} \delta_{0} \leqq \frac{\alpha^{n}}{1-\alpha} \varrho\left(x_{0}, f\left(x_{0}\right)\right)$.

## References

[1] LJ. B. ĆIRIĆ, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 283-286.
[2] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329.

