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A simple proof for von Neumann’s minimax theorem

L JOO
To the memory of F. Riesz (1880—1956)

1. The usual proofs of the von Neumann minimax theorem and its generaliza-
tions are based on deep results of Sperner or Brouwer (cf. [2], [4], [5]). Our proof
is based on the simple lemma due to F. Riesz (cf. [3], p. 41) that if a system of com-
pact subsets of a topological space has the finite intersection property (i.e. every
finite set has non-empty intersection) then the whole system has non-empty inter-
section. This proof is a development of the ideas of the paper [1].

2, Theorem. Let E and F be topological vector spaces, and let K,CE, K,CF
be convex compact sets. Let f(x, y) be a real-valued continuous function on K;XK,,
which is concave in x for any fixed y€K,, and convex in y for any fixed x€K,. Then

min max f(x, y) = max min f(x, y).
yeszmf( 2 ) xEKlyQKzf( , ¥)

Proof. Let ¢ be a (fixed) real number such that
HO=H,={x:f(x,y) =c} =0 for every y€K,

where @ denotes the empty set. The sets H, are convex and compact. We assert that

¢)) 'N H, 0.

Y€K,

According to the lemma of Riesz it is enough to prove that for any finite set
{yl’ eeey yn}CKz we have

N H,, = 0.
i=1

We prove this by induction on 7.
Consider the case n=2. Suppose there exist y,, y,€K; for which

@ Hmn H,=9
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and set H(A)=H, .q_5, for i€[0,1]; H(?)=0 by the convexity of f(x, y) in y.

Next we show that
3) H(}))c H,UH,.

For every x¢K, and x¢H, UH, we have
S A+ (A =2)ys) = f(x, )+ =D (x, y) < ¢

since f is convex in y. Thus x¢ H(2). Therefore, (3) follows because of the defini-
tions of H, , H, .
Using (2) and (3) we show that for arbitrary 2€[0, 1]

) either H() C H,
Suppose the contrary:

HOHYNH, #0 and H(}*)nH =0
for some A*¢[0, 1]. Let y;€ H(J)NH, and y;€ HAY)NH, be arbitrarily chosen
Consider the closed interval .

1, }’2] = {lyi‘+(1—)-)y§! 0=2=1})
By the convexity of the sets H, we have

1, ysl € H(X).

From (2) and the compactness of H and H, we see that there exists y E[yl, 4|
such that ‘

or H()C H,,.

1

y ey ]ﬂH)U([yn ]ﬂH-)

and hence y*¢H, UH, . On the other hand, y*¢H (A*) whlch contradlcts 3).
So (4) is proved.

To comiplete the proof of (3), we need the following statement: If H(A)N
NH, >0 for 4€[0,1]}, then there exists &=e&(»1, 2, /1)>0 such that

4 : HMNH, #9 for |A-2| <eg.

[Similarly: if H(A)NH, =0 for 2,¢[0,1], then there exists ag—sz(yl,yz,lz)>0
such that

©) HRMNH, =0 for |A—2)<e ]
We prove (5). If H(A)NH, %P then according to (4), H(A)NH, =09, that is
@) ' S(x, Ln+d —A)ys) < ¢ for every x€H,.

Since f(x, Am+(1—2)y,) is a continuous function in (x, 1), it follows from (7)
that for every x¢€H, there exists a neighborhood U, of x and ¢(x)>0 such that

S an+A=Dy) <c for (x, DEUX(A—e(x), 2y +e)).
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Therefore,
H

yz

c U U,.

xXE€H,y,

Since H, is compact we can choose a finite system '{Uxi}:.;l such that
n
H,c iszl u,,.

Then for &=min {e(x;): i=1,...,n} we have (5). The proof of (6) is similar.
From (4), (5), (6) it follows that the set {1€[0, 1]: H(2)cH, } is open in [0, 1].
Similarly, the set {A€[0,1]: H()cH, } is also open in [0, 1]. Taking (4) into
consideration, we arrive at a decomposition of the interval [0, 1] into two disjoint
non-empty relatively open sets, which is impossible. Thus we proved that

H,NH, #0.

Suppose we know that for any subset {y;,...,»} of K,(CF) having at
most n elements we have

k
N H, =0
i=1

and then we prove the same for n+1 elements.
Suppose there exist y,, ..., ¥,4, such that

n+1l
®) () Hy =0
Then we have
n+1
(H”ﬂ H:;)ﬂ(HMnH;,):ﬂ fOI‘ H3 = DSH“.

Now using the induction assumption and (8) we can apply the idea of the proof of
n=2 for the sets
H)=H,NH, (i=1,2).
Thus we obtain
n+1

m H}’i # ﬂ’
i=1

and so, according to the lemma of Riesz, (1) is proved.

Denote by € the set of real numbers ¢ for which H®=H,=@ whenever y<K,.
If ¢,€%, then c€¥ for every c=c¢,. Since the function f is continuous, the set €
is bounded from above. Denote by ¢* its smallest upper bound. From the lemma of
Riesz we deduce that ¢*€¥. We prove that

. .
® min glea,éf(x, y)=ct
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Suppose

min max
min max f(x, y) > ¢%,

then there exists &=>c* for which

a =
;gl,pglelg(f(x nzé=c

Therefore max f(x, y)=¢é& for every y€K,, hence {x: f(x,y}=¢}=0 for every
x€K,y

y€K,, but this contradicts the choice of ¢*.
On the other hand, because of (1), we have

def
A= (} H 0.
yeK,

Let x*cA. From the definition of H, we obtain f(x*, y)=c* for every ycK,;
thus
10) min f/(x*, y)=c¢* and maxmin f(x, y) = ¢*.

Y€K

x€Ky y€EK2

From (9) and (10) we deduce

min max = maxmm
min max f(x, y) = max min f(x, y).

Since

min max f (x, y) = max min 2 f (x, »)

is obvious, the theorem is proved.
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