On C_0 -operators with property (P)

L. KÉRCHY

1. H. BERCOVICI [1] has considered the class \mathcal{P} of Hilbert space operators T of class C_0 having the following property:

(P) any injection $X \in \{T\}'$ is a quasi-affinity.

He has shown that $T \in \mathscr{P}$ if and only if $\bigwedge_{n=1}^{\infty} m_n[T] = 1$, where $m_n[T]$ (n=1, 2, ...) are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 of [1].)

He has proved, furthermore, that every operator $T \in \mathscr{P}$ has the following stronger property also:

(P*) for any $X \in \{T\}'$ we have $\gamma_T(\ker X) = \gamma_T(\ker X^*)$.

(Cf. Theorem 7.9 of [1].) Here $\gamma_T(\ker X)$ and $\gamma_T(\ker X^*)$ are generalized inner functions; they play the roles of determinants of the operators $T|\ker X$ and $T_{\ker X^*}$. (Cf. sections 6 and 7 of [1].)

Let ϱ be the following relation on the class $\mathscr{P}: T_1 \varrho T_2$ if there exist $T \in \mathscr{P}$ and $X \in \{T\}'$ such that T_1 and T_2 are quasisimilar to $T | \ker X$ and $T_{\ker X^*}$, that is, $T_1 \sim T | \ker X$, and $T_2 \sim T_{\ker X^*}$. Then the previous statement can be written in the following form. If $T_1, T_2 \in \mathscr{P}$ and $T_1 \varrho T_2$, then $\gamma_{T_1} = \gamma_{T_2}$ (because γ_T is a quasi-similarity invariant).

Bercovici has also proved a partial converse of this statement. Namely, he has proved that if $T_1, T_2 \in \mathscr{P}$ are weak contractions and $\gamma_{T_1} = \gamma_{T_2}$, then $T_1 \varrho T_2$. On the other hand he has shown that if $T_1, T_2 \in \mathscr{P}$ are such that $\gamma_{T_1} = \gamma_{T_2}$, then there exists $S \in \mathscr{P}$ such that $T_1 \varrho S$ and $S \varrho T_2$. The main purpose of this note is to prove the complete converse of the statement mentioned above, namely,

Theorem. If $T_1, T_2 \in \mathcal{P}$ are such that $\gamma_{T_1} = \gamma_{T_2}$, then $T_1 \varrho T_2$.

Thus the operators of class \mathscr{P} have, in general, no stronger property than (P*). In particular, in general it is not true that an operator $T \in \mathscr{P}$ has the property:

(Q) $T | \ker X \text{ and } T_{\ker X*} \text{ are quasisimilar for any } X \in \{T\}'.$ (Cf. [2].)

Received November 19, 1979.

Furthermore, from the Theorem we can easily infer that ρ is an equivalence relation on \mathcal{P} .

2. In the sections 6 and 7 of [1] BERCOVICI introduced the notions of "generalized inner function" and " C_0 -dimension of a subspace" in the following way. Any inner function $m \in H_i^{\infty}$ has a factorization m = cbs, where c is a complex constant of modulus one, b is a Blaschke product and s is a singular inner function deriving from a finite Borel measure μ on $[0, 2\pi]$, singular with respect to Lebesgue measure. (Cf. [3], Ch. III.) Let us denote by $\sigma(z)$ the multiplicity of the zero z(|z| < 1) in the Blaschke product b. Then $\gamma(m)$ will denote the pair $\gamma(m) = (\sigma, \mu)$. The class $\tilde{\Gamma}$ of "generalized inner functions" will be the set of pairs $\gamma = (\sigma, \mu)$, where σ is a natural number valued function defined on $D = \{z : |z| < 1\}$ such that $\sum_{\sigma(z) \neq 0} (1 - |z|) < \infty$, and μ is a (not necessarily finite) Borel measure on $[0, 2\pi]$, which is absolute continuous with respect to a finite Borel measure ν singular with respect to Lebesgue measure. We define addition and lattice operations in $\tilde{\Gamma}$ by components.

If $T \in \mathscr{P}$, then it can be proved that $\gamma_T := \sum_{j=0}^{\infty} \gamma(m_j) \in \widetilde{\Gamma}$, where the $m_j = m_j[T]$ are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 and Proposition 6.6 of [1].) If T is an operator of class C_0 and $\mathfrak{M} \in \operatorname{Lat}_{\frac{1}{2}}(T)$ is such that $T_{\mathfrak{M}} \in \mathscr{P}$, then $\gamma_T(\mathfrak{M})$ is defined as $\gamma_T(\mathfrak{M}) = \gamma_{T_{\mathfrak{M}}}$.

For two operators T and T' we denote by $\mathscr{I}(T', T)$ the set of intertwining operators $\mathscr{I}(T', T) = \{X | T'X = XT\}$. If T' = T, then $\mathscr{I}(T, T) = \{T\}'$ is the commutant of T.

The next Lemmas will be frequently used in the sequel.

Lemma 1. Let $\{m_i\}_{i=0}^{\infty}$ be a sequence of pairwise relatively prime inner functions having a least common multiple m. Then the operator $T = \bigoplus_{i=0}^{\infty} S(m_i)$ is quasisimilar to S(m).

Proof. Cf. Theorem 2.7 of [4].

Lemma 2. Let m_1 , m_2 be inner functions.

(i) If m_2 divides m_1 $(m_1 \ge m_2)$ and $Xu = P_{\mathfrak{H}_2}u$ for all $u \in \mathfrak{H}_2(m_1)$, then $X \in \mathscr{I}(S(m_2), S(m_1))$ is surjective and $S(m_1) | \ker X$ is unitarily equivalent to $S\left(\frac{m_1}{m_2}\right)$ $\left(S(m_1) | \ker X \cong S\left(\frac{m_1}{m_2}\right)\right)$. (ii) If $m_1 \le m_2$ and $Xu = \frac{m_2}{m_1}u$ for all $u \in \mathfrak{H}(m_1)$, then $X \in \mathscr{I}(S(m_2), S(m_1))$ is

injective and $S(m_2)_{\ker X^*} \cong S\left(\frac{m_2}{m_1}\right)$.

Proof. We can easily verify this statement by a short computation.

Lemma 3. (Proposition 4.6 of [1]) Let T be an operator of class C_0 acting on \mathfrak{H} and let $\mathfrak{H}_j \in \operatorname{Lat}(T)$ be such that $\mathfrak{H}_j \subset \mathfrak{H}_{j+1}$ (j=1, 2, ...), and $\mathfrak{H} = \bigvee_{j=1}^{\vee} \mathfrak{H}_j$. Then $T \in \mathscr{P}$ if and only if $T_{\mathfrak{H}_j} \in \mathscr{P}$, $\mathfrak{H}_j = \mathfrak{H}_{j+1} \oplus \mathfrak{H}_j$ $(j=0, 1, 2, ...; \mathfrak{H}_0 = \{0\})$ and $\bigwedge_{j=1}^{\sim} m_0[T_{\mathfrak{H}_j^\perp}] = 1$. (If S is an operator of class C_0 , then $m_0[S]$ denotes its minimal function.)

3. Firstly we shall prove the statement of the Theorem in different special cases in the Propositions 1 and 2, from which the general situation can be derived. We remark that it can be always supposed that T_1 and T_2 are Jordan operators. In the proofs of Propositions 1 and 2 we shall need the next Lemma.

Let us denote by \sum the set of injections $\sigma: N \rightarrow N \cup (-N) = \hat{N}$ satisfying the conditions:

(i) if $1 \le i < j$ and $\sigma(i)\sigma(j) \ge 0$, then $|\sigma(i)| < |\sigma(j)|$;

(ii) if $r \in \sigma(N)$, then for all $s \in \hat{N}$ such that $s \cdot r \ge 0$ and |s| < |r| we have $s \in \sigma(N)$. (Here and in the sequel N is the set of natural numbers 1, 2,) Let \mathscr{G} be the set of sequences: $a = \{a_n\}_{n=1}^{\infty}$ of real numbers such that $a_1 \ge a_2 \ge ... \ge 0$ and $a_n \to 0$ as $n \to \infty$. If $a, b \in \mathscr{G}$, then let $F_{(a,b)}$ denote the mapping $\hat{N} \to R$ defined by

$$F_{(a,b)}(i) = \begin{cases} a_i, & \text{if } i \in N, \\ -b_i, & \text{if } i \in (-N). \end{cases}$$

Lemma 4. Let $a, b \in \mathscr{G}$ satisfy the condition: if $b_n = 0$ for some $n \in N$, then there exists $m \in N$ such that $a_m = 0$. If $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$, then there exists $a \ \sigma \in \sum$ such that for all $n \in N$ we have

$$0 \leq \sum_{i=1}^{n} F_{(a,b)}(\sigma(i)) \leq 2 \max (a_1, b_1)$$

furthermore $\sum_{i=1}^{n} F_{(a,b)}(\sigma(i))$ tends to 0, if n tends to ∞ .

Proof. Let $\sigma(1)=1$. If we have already defined σ for i=1, 2, ..., j, and $\max \{\sigma(i)|i=1, ..., j\}=r_j$, $\min \{\{\sigma(i)|i=1, ..., j\}\cup \{0\}\}=-s_j$, then

$$\sigma(j+1) := \begin{cases} -(s_j+1) & \text{if } \sum_{i=1}^{j} F_{(a,b)}(\sigma(i)) \ge b_{s_j+1}, \\ r_j+1 & \text{otherwise.} \end{cases}$$

It can be easily seen that this $\sigma \in \Sigma$ will be suitable.

Proposition 1. If $T_1, T_2 \in \mathscr{P}$ are such that $\gamma_{T_1} = \gamma_{T_2} = \gamma$ and γ has the form $\gamma = (\sigma, 0)$, then $T_1 \varrho T_2$.

Proof. Let T_1 and T_2 be the Jordan operators $T_1 = \bigoplus_{n=1}^{\infty} S(u_n)$ and $T_2 =$ $= \bigoplus_{n=1}^{\infty} S(v_n)$. From the assumption it follows that u_1 and v_1 are Blaschke products having the same zeros (disregarding multiplicities): $\lambda_1, \lambda_2, \dots$. For all $n u_n$ and v_n have factorizations $u_n = \prod_{l=1}^{\infty} u_{n,l}, v_n = \prod_{l=1}^{\infty} v_{n,l}$, where $u_{n,l}$ and $v_{n,l}$ are Blaschke factors containing only λ_l as a zero. (If λ_l is not a zero of $u_n(v_n)$, then $u_{n,l} := 1$ $(v_{n,l} := 1)$.)

Let us denote by $a_n^{(l)}$ and $b_n^{(l)}$ the multiplicities of λ_l as zero of $v_{n,l}$ and of $u_{n,l}$, respectively. Then $a_l = \{a_n^{(l)}\}_{n=1}^{\infty}$, $b_l = \{b_n^{(l)}\}_{n=1}^{\infty} \in \mathcal{G}$, and by virtue of $\gamma_{T_1} = \gamma_{T_2}$ we have $\sum_{n=1}^{\infty} a_n^{(l)} = \sum_{n=1}^{\infty} b_n^{(l)} \text{ for all } l \in N.$ By Lemma 4 there exists a $\sigma_l \in \Sigma$ such that

$$0 \leq \sum_{i=1}^{j} F_{(a_{i}, b_{i})}(\sigma_{i}(i)) \leq 2 \max(a_{1}^{(l)}, b_{1}^{(l)})$$

for all $j \in N$. Let $c_j^{(l)}$ be defined by $c_j^{(l)} = \sum_{i=1}^j F_{(a_i, b_i)}(\sigma_i(i))$, and let

$$w_j^{(l)}(z) := \begin{cases} \left(\frac{\overline{\lambda}_l}{|\lambda_l|} \frac{\lambda_l - z}{1 - \overline{\lambda}_l z}\right)^{c_j^{(l)}} & \text{if } \lambda_l \neq 0, \\ z^{c_j^{(l)}} & \text{if } \lambda_l = 0; \ j \in N, \ z \in D. \end{cases}$$

It is clear that $w_j^{(l)} = 1$, if j is large enough. So the operator T_l defined by $T_l = \bigoplus_{i=1}^{\infty} S(w_j^{(l)})$ has finite multiplicity. On the other hand by the construction it follows that $m_0[T_l] \leq$ $\leq (u_{1,l} \vee v_{1,l})^2.$

Let X_i be the contraction defined by $X_i \left(\bigoplus_{j=1}^{\infty} f_j \right) = \bigoplus_{j=1}^{\infty} g_j$, where $\bigoplus_{i=1}^{\infty} f_j$, $\bigoplus_{i=1}^{\infty} g_i \in \bigoplus_{i=1}^{\infty} \mathfrak{H}(w_i^{(l)}) \text{ and } g_1 = 0,$ $g_{j} = \begin{cases} P_{\mathfrak{H}(w_{j}^{(l)})} f_{j-1} & \text{if } w_{j-1}^{(l)} \geq w_{j}^{(l)}, \\ \frac{w_{j}^{(l)}}{w_{j-1}^{(l)}} f_{j-1} & \text{if } w_{j-1}^{(l)} \leq w_{j}^{(l)} & \text{for } j \geq 2. \end{cases}$

By Lemma 2 we infer that $X_l \in \{T_l\}'$ and $T_l | \ker X_l \cong \bigoplus_{n=1}^{\infty} S(u_{n,l}), (T_l)_{\ker X_l}^* \cong \bigoplus_{n=1}^{\infty} S(v_{n,l}).$ Since $\bigwedge_{j=1}^{\infty} m_0 \bigl[\bigoplus_{l=j}^{\infty} T_l \bigr] \leq \bigwedge_{j=1}^{\infty} \bigl(\prod_{l=j}^{\infty} (u_{1,l} \lor v_{1,l})^2 \bigr) = 1$, by Lemma 3 we see that $T = \bigoplus_{l=1}^{\infty} T_l \in \mathscr{P}$. Then $X = \bigoplus_{l=1}^{\infty} X_l \in \{T\}'$ and using Lemma 1 we get

$$T | \ker X = \bigoplus_{l=1}^{\infty} T_l | \ker X_l \cong \bigoplus_{l=1}^{\infty} \left(\bigoplus_{n=1}^{\infty} S(u_{n,l}) \right) \cong \bigoplus_{n=1}^{\infty} \left(\bigoplus_{l=1}^{\infty} S(u_{n,l}) \right) \sim \bigoplus_{n=1}^{\infty} S(u_n) = T_1$$

and similarly $T_{kerX*} \sim T_2$. Therefore, $T_1 \rho T_2$ and Proposition 1 is proved.

Proposition 2. If $T_1, T_2 \in \mathscr{P}$ are such that $\gamma_{T_1} = \gamma_{T_2} = \gamma$ and γ has the form $\gamma = (0, \mu)$, then $T_1 \varrho T_2$.

Proof.

(i) Let T_1 and T_2 be the Jordan operators $T_1 = \bigoplus_{n=1}^{\infty} S(u_n)$ and $T_2 = \bigoplus_{n=1}^{\infty} S(v_n)$. From the assumption it follows that there exist a finite Borel measure v in $[0, 2\pi]$, singular with respect to Lebesgue measure, and non-increasing sequences $\{f_n\}_{n=1}^{\infty}$, $\{g_n\}_{n=1}^{\infty}$ of non-negative Borel functions from $L^1(v)$ which are tending to 0 and such that

 $\operatorname{Exp}[f_n] = u_n$ and $\operatorname{Exp}[g_n] = v_n$ for all n.

Here and in the sequel we use the notations

$$\operatorname{Exp}[f, E](z) = \operatorname{exp}\left[-\int_{E} \frac{e^{it} + z}{e^{it} - z} f(t) \, dv(t)\right] \quad (z \in D), \text{ and } \operatorname{Exp}[f] = \operatorname{Exp}\left[f, [0, 2\pi]\right],$$

for any non-negative Borel function $f \in L^1(v)$, and measurable set $E \subset [0, 2\pi]$.

Therefore we see that $f(t) = \{f_n(t)\}_{n=1}^{\infty}$, $g(t) = \{g_n(t)\}_{n=1}^{\infty} \in \mathscr{G}$ for all t in $[0, 2\pi]$. Furthermore we can assume that

$$\sum_{n=1}^{\infty} f_n(t) = \sum_{n=1}^{\infty} g_n(t) \text{ for all } t \text{ in } [0, 2\pi].$$

(ii) Let *E* be the measurable set of points *t* in $[0, 2\pi]$ such that a=g(t) and b=f(t) satisfy the assumptions of Lemma 4. If $t\in E$ let $\sigma_t\in \Sigma$ be the function constructed in the proof of Lemma 4 taking a=g(t) and b=f(t). For all $j\in N$ let $h_i\in L^1(v)$ be the measurable function defined by

$$h_j(t) = \begin{cases} \sum_{i=1}^{j} F_{(g(t), f(t))}(\sigma_t(i)) & \text{if } t \in E_s \\ 0 & \text{otherwise.} \end{cases}$$

By Lemma 4 we infer that

$$0 \leq h_i(t) \leq 2 \max \left(f_1(t), g_1(t) \right)$$

for all $j \in N$, $t \in [0, 2\pi]$, and

$$\lim_{i \to \infty} h_j(t) = 0 \quad \text{for all} \quad t \in [0, 2\pi].$$

Introducing the inner functions $\{w_j\}_{j=1}^{\infty}$ by $w_j = \operatorname{Exp}[h_j]$, we consider the operator $\bigoplus_{j=1}^{\infty} S(w_j)$.

(iii) We shall show that $\bigoplus_{j=1}^{\infty} S(w_j) \in \mathscr{P}$. By Lemma 3 it is enough to prove that $m = \bigwedge_{k=1}^{\infty} m_0 [\bigoplus_{j=k}^{\infty} S(w_j)] = 1$.

Let ε be an arbitrary positive number. There exists a positive δ such that if H is a Borel set and $v(H) < \delta$, then $\int_{H} 2 \max \{f_1(t), g_1(t)\} dv(t) < \varepsilon$. By Egorov's theorem we infer that there exists a Borel set H_{ε} such that $v(H_{\varepsilon}) < \delta$ and the sequence $\{h_j\}_{j=1}^{\infty}$ converges uniformly to zero on the complement $CH_{\varepsilon} = [0, 2\pi] \setminus H_{\varepsilon}$. So there exists a k_0 such that for all $j > k_0$ and $t \in CH_{\varepsilon}$ we have $h_j(t) < \varepsilon$. Therefore if $j > k_0$, then for all $t \in [0, 2\pi]$ we have $h_j(t) \le \tilde{h}_{\varepsilon}(t)$, where \tilde{h}_{ε} is the function defined by

$$\tilde{h}_{\varepsilon}(t) = \begin{cases} \varepsilon & \text{if } t \in CH_{\varepsilon}, \\ 2 \max \{f_1(t), g_1(t)\} & \text{if } t \in H_{\varepsilon}. \end{cases}$$

We infer that the inner function m satisfies the inequality

Therefore we have

$$|m(0)| \ge |\operatorname{Exp}\left[\tilde{h}_{\varepsilon}\right](0)| = \exp\left[-\int_{0}^{2\pi} \tilde{h}_{\varepsilon}(t) \, dv(t)\right] =$$
$$= \exp\left[-\int_{H_{\varepsilon}} \tilde{h}_{\varepsilon}(t) \, dv(t) - \int_{CH_{\varepsilon}} \tilde{h}_{\varepsilon}(t) \, dv(t)\right] \ge \exp\left[-\varepsilon - \varepsilon \cdot v([0, 2\pi])\right].$$

Since ε can be chosen arbitrary small, so |m(0)|=1. That is, m=1.

(iv) Let $E_{i,i}$ denote the measurable subset of E defined by

$$E_{j,i} = \{t \in E: \sigma_t(j+1) = i\}$$

for all $j \in N$ and $i \in \hat{N}$. Then $\{E_{j,i}\}_{j \in N, i \in \hat{N}}$ will be a system of subsets of E such that the systems $\{E_{j,i}\}_{i \in \hat{N}}$ and $\{E_{j,i}\}_{j \in N}$ consist of pairwise disjoint sets for all fixed $j \in N$ and $i \in \hat{N}$, respectively; furthermore $\bigcup_{i \in \hat{N}} E_{j,i} = E$ for all $j \in N$, $(\bigcup_{i \in N} E_{j,i}) \supset \{t \in E | g_i(t) > 0\}$ if $i \in N$ and $(\bigcup_{j \in N} E_{j,i}) \supset \{t \in E | f_i(t) > 0\}$ if $i \in (-N)$.

For all $j \in N$ let S_j be the operator defined by $S_j = S_{j,1} \oplus S_{j,2}$, where $S_{j,1} = \bigoplus_{i \in \mathcal{N}} S(\operatorname{Exp}[h_j, E_{j,i}])$ and $S_{j,2} = \bigoplus_{i \in \mathcal{N}} S(\operatorname{Exp}[h_{j+1}, E_{j,i}])$.

By Lemma 1 we infer that $S_{j,1}$ and $S_{j,2}$ are quasisimilar to $S(w_j)$ and $S(w_{j+1})$, respectively, for all $j \in N$. Therefore the operator $S = \bigoplus_{j=1}^{\infty} S_j$ is quasisimilar to the operator $(\bigoplus_{j=1}^{\infty} S(w_j)) \oplus (\bigoplus_{j=2}^{\infty} S(w_j))$, which belongs to \mathscr{P} by section (iii) and Proposition 4.4 of [1]. By Corollary 4.3 of [1] we see that $S \in \mathscr{P}$.

Since $S_{j,2}$ is quasisimilar to $S_{j+1,1}$, there exists a quasiaffinity $Y_j \in \mathscr{I}(S_{j+1,1}, S_{j,2})$ ($j \in N$). We may assume that Y_j is a contraction. For all $j \in N$, $i \in \hat{N}$ let

$$Z_{j,i} \in \mathscr{I}(S(\operatorname{Exp}[h_{j+1}, E_{j,i}]), S(\operatorname{Exp}[h_j, E_{j,i}]))$$

be the operator defined by

$$Z_{j,i}m = \begin{cases} \frac{\exp[h_{j+1}, E_{j,i}]}{\exp[h_j, E_{j,i}]}m & \text{if } i \in N, \\ P_{\mathfrak{H}(E_{2}, p_{i})}m & \text{if } i \in (-N), \end{cases}$$

where $m \in \mathfrak{H}(\operatorname{Exp}[h_j, E_{j,i}])$.

Then for all $j \in N$ we infer that $Z_j = \bigoplus_{i \in \mathbb{N}} Z_{j,i} \in \mathscr{I}(S_{j,2}, S_{j,1})$. Let $X \in \{S\}'$ be the operator defined by

$$X|\bigoplus_{i\in\mathcal{N}}\mathfrak{H}(\operatorname{Exp}[h_j, E_{j,i}]) = Z_j \text{ and } X|\bigoplus_{i\in\mathcal{N}}\mathfrak{H}(\operatorname{Exp}[h_{j+1}, E_{j,i}]) = Y_j$$

for all $j \in N$.

Then by Lemmas 1 and 2 we infer

$$S | \ker X \cong \bigoplus_{j=1}^{\infty} \left(\bigoplus_{i=1}^{\infty} S(\operatorname{Exp}[f_i, E_{j,i}]) \right) \cong \bigoplus_{i=1}^{\infty} \left(\bigoplus_{j=1}^{\infty} S(\operatorname{Exp}[f_i, E_{j,i}]) \right) \sim$$
$$\sim \bigoplus_{i=1}^{\infty} S(\operatorname{Exp}[f_i, E]), \text{ and similarly,}$$
$$S_{\ker X^*} \sim \bigoplus_{i=1}^{\infty} S(\operatorname{Exp}[g_i, E]).$$

(v) It is clear that for all $t \in CE = [0, 2\pi] \setminus E$ we have that a=f(t) and b=g(t) satisfy the assumptions of Lemma 4. Replacing E, $f_n(t)$, $g_n(t)$, dv(t) by $(CE)^{\sim} = \{t \in [0, 2\pi] | 2\pi - t \in CE\}$, $g_n(2\pi - t)$, $f_n(2\pi - t)$ and $dv(2\pi - t)$, respectively, we repeat the reasoning of the sections (ii), (iii) and (iv). Also taking adjoints we get that there exist operators $R \in \mathcal{P}$ and $Y \in \{R\}'$ such that

$$R | \ker Y \sim | \bigoplus_{i=1}^{\infty} S(\operatorname{Exp}[f_i, CE]) \text{ and } R_{\ker Y^*} \sim \bigoplus_{i=1}^{\infty} S(\operatorname{Exp}[g_i, CE]).$$

Therefore, the operator $T = S \oplus R$ will belong to \mathscr{P} , $Z = X \oplus Y \in \{T\}'$, and by Lemma 1

$$T | \ker Z \sim \bigoplus_{i=1}^{\infty} S(\operatorname{Exp}[f_i]) = T_1, \quad T_{\ker Z^*} \sim \bigoplus_{i=1}^{\infty} S(\operatorname{Exp}[g_i]) = T_2.$$

That is, $T_1 \rho T_2$ and the Proposition 2 is proved.

8*

Proof of the Theorem. Let T_1 and T_2 be the Jordan operators $T_1 = \bigoplus_{n=1}^{\infty} S(u_n)$ and $T_2 = \bigoplus_{n=1}^{\infty} S(v_n)$. The inner functions u_n , v_n have canonical factorizations $u_n = u_{n,1} \cdot u_{n,2}$, $v_n = v_{n,1} \cdot v_{n,2}$, where $u_{n,1}$, $v_{n,1}$ are Blaschke products, $u_{n,2}$, $v_{n,2}$ are singular inner functions for all $n \in N$. Introducing the operators $T_{1,i} = \bigoplus_{n=1}^{\infty} S(u_{n,i})$ and $T_{2,i} = \bigoplus_{n=1}^{\infty} S(v_{n,i})$ (i=1,2) we infer by Propositions 1 and 2 that $T_{1,1} \varrho T_{2,1}$ and $T_{1,2} \varrho T_{2,2}$. Taking direct sums and using Lemma 1 we see that $T_1 \varrho T_2$. The proof is done.

4. By this Theorem and Theorem 7.9 of [1] we infer:

Corollary 1. For $T_1, T_2 \in \mathcal{P}$ we have $T_1 \varrho T_2$ if and only if $\gamma_{T_1} = \gamma_{T_2}$.

We list some immediate consequences of this Corollary.

Corollary 2. ϱ is an equivalence relation on \mathcal{P} .

Corollary 3. Let us suppose that $T_i \in \mathcal{P}$, $\mathfrak{H}_i \in \operatorname{Lat}(T_i)$ and $\gamma_{T_i}(\mathfrak{H}_i) = (\sigma_i, \mu_i)$, where μ_i is σ -finite (i=1, 2). If $T_1 \varrho T_2$ and $(T_1 | \mathfrak{H}_1) \varrho (T_2 | \mathfrak{H}_2)$, then $(T_1) \mathfrak{H}_1^{\perp} \varrho (T_2) \mathfrak{H}_2^{\perp}$.

Proof. This follows from Corollary 7.10 and Lemma 6.5 of [1], and from the above Corollary 1.

Corollary 4. Let T, S be operators of class \mathscr{P} acting on the spaces \mathfrak{H} and \mathfrak{R} , respectively, and let $\mathfrak{H}_{j} \in \operatorname{Lat}(T)$, $\mathfrak{R}_{j} \in \operatorname{Lat}(S)$ be such that $\mathfrak{H}_{j} \subset \mathfrak{H}_{j+1}$, $\mathfrak{R}_{j} \subset \mathfrak{R}_{j+1}$ (j=1, 2, ...) and $\bigvee_{j=1}^{\vee} \mathfrak{H}_{j} = \mathfrak{H}$, $\bigvee_{j=1}^{\vee} \mathfrak{R}_{j} = \mathfrak{R}$. If $(T|\mathfrak{H}_{j})\varrho(S|\mathfrak{R}_{j})$ for all j=1, 2, ..., then $T\varrho S$.

Proof. This follows from Corollary 1 and Lemma 7.4 of [1].

References

- [1] H. BERCOVICI, Co-Fredholm operators. II, Acta Sci. Math., 42 (1980), 3-42.
- [2] B. SZ.-NAGY, C. FOIAŞ, On injections, intertwining contractions of class C₀, Acta Sci. Math., 40 (1978), 163-167.
- [3] B. SZ.-NAGY, C. FOIAŞ, Harmonic Analysis of Operators on Hilbert Space, North Holland-Akadémíai Kiadó (Amsterdam-Budapest, 1970).
- [4] H. BERCOVICI, On the Jordan model of C₀ operators. II, Acta Sci. Math., 42 (1980), 43-56.

BOLYAI INSTITUTE UNIVERSITY SZEGED ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY