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On Co-operators with property (P) 

L. KERCHY 

1. H. BERCOVICI [1] has considered the class SP of Hilbert space operators T 

of class C0 having the following property: 
(P) any injection X£ {T}' is a quasi-affinity. 

He has shown that if and only if A MN[T] = 1, where MN[T] (N=1, 2, ...) 
B = 1 

are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 of [1].) 
He has proved, furthermore, that every operator has the following 

stronger property also: 
(P*) for any XZ{T}' we have yr(ker X)=y r (ker X*). 

(Cf. Theorem 7.9 of [1].) Here yr(ker X) and yr(ker X") are generalized inner func-
tions; they play the roles of determinants of the operators 7"|ker X and TKERXR. 

(Cf. sections 6 and 7 of [1].) 
Let Q be the following relation on the class SP\ 7i oT, if there exist T^SP and 

XC{T}' such that TX and T2 are quasisimilar to 7"|ker X and TKCTXT, that is, 
~T|ker X, and 7,2~7'kerXi. Then the previous statement can be written in the 
following form. If 7\, and TXqT2, then yTl—yr2 (because yT is a quasi-
similarity invariant). 

Bercovici has also proved a partial converse of this statement. Namely, he has 
proved that if TX, T2<ISP are weak contractions and then TxQT2. On 
the other hand he has shown that if 7\, are such that then there 
exists SDSP such that TXQS and SQT2. The main purpose of this note is to prove 
the complete converse of the statement mentioned above, namely, 

Theorem. If T^T^SP are such that yTl=yT„> then TXqT2. 

Thus the operators of class 3P have, in general, no stronger property than (P*). 
In particular, in general it is not true that an operator T^SP has the property: 

(Q) r|ker X and TKERX* are quasisimilar for any X£ {T}'. 

(Cf. [2].) 
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Furthermore, from the Theorem we can easily infer that Q is an equivalence 
relation on 0>. 

2. In the sections 6 and 7 of [1] BERCOVICI introduced the notions of "gen-
eralized inner function" and "C0-dimension of a subspace" in the following way. 
Any inner function m£Hf° has a factorization m=cbs, where c is a complex 
constant of modulus one, b is a Blaschke product and s is a singular inner function 
deriving from a finite Borel measure p on [0, 2rt], singular with respect to Lebesgue 
measure. (Cf. [3], Ch. III.) Let us denote by a(z) the multiplicity of the zero z (|z|<l) 
in the Blaschke product b. Then y(m) will denote the pair y (m) = (c, ft). The class 
F of "generalized inner functions" will be the set of pairs y=(<x, p), where a is a 
natural number valued function defined on D={z: |z|<l} such that 2 (1 —|z|)«= 

< and fi is a (not necessarily finite) Borel measure on [0,2n], which is absolute 
continuous with respect to a finite Borel measure v singular with respect to Lebesgue 
measure. We define addition and lattice operations in f by components. 

eo 
If T£3f, then it can be proved that yT : = 2 y K ) e f , where the m—m^T] 

j=o 
are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 and Proposi-
tion 6.6 of [1].) If T is an operator of class C0 and 9Ji€ Lat^ (T) is such that 
then yT (931) is defined as yr(9Ji)=yr^. 

For two operators T and T' we denote by T) the set of intertwining 
operators J(T',T) = {X\T'X=XT}. If T' = T, then J(T, T)={T}' is the com-
mutant of T. 

The next Lemmas will be frequently used in the sequel. 

Lemma 1. Let {«!,}," 0 be a sequence of pairwise relatively prime inner func-
CO 

tions having a least common multiple m. Then the operator T= © S(mf) is quasi-
1 = 0 

similar to S(m). 

Proof . Cf. Theorem2.7 of [4]. 

Lemma 2. Let m1} m2 be inner functions. 

(i) If m2 divides mx (m^m^) and Xu=P^m^u for all u£§>(m^), then 

Xay(S(m2), Sim^) is surjective and S(milker X is unitarily equivalent to S V rn2) 

[sim^rX^ (%-)}. 

(ii) If m1sm2 and Xu=-^-u for all u£9)(mj, then X£J(S(m^), S(m1)) is 
m\ 

injective and S (w2)kerX, s S • 
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Proof . We can easily verify this statement by a short computation. 

Lemma 3. (Proposition4.6 of [1]) Let T be an operator of class C0 acting 
eo 

on £> and let $;€Lat (T) be such that §j<=§J+1 (/=1,2, ...), and §= V 

JAen if and only if (/=0,1 ,2 , . . . ; § 0 = { 0 } ) and 
oo 

A »io[?®-L]=l. (If S1 is an operator of class C0, then m0[S] denotes its minimal 
}=i 
function.) 

3. Firstly we shall prove the statement of the Theorem in different special 
cases in the Propositions 1 and 2, from which the general situation can be derived. 
We remark that it can be always supposed that Tx and T2 are Jordan operators. 
In the proofs of Propositions 1 and 2 we shall need the next Lemma. 

Let us denote by 2 *he set of injections a: N-^N(J(—N)=]V satisfying the 
conditions: 
(i) if 1 s / < ; and <t ( i> (/ )S0, then |ff(/)|<K/)|; 
(ii) if r£o(N), then for all such that J-rS0 and |i|<M we have s£a(N). 

(Here and in the sequel N is the set of natural numbers 1,2, . . . . ) Let 'S be the set 
of sequences: a={«„}~=1 of real numbers such that' ^ S a ^ . . . £ 0 and an~*0 
as /J —oo. If then let F (o 6) denote the mapping R defined by 

| at, if iiN, 

Lemma 4. Let a,ball satisfy the condition: if b„=0 for some n£N, then 
oo oo 

there exists mÇN such that am—0. If 2 an= then there exists a od2 
71 = 1 n = i 

such that for all n£N we have 

0 S 2 *<..»)(*(0) — 2 max (a,, bj 
i = l 

n 
furthermore 2 t) (')) tends to 0, if n tends to 

¡=i ' 

Proo f . Let <r( l )=l . If we have already defined a for i = l , 2,...,/, and 
max { f f ( i )|i=l, . . . ,/}=/> min{{<r(/)|i=l, ...,/}U {0 } } = -SJ, then 

a(j+1):= 
- ( s , + l ) if 1 F ( f l i 4 ) (* (0) ^ bs j+1, 

>=i 
T j+1 otherwise. 

It can be easily seen that this be suitable. 

P ropos i t i on 1. If TLT T2(iiP are such that YTL=YRT=Y and Y has the form 

y=(cr, 0), then TxQT2. 
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Proof. Let TX and T2 be the Jordan operators 7\= © 5(«„) and T2 = 
n = l 

OO 
= © S(un). From the assumption it follows that ux and vx are Blaschke products 

B = 1 
having the same zeros (disregarding multiplicities): A^ Aj,... . For all n u„ and v„ 

have factorizations un= f ] un,, vn= [J vn,, where u„, and vn, are Blaschke factors 

•containing only A, as a zero. (If A, is not a zero of un (v„), then u„ ,:= 1 (vn ,:= 1).) 
Let us denote by and b® the multiplicities of A, as zero of vn l and of un l, 

respectively. Then a ;= {O^KLIJ b , = and by virtue of y T i = y T „ we have 

2 a<°= J ¿><° for all K N . 
-n=l n = l 

By Lemma 4 there exists a <7,6^ such that 

O s l F(a(ii|)(<r,(0) ==2 max («<<>, &<<>) 

for all Let c f be defined by c f = j ? ^ „ » ¿ M O ) , and let 
¿ = 1 

V7 f i , A, —z V . 

z c ? if A, = 0 ; j £ N , z £ D . 

It is clear that w f = 1 , i f j is large enough. So the operator TT defined by T, = © S ( w f ) 

has finite multiplicity. On the other hand by the construction it follows that m0(T(] ^ 

^ ( « M V » ! , , ) 2 -

Let X, be the contraction defined by -*"/(© /, )= © g j , where © /., 
7=1 7=1 7=1 

© gj€ © § « ) and ^ = 0 , 
7 = 1 7 = 1 

§7 = " f - Zy - i if for j S 2. wy>i 

By Lemma 2 we infer that {T,}' and r,|ker © S ( u n i l ) , (T,)KETX* =s © S(u„ ,). 
T ' i * n = 1 

Since A Wo[© r , ]^ A (/Z ( « i /Vfi ,)8)==1, by Lemma 3 we see that 
J=i 1=7 J = 1 , = J ' 

T = © Then © X £ { J } ' and using Lemma 1 we get 
j=I <=i 

T\kerX = © r,|kerZ( s © ( © £(«„,,)) = © f © S(uM ) ) ~ © S(U„) = TX 
1=1 /=1 M>=1 / n=l V=1 ' n=l 

and similarly TKCRX,~T2. Therefore, TXQT2 and Proposition 1 is proved. 
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Proposit ion 2. If T1, are such that —Vr2=V and 7 has the form 

y = (0,n), then TxqT2. 

Proof. 

(i) Let T± and T2 be the Jordan operators Tx= © S(un) and T2 = © S(v„). 
11 = 1 n = l 

From the assumption it follows that there exist a finite Borel measure v in [0, 2n], 

singular with respect to Lebesgue measure, and non-increasing sequences {/,}r=i> 
{&>}r=i non-negative Borel functions from Lx(v) which are tending to 0 and 
such that 

Exp [/„] = un and Exp [gn] = vn for all n. 

Here and in the sequel we use the notations 

Exp [ f , E](z) = e x p / d v ( 0 ] (ze-D), and E x p [ f ] = Exp [/,[[0, 2n]], 

for any non-negative Borel function f£L}(v), and measurable set £c[0, 2n], 

Therefore we see that f(t) = {f,,(t)}~=l, g(t) = {gn(t)}~^<$ for all t in [0, 2n}. 

Furthermore we can assume that 

¿ / „ ( 0 - 2 gn(0 for all t in [0, 271]. n = l n=l 

(ii) Let E be the measurable set of points t in [0, 2K] such that a=g(t) and 
b=f(t) satisfy the assumptions of Lemma 4. If t~E let be the function 
constructed in the proof of Lemma 4 taking a—g(t) and b=f(t). For all j£N 

let hj^L1^) be the measurable function defined by 

hj(t) = 2FWf>,m->№)) if t(LE\ 
i=1 
0 otherwise. 

By Lemma 4 we infer that 

0=5Ay(O25 2maxC/i(O,fc(O) 

for all j£N, i<E[0, 27t], and 

lim hj(t) = 0 for all i€[0, 27t].! 

Introducing the inner functions {wj}~=1 by Wj=Exp [hj], we consider the operator 

© S(wj). 
j=i oo 

(iii) We shall show that © S(Wj)£0>. By Lemma 3 it is enough to prove 
CO „ S = 1 

that m= A ™o[© 5,(wJ-)] = l. 
k = l j = k 
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Let e be an arbitrary positive number. There exists a positive S such that if 
H is a Borel set and v(//)<<5, then f 2 max {/i (0>i>i (0}^ vC0< £- By Egorov's 

theorem we infer that there exists a Borel set He such that and the sequence 
{kj}7= i converges uniformly to zero on the complement CHe—[0, 2n]\Hc. So 
there exists a k0 such that for all j>k0 and t£CHe we have hj{t)<e. Therefore 
if j>k0, then for all t€[0, In] we have hj(t)she(t), where ht is the function 
defined by 

je if t£CHc, 

h A t ) 12max {/i(0> g i ( 0 } if 

We infer that the inner function m satisfies the inequality 

m = Exp [h^. 

Therefore we have 

2)i 
|IH(0)| ^ |Exp[AJ(0)| = exp [ - / h j t ) d v ( 0 ] = 

o 

= e x p [ - Jh(t)dv(t)- fhe(t)dv(t)] S exp[-e-s-V([0,2TT])]. 
HC CHE 

Since e can be chosen arbitrary small, so |m(0)| = l . That is, m=1. 
(iv) Let E}< i denote the measurable subset of E defined by 

E j . i ^ i t t E : <7,(y + l ) = i } 

for all jdN and i(LN. Then {Ejj}j€Ni€f, will be a system of subsets of E such 
that the systems {£ } ; } , - a n d {Ej ¡}j€N consist of pairwise disjoint sets for all fixed 
j£N and i£N, respectively; furthermore IJ EU-=E for all j£N, ( IJ E} ¡)r> 

¡ej9 ' jeN 
^{t£E\gl(t)>0} if i£N and ( U £>, , )=> { t£E\№>0} if X(~N). 

JiN 
For all j£N let Sj be the operator defined by Sj=SJt x © SJt 2, where SjiX = 

= © ¿ ( E x p t / ^ - . J ) and S, ,2=f f i S (Exp [h j + 1 ,E j^ . 
¡if) itfil 

By Lemma 1 we infer that SjiX and SJi2 are quasisimilar to S(wj) and S(wJ+1), 
OO 

respectively, for all j£N. Therefore the operator 5 = © Ss is quasisimilar to the 
j=i 

oo oo 
operator ( © 5'(wJ))ffi(© S(wj)) , which belongs to SP by section (iii) and Proposi-

t i j = 2 
tion 4.4 of [1]. By Corollary 4.3 of [1] we see that S£0>. 

Since SJt 2 is quasisimilar to Sj+XtX, there exists a quasiaffinity Yj£J(SJ+lx, Sj .¿) 
O'c AO. We may assume that Yj is a contraction. 
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For all j£N, i£N let 

ZJitts(s{Exp [hJ+1, EjJ), S(Exp [hj, £,,,])) 

be the operator defined by 

Zj,i>n = 

Exp[A.+1 EjA , f 

Exp [/ij,^.,] 

if i€C-iV), 

where w € § (Exp [A,., Eji J). 
Then for all j£N we infer that Z7 = © 

¡6/» 
Let X£ { 5 } ' be the operator defined by 

© § (Exp [hj, Ej ,]) = Z; and © §(Exp [hj+1, EjJ) = 7y 
i e 

for all j€JV. 

Then by Lemmas 1 and 2 we infer 

S | ker X ss © ( © S (Exp [/,,£,, J) ] = © ( © S(Exp[/;, £},;])) ~ 
j = 1 M = l ; ' ¡ = 1 V = 1 ' 

oo 

~ © S(Exp [/¡, £•]), and similarly, 
i=1 

© S(Exp[g f ,£]). 
¡=1 

(v) It is clear that for all t£CE=[0, 2TI]\£ we have that a=f(t) and b=g(t) 

satisfy the assumptions of Lemma 4. Replacing E, fn(t), gn(t), dv(t) by (CE)~ = 

= {/e[0,2n]\2n-teCE}, g„(2n—t), /„(271-0 and dv(2n-t), respectively, we 
repeat the reasoning of the sections (ii), (iii) and (iv). Also taking adjoints we get 
that there exist operators R^S? and Yd {i?}' such that 

J? I ker Y ~ I© 5(Exp [ f h CE]) and Rkctï* ~ © 5(Exp [ g i , CE]). 
> = 1 i=l 

Therefore, the operator T = S ® R will belong to 3F, Z = X @ Y £ { T } ' , and 
by Lemma 1 

TlkerZ ~ © 5(Exp LAD = TLT TKETZ* ~ © S(Exp [g i ] ) = T 2 . 
1=1 i = 1 

That is, TX QT2 and the Proposition 2 is proved. 

8» 
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OO 
Proo f of the Theorem. Let Ti and T2 be the Jordan operators 7 \ = © S(u„) 

n = l 
oo 

and T2= © S(v„). The inner functions un, v„ have canonical factorizations 
n = l 

«n="n,i*wn,2> vn=vn,i- where u„A, vn l are Blaschke products, w„>2, v„tZ are 
oo 

singular inner functions for all n£N. Introducing the operators 7"^,= © S(un,) 
n = l 

OO 
and T2 ¡= © S(v„fi) (I= 1,2) we infer by Propositions 1 and 2 that T1aQT2a 

n=i 
and T12QT2 2. Taking direct sums and using Lemma 1 we see that 7\ Q T 2 . The 
proof is done. 

4. By this Theorem and Theorem 7.9 of [1] we infer: 

Corol lary 1. For 7\, T2£3? we have TloT2 if and only if yT = yTn. 

We list some immediate consequences of this Corollary. 

Corol lary 2. Q is an equivalence relation on 

Corol lary 3. Let us suppose that T^S?, Lat (TT) and yT,(§>,) — (crf, /¿,), 

where ^ is o-finite (j= 1,2). If TXqT2 and then ( T , ) ^ e(T2)^. 

Proof. This follows from Corollary 7.10 and Lemma 6.5 of [1], and from the 
above Corollary 1. 

Corol lary 4. Let T, S be operators of class S? acting on the spaces $ and R, 

respectively, and let §J iLat (7 ' ) , ft,€Lat(S) be such that § J -c§ J + 1 , 5\jCzStJ+1 

0=1 ,2 , . . . ) and V -$>, = &, V = V (TlZjleiSl&j) for all j= 1,2,. . . , 
7=1 j=l 

then TQS. 

Proof. This follows from Corollary 1 and Lemma 7.4 of [1]. 
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