On C_{0}-operators with property (\mathbf{P})

L. KÉRCHY

1. H. Bercovici [1] has considered the class \mathscr{P} of Hilbert space operators T of class C_{0} having the following property:
(P) any injection $X \in\{T\}^{\prime}$ is a quasi-affinity.

He has shown that $T \in \mathscr{P}$ if and only if $\bigwedge_{n=1}^{\infty} m_{n}[T]=1$, where $m_{n}[T](n=1,2, \ldots)$ are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 of [1].)

He has proved, furthermore, that every operator $T \in \mathscr{P}$ has the following stronger property also:
(P^{*}) for any $X \in\{T\}^{\prime}$ we have $\gamma_{T}(\operatorname{ker} X)=\gamma_{T}\left(\operatorname{ker} X^{*}\right)$.
(Cf. Theorem 7.9 of [1].) Here $\gamma_{T}(\operatorname{ker} X)$ and $\gamma_{T}\left(\operatorname{ker} X^{*}\right)$ are generalized inner functions; they play the roles of determinants of the operators $T \mid \operatorname{ker} X$ and $T_{\text {ker X** }}$. (Cf. sections 6 and 7 of [1].)

Let ϱ be the following relation on the class $\mathscr{P}: T_{1} \varrho T_{2}$ if there exist $T \in \mathscr{P}$ and $X \in\{T\}^{\prime}$ such that T_{1} and T_{2} are quasisimilar to $T \mid \operatorname{ker} X$ and $T_{\text {ker } X *}$, that is, $T_{1} \sim$ $\sim T \mid \operatorname{ker} X$, and $T_{2} \sim T_{\text {ker } X *}$. Then the previous statement can be written in the following form. If $T_{1}, T_{2} \in \mathscr{P}$ and $T_{1} \varrho T_{2}$, then $\gamma_{T_{1}}=\gamma_{T_{2}}$ (because γ_{T} is a quasisimilarity invariant).

Bercovici has also proved a partial converse of this statement. Namely, he has proved that if $T_{1}, T_{2} \in \mathscr{P}$ are weak contractions and $\gamma_{T_{1}}=\gamma_{T_{2}}$, then $T_{1} \varrho T_{2}$. On the other hand he has shown that if $T_{1}, T_{2} \in \mathscr{P}$ are such that $\gamma_{T_{1}}=\gamma_{T_{2}}$, then there exists $S \in \mathscr{P}$ such that $T_{1} \varrho S$ and $S \varrho T_{2}$. The main purpose of this note is to prove the complete converse of the statement mentioned above, namely,

Theorem. If $T_{1}, T_{2} \in \mathscr{P}$ are such that $\gamma_{T_{1}}=\gamma_{T_{2}}$, then $T_{1} \varrho T_{2}$.
Thus the operators of class \mathscr{P} have, in general, no stronger property than (P^{*}). In particular, in general it is not true that an operator $T \in \mathscr{P}$ has the property:
(Q) $T \mid \operatorname{ker} X$ and $T_{\text {ker } X^{*}}$ are quasisimilar for any $X \in\{T\}^{\prime}$.
(Cf. [2].)

Furthermore, from the Theorem we can easily infer that ϱ is an equivalence relation on \mathscr{P}.
2. In the sections 6 and 7 of [1] Bercovici introduced the notions of "generalized inner function" and " C_{0}-dimension of a subspace" in the following way. Any inner function $m \in H_{i}^{\infty}$ has a factorization $m=c b s$, where c is a complex constant of modulus one, b is a Blaschke product and s is a singular inner function deriving from a finite Borel measure μ on $[0,2 \pi]$, singular with respect to Lebesgue measure. (Cf. [3], Ch. III.) Let us denote by $\sigma(z)$ the multiplicity of the zero $z(|z|<1)$ in the Blaschke product b. Then $\gamma(m)$ will denote the pair $\gamma(m)=(\sigma, \mu)$. The class $\tilde{\Gamma}$ of "generalized inner functions" will be the set of pairs $\gamma=(\sigma, \mu)$, where σ is a natural number valued function defined on $D=\{z:|z|<1\}$ such that $\sum_{\sigma(z) \neq 0}(1-|z|)<$ $<\infty$, and μ is a (not necessarily finite) Borel measure on [$0,2 \pi$], which is absolute continuous with respect to a finite Borel measure v singular with respect to Lebesgue measure. We define addition and lattice operations in $\tilde{\Gamma}$ by components.

If $T \in \mathscr{P}$, then it can be proved that $\gamma_{T}:=\sum_{j=0}^{\infty} \gamma\left(m_{j}\right) \in \tilde{\Gamma}$, where the $m_{j}=m_{j}[T]$ are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 and Proposition 6.6 of [1].) If T is an operator of class C_{0} and $\mathfrak{M} \in \operatorname{Lat}_{\frac{1}{2}}(T)$ is such that $T_{\mathfrak{M}} \in \mathscr{P}$, then $\gamma_{T}(\mathfrak{M})$ is defined as $\gamma_{T}(\mathfrak{M})=\gamma_{T_{\mathfrak{M}}}$.

For two operators T and T^{\prime} we denote by $\mathscr{I}\left(T^{\prime}, T\right)$ the set of intertwining operators $\mathscr{I}\left(T^{\prime}, T\right)=\left\{X \mid T^{\prime} X=X T\right\}$. If $T^{\prime}=T$, then $\mathscr{I}(T, T)=\{T\}^{\prime}$ is the commutant of T.

The next Lemmas will be frequently used in the sequel.
Lemma 1. Let $\left\{m_{i}\right\}_{i=0}^{\infty}$ be a sequence of pairwise relatively prime inner functions having a least common multiple m. Then the operator $T=\bigoplus_{i=0}^{\infty} S\left(m_{i}\right)$ is quasisimilar to $S(m)$.

Proof. Cf. Theorem 2.7 of [4].
Lemma 2. Let m_{1}, m_{2} be inner functions.
(i) If m_{2} divides $m_{1}\left(m_{1} \geqq m_{2}\right)$ and $X u=P_{\mathfrak{5}\left(m_{2}\right)} u$ for all $u \in \mathfrak{S}\left(m_{1}\right)$, then $X \in \mathscr{I}\left(S\left(m_{2}\right), S\left(m_{1}\right)\right)$ is surjective and $S\left(m_{1}\right) \mid \operatorname{ker} X$ is unitarily equivalent to $S\left(\frac{m_{1}}{m_{2}}\right)$ $\left(S\left(m_{1}\right) \left\lvert\, \operatorname{ker} X \cong S\left(\frac{m_{1}}{m_{2}}\right)\right.\right)$.
(ii) If $m_{1} \leqq m_{2}$ and $X u=\frac{m_{2}}{m_{1}} u$ for all $u \in \mathfrak{G}\left(m_{1}\right)$, then $X \in \mathscr{I}\left(S\left(m_{2}\right), S\left(m_{1}\right)\right)$ is injective and $S\left(m_{2}\right)_{\mathrm{ker} X^{*}} \cong S\left(\frac{m_{2}}{m_{1}}\right)$.

Proof. We can easily verify this statement by a short computation.
Lemma 3. (Proposition 4.6 of [1]) Let T be an operator of class C_{0} acting on \mathfrak{H} and let $\mathfrak{S}_{j} \in \operatorname{Lat}(T)$ be such that $\mathfrak{H}_{j} \subset \mathfrak{S}_{j+1}(j=1,2, \ldots)$, and $\mathfrak{S}=\bigvee_{j=1}^{\infty} \mathfrak{H}_{j}$. Then $T \in \mathscr{P}$ if and only if $T_{\Omega_{j}} \in \mathscr{P}, \mathcal{R}_{j}=\mathfrak{G}_{j+1} \ominus \mathfrak{G}_{j}\left(j=0,1,2, \ldots ; \mathfrak{S}_{0}=\{0\}\right)$ and $\bigwedge_{j=1}^{\infty} m_{0}\left[T_{5 j}+\right]=1$. (If S is an operator of class C_{0}, then $m_{0}[S]$ denotes its minimal function.)
3. Firstly 'we shall prove the statement of the Theorem in different special cases in the Propositions 1 and 2, from which the general situation can be derived. We remark that it can be always supposed that T_{1} and T_{2} are Jordan operators. In the proofs of Propositions 1 and 2 we shall need the next Lemma.

Let us denote by Σ the set of injections $\sigma: N \rightarrow N \cup(-N)=\hat{N}$ satisfying the conditions:
(i) if $1 \leqq i<j$ and $\sigma(i) \sigma(j) \geqq 0$, then $|\sigma(i)|<|\sigma(j)|$;
(ii) if $r \in \sigma(N)$, then for all $s \in \mathcal{N}$ such that $s \cdot r \geqq 0$ and $|s|<|r|$ we have $s \in \sigma(N)$. (Here and in the sequel N is the set of natural numbers $1,2, \ldots$.) Let \mathscr{G} be the set of sequences: $a=\left\{a_{n}\right\}_{n=1}^{\infty}$ of real numbers such that $a_{1} \geqq a_{2} \geqq \ldots \geqq 0$ and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. If $a, b \in \mathscr{G}$, then let $F_{(a, b)}$ denote the mapping $\hat{N} \rightarrow R$ defined by

$$
F_{(a, b)}(i)=\left\{\begin{array}{rll}
a_{i}, & \text { if } & i \in N \\
-b_{i}, & \text { if } & i \in(-N)
\end{array}\right.
$$

Lemma 4. Let $a, b \in \mathscr{G}$ satisfy the condition: if $b_{n}=0$ for some $n \in N$, then there exists $m \in N$ such that $a_{m}=0$. If $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} b_{n}$, then there exists a $\sigma \in \Sigma$ such that for all $n \in N$ we have

$$
0 \leqq \sum_{i=1}^{n} F_{(a, b)}(\sigma(i)) \leqq 2 \max \left(a_{1}, b_{1}\right)
$$

furthermore $\sum_{i=1}^{n} F_{(a, b)}(\sigma(i))$ tends to 0 , if n tends to ∞.
Proof. Let $\sigma(1)=1$. If we have already defined σ for $i=1,2, \ldots, j$, and $\max \{\sigma(i) \mid i=1, \ldots, j\}=r_{j}, \min \{\{\sigma(i) \mid i=1, \ldots, j\} \cup\{0\}\}=-s_{j}$, then

$$
\sigma(j+1):=\left\{\begin{array}{l}
-\left(s_{j}+1\right) \text { if } \sum_{i=1}^{j} F_{(a, b)}(\sigma(i)) \geqq b_{s_{j}+1} \\
r_{j}+1 \quad \text { otherwise }
\end{array}\right.
$$

It can be easily seen that this $\sigma \in \Sigma$ will be suitable.
Proposition 1. If $T_{1}, T_{2} \in \mathscr{P}$ are such that $\gamma_{T_{1}}=\gamma_{T_{2}}=\gamma$ and γ has the form $\gamma=(\sigma, 0)$, then $T_{1} \varrho T_{2}$.

Proof. Let T_{1} and T_{2} be the Jordan operators $T_{1}=\bigoplus_{n=1}^{\infty} S\left(u_{n}\right)$ and $T_{2}=$ $=\bigoplus_{n=1}^{\infty} S\left(v_{n}\right)$. From the assumption it follows that u_{1} and v_{1} are Blaschke products having the same zeros (disregarding multiplicities): $\lambda_{1}, \lambda_{2}, \ldots$. For all $n u_{n}$ and v_{n} have factorizations $u_{n}=\prod_{l=1}^{\infty} u_{n, l}, v_{n}=\prod_{l=1}^{\infty} v_{n, l}$, where $u_{n, l}$ and $v_{n, l}$ are Blaschke factors containing only λ_{l} as a zero. (If λ_{l} is not a zero of $u_{n}\left(v_{n}\right)$, then $u_{n, l}:=1\left(v_{n, l}:=1\right)$.)

Let us denote by $a_{n}^{(n)}$ and $b_{n}^{(l)}$ the multiplicities of λ_{l} as zero of $v_{n, l}$ and of $u_{n, l}$, respectively. Then $a_{l}=\left\{a_{n}^{(l)}\right\}_{n=1}^{\infty}, b_{l}=\left\{b_{n}^{(l)}\right\}_{n=1}^{\infty} \in \mathscr{G}$, and by virtue of $\gamma_{T_{1}}=\gamma_{T_{2}}$ we have $\sum_{-n=1}^{\infty} a_{n}^{(l)}=\sum_{n=1}^{\infty} b_{n}^{(l)}$ for all $l \in N$.

By Lemma 4 there exists a $\sigma_{l} \in \sum$ such that

$$
0 \leqq \sum_{i=1}^{j} F_{\left(a_{l}, b_{l}\right)}\left(\sigma_{l}(i)\right) \leqq 2 \max \left(a_{1}^{(l)}, b_{1}^{(l)}\right)
$$

for all $j \in N$. Let $c_{j}^{(l)}$ be defined by $c_{j}^{(l)}=\sum_{i=1}^{j} F_{\left(a_{i}, b_{l}\right)}\left(\sigma_{l}(i)\right)$, and let

$$
w_{j}^{(l)}(z):=\left\{\begin{array}{ll}
\left(\frac{\lambda_{l}}{\left|\lambda_{l}\right|} \frac{\lambda_{l}-z}{1-\lambda_{l} z}\right)^{c_{j}^{(l)}} & \text { if } \quad \lambda_{l} \neq 0 \\
z^{c_{j}^{l}} & \text { if } \lambda_{l}=0 ;
\end{array}, j \in N, z \in D .\right.
$$

It is clear that $w_{j}^{(l)}=1$, if j is large enough. So the operator T_{l} defined by $T_{l}=\bigoplus_{j=1}^{\infty} S\left(w_{j}^{(l)}\right)$ has finite multiplicity. On the other hand by the construction it follows that $m_{0}\left[T_{l}\right] \leqq$ $\leqq\left(u_{1, l} \vee v_{1, l}\right)^{2}$.

Let X_{l} be the contraction defined by $X_{l}\left(\oplus_{j=1}^{\infty} f_{j}\right)=\bigoplus_{j=1}^{\infty} g_{j}$, where $\oplus_{j=1}^{\infty} f_{j}$, $\bigoplus_{j=1}^{\infty} g_{j} \in \bigoplus_{j=1}^{\infty} \mathfrak{H}\left(w_{j}^{(l)}\right)$ and $g_{1}=0$,

$$
g_{j}=\left\{\begin{array}{l}
P_{5\left(w_{j}^{(l)}\right)} f_{j-1} \quad \text { if } \quad w_{j-1}^{(l)} \geqq w_{j}^{(l)} \\
\frac{w_{j}^{(l)}}{w_{j-1}^{(l)}} f_{j-1} \quad \text { if } \quad w_{j-1}^{(l)} \leqq w_{j}^{(l)} \quad \text { for } \quad j \geqq 2 .
\end{array}\right.
$$

By Lemma 2 we infer that $X_{l} \in\left\{T_{l}\right\}^{\prime}$ and $T_{l} \mid \operatorname{ker} X_{l} \cong \bigoplus_{n=1}^{\infty} S\left(u_{n, l}\right),\left(T_{l}\right)_{\operatorname{ker} X_{i}^{*}} \cong \oplus_{n=1}^{\infty} S\left(v_{n, l}\right)$.
Since $\bigwedge_{j=1}^{\infty} m_{0}\left[\oplus_{l=j}^{\infty} T_{l}\right] \leqq \bigwedge_{j=1}^{\infty}\left(\prod_{l=j}^{\infty}\left(u_{1, l} \vee v_{1, l}\right)^{2}\right)=1$, by Lemma 3 we see that $T=\bigoplus_{i=1}^{\infty} T_{l} \in \mathscr{P}$. Then $X=\bigoplus_{l=1}^{\infty} X_{i} \in\{T\}^{\prime}$ and using Lemma 1 we get

$$
T\left|\operatorname{ker} X=\bigoplus_{l=1}^{\infty} T_{l}\right| \operatorname{ker} X_{l} \cong \bigoplus_{l=1}^{\infty}\left(\bigoplus_{n=1}^{\infty} S\left(u_{n, l}\right)\right) \cong \bigoplus_{n=1}^{\infty}\left(\bigoplus_{l=1}^{\infty} S\left(u_{n, l}\right)\right) \sim \bigoplus_{n=1}^{\infty} S\left(u_{n}\right)=T_{1}
$$

and similarly $T_{\mathrm{ker} X^{*}} \sim T_{2}$. Therefore, $T_{1} \varrho T_{2}$ and Proposition 1 is proved.

Proposition 2. If $T_{1}, T_{2} \in \mathscr{P}$ are such that $\gamma_{T_{1}}=\gamma_{T_{2}}=\gamma$ and γ has the form $\gamma=(0, \mu)$, then $T_{1} \varrho T_{2}$.

Proof.
(i) Let T_{1} and T_{2} be the Jordan operators $T_{1}=\bigoplus_{n=1}^{\infty} S\left(u_{n}\right)$ and $T_{2}=\underset{n=1}{\infty} S\left(v_{n}\right)$. From the assumption it follows that there exist a finite Borel measure v in [0, 2π], singular with respect to Lebesgue measure, and non-increasing sequences $\left\{f_{n}\right\}_{n=1}^{\infty}$, $\left\{g_{n}\right\}_{n=1}^{\infty}$ of non-negative Borel functions from $L^{1}(v)$ which are tending to 0 and such that

$$
\operatorname{Exp}\left[f_{n}\right]=u_{n} \quad \text { and } \quad \operatorname{Exp}\left[g_{n}\right]=v_{n} \quad \text { for all } n
$$

Here and in the sequel we use the notations
$\operatorname{Exp}[f, E](z)=\exp \left[-\int_{E} \frac{e^{i t}+z}{e^{i t}-z} f(t) d \nu(t)\right] \quad(z \in D)$, and $\operatorname{Exp}[f]=\operatorname{Exp}[f, \cdot[0,2 \pi]]$, for any non-negative Borel function $f \in L^{1}(v)$, and measurable set $E \subset[0,2 \pi]$.

Therefore we see that $f(t)=\left\{f_{n}(t)\right\}_{n=1}^{\infty}, g(t)=\left\{g_{n}(t)\right\}_{n=1}^{\infty} \in \mathscr{G}$ for all t in $[0,2 \pi]$. Furthermore we can assume that

$$
\sum_{n=1}^{\infty} f_{n}(t)=\sum_{n=1}^{\infty} g_{n}(t) \quad \text { for all } t \text { in }[0,2 \pi]
$$

(ii) Let E be the measurable set of points t in $[0,2 \pi]$ such that $a=g(t)$ and $b=f(t)$ satisfy the assumptions of Lemma 4. If $t \in E$ let $\sigma_{t} \in \sum$ be the function constructed in the proof of Lemma 4 taking $a=g(t)$ and $b=f(t)$. For all $j \in N$ let $h_{j} \in L^{1}(v)$ be the measurable function defined by

$$
h_{j}(t)=\left\{\begin{array}{l}
\left.\sum_{i=1}^{j} F_{(g(t), \rho(t))}\left(\sigma_{t}(i)\right) \quad \text { if } \quad t \in E,\right] \\
0 \quad \text { otherwise }
\end{array}\right.
$$

By Lemma 4 we infer that

$$
0 \leqq h_{j}(t) \leqq 2 \max \left(f_{1}(t), g_{1}(t)\right)
$$

for all $j \in N, t \in[0,2 \pi]$, and

$$
\lim _{j \rightarrow \infty} h_{j}(t)=0 \quad \text { for all } \quad t \in[0,2 \pi]!
$$

Introducing the inner functions $\left\{w_{j}\right\}_{j=1}^{\infty}$ by $w_{j}=\operatorname{Exp}\left[h_{j}\right]$, we consider the operator $\bigoplus_{j=1}^{\infty} S\left(w_{j}\right)$.
(iii) We shall show that $\bigoplus_{j=1}^{\infty} S\left(w_{j}\right) \in \mathscr{P}$. By Lemma 3 it is enough to prove that $m=\bigwedge_{k=1}^{\infty} m_{0}\left[\oplus_{j=k}^{\infty} S\left(w_{j}\right)\right]=1$.

Let ε be an arbitrary positive number. There exists a positive δ such that if H is a Borel set and $v(H)<\delta$, then $\int_{H} 2 \max \left\{f_{1}(t), g_{1}(t)\right\} d v(t)<\varepsilon$. By Egorov's theorem we infer that there exists a Borel set H_{ε} such that $v\left(H_{\varepsilon}\right)<\delta$ and the sequence $\left\{h_{j}\right\}_{j=1}^{\infty}$ converges uniformly to zero on the complement $C H_{\varepsilon}=[0,2 \pi] \backslash H_{\varepsilon}$. So there exists a k_{0} such that for all $j>k_{0}$ and $t \in C H_{\varepsilon}$ we have $h_{j}(t)<\varepsilon$. Therefore if $j>k_{0}$, then for all $t \in[0,2 \pi]$ we have $h_{j}(t) \leqq \tilde{h}_{\varepsilon}(t)$, where \tilde{h}_{ε} is the function defined by

$$
\tilde{h}_{\varepsilon}(t)=\left\{\begin{array}{l}
\varepsilon \quad \text { if } \quad t \in C H_{\varepsilon}, \\
2 \max \left\{f_{1}(t), g_{1}(t)\right\} \quad \text { if } \quad t \in H_{\varepsilon} .
\end{array}\right.
$$

We infer that the inner function m satisfies the inequality

$$
m \leqq \operatorname{Exp}\left[\tilde{h}_{e}\right] .
$$

Therefore we have

$$
\begin{gathered}
|m(0)| \geqq\left|\operatorname{Exp}\left[\tilde{h}_{\mathrm{z}}\right](0)\right|=\exp \left[-\int_{0}^{2 \pi} \tilde{h}_{\varepsilon}(t) d v(t)\right]= \\
=\exp \left[-\int_{H_{\varepsilon}} \tilde{h}_{\varepsilon}(t) d v(t)-\int_{C H_{\varepsilon}} \tilde{h}_{\varepsilon}(t) d v(t)\right] \geqq \exp [-\varepsilon-\varepsilon \cdot v([0,2 \pi])] .
\end{gathered}
$$

Since ε can be chosen arbitrary small, so $|m(0)|=1$. That is, $m=1$.
(iv) Let $E_{j, i}$ denote the measurable subset of E defined by

$$
E_{j, i}=\left\{t \in E: \sigma_{t}(j+1)=i\right\}
$$

for all $j \in N$ and $i \in \hat{N}$. Then $\left\{E_{j_{\mathrm{i}} i}\right\}_{j \in N, i \in N}$ will be a system of subsets of E such that the systems $\left\{E_{j, i}\right\}_{i \in \mathbb{N}}$ and $\left\{E_{j, i}\right\}_{j \in N}$ consist of pairwise disjoint sets for all fixed $j \in N$ and $i \in \hat{N}$, respectively; furthermore $\bigcup_{i \in N} E_{j, i}=E$ for all $j \in N,\left(\bigcup_{j \in N} E_{j, i}\right) \supset$ $\supset\left\{t \in E \mid g_{i}(t)>0\right\}$ if $i \in N$ and $\left(\bigcup_{j \in N} E_{j, i}\right) \supset\left\{t \in E \mid f_{i}(t)>0\right\}$ if $i \in(-N)$.

For all $j \in N$ let S_{j} be the operator defined by $S_{j}=S_{j, 1} \oplus S_{j, 2}$, where $S_{j, 1}=$ $=\bigoplus_{i \in \mathcal{N}} S\left(\operatorname{Exp}\left[h_{j}, E_{j, i}\right]\right)$ and $S_{j, 2}=\underset{i \in \mathcal{N}}{ } S\left(\operatorname{Exp}\left[h_{j+1}, E_{j, i}\right]\right)$.

By Lemma 1 we infer that $S_{j, 1}$ and $S_{j, 2}$ are quasisimilar to $S\left(w_{j}\right)$ and $S\left(w_{j+1}\right)$, respectively, for all $j \in N$. Therefore the operator $S=\bigoplus_{j=1}^{\infty} S_{j}$ is quasisimilar to the operator $\left(\oplus_{j=1}^{\infty} S\left(w_{j}\right)\right) \oplus\left(\bigoplus_{j=2}^{\infty} S\left(w_{j}\right)\right)$, which belongs to \mathscr{P} by section (iii) and Proposition 4.4 of [1]. By Corollary 4.3 of [1] we see that $S \in \mathscr{P}$.

Since $S_{j, 2}$ is quasisimilar to $S_{j+1,1}$, there exists a quasiaffinity $Y_{j} \in \mathscr{I}\left(S_{j+1,1}, S_{j, 2}\right)$ $(j \in N)$. We may assume that Y_{j} is a contraction.

For all $j \in N, i \in \hat{N}$ let

$$
Z_{j, i} \in \mathscr{F}\left(S\left(\operatorname{Exp}\left[h_{j+1}, E_{j, i}\right]\right), S\left(\operatorname{Exp}\left[h_{j}, E_{j, i}\right]\right)\right)
$$

be the operator defined by

$$
Z_{j, i} m=\left\{\begin{array}{lll}
\frac{\operatorname{Exp}\left[h_{j+1}, E_{j, i}\right]}{\operatorname{Exp}\left[h_{j}, E_{j, i}\right]} m & \text { if } & i \in N, \\
P_{5\left(\operatorname{Exp}\left[h_{j+1}, E_{j, i}\right]\right.} m & \text { if } & i \in(-N),
\end{array}\right.
$$

where $m \in \mathfrak{G}\left(\operatorname{Exp}\left[h_{j}, E_{j, i}\right]\right)$.
Then for all $j \in N$ we infer that $Z_{j}=\oplus_{i \in \mathcal{A}} Z_{j, i} \in \mathscr{I}\left(S_{j, 2}, S_{j, 1}\right)$.
Let $X \in\{S\}^{\prime}$ be the operator defined by

$$
X \mid \oplus_{i \in \mathbb{N}} \mathfrak{G}\left(\operatorname{Exp}\left[h_{j}, E_{j, i}\right]\right)=Z_{j} \quad \text { and } \quad X \mid \bigoplus_{i \in N} \mathfrak{H}\left(\operatorname{Exp}\left[h_{j+1}, E_{j, i}\right]\right)=Y_{j}
$$

for all $j \in N$.
Then by Lemmas 1 and 2 we infer

$$
\begin{aligned}
S \mid \operatorname{ker} X & \cong \bigoplus_{j=1}^{\infty}\left(\bigoplus_{i=1}^{\infty} S\left(\operatorname{Exp}\left[f_{i}, E_{j, i}\right]\right)\right) \cong \bigoplus_{i=1}^{\infty}\left(\bigoplus_{j=1}^{\infty} S\left(\operatorname{Exp}\left[f_{i}, E_{j, i}\right]\right)\right) \sim \\
& \sim \bigoplus_{i=1}^{\infty} S\left(\operatorname{Exp}\left[f_{i}, E\right]\right), \quad \text { and similarly }, \\
S_{\mathrm{ker} X^{*}} & \sim \bigoplus_{i=1}^{\infty} S\left(\operatorname{Exp}\left[g_{i}, E\right]\right) .
\end{aligned}
$$

(v) It is clear that for all $t \in C E=[0,2 \pi] \backslash E$ we have that $a=f(t)$ and $b=g(t)$ satisfy the assumptions of Lemma 4. Replacing $E, f_{n}(t), g_{n}(t), d v(t)$ by $(C E)^{\sim}=$ $=\{t \in[0,2 \pi] \mid 2 \pi-t \in C E\}, g_{n}(2 \pi-t), f_{n}(2 \pi-t)$ and $d v(2 \pi-t)$, respectively, we repeat the reasoning of the sections (ii), (iii) and (iv). Also taking adjoints we get that there exist operators $R \in \mathscr{P}$ and $Y \in\{R\}^{\prime}$ such that

$$
R|\operatorname{ker} Y \sim| \oplus_{i=1}^{\infty} S\left(\operatorname{Exp}\left[f_{i}, C E\right]\right) \quad \text { and } \quad R_{\text {ker } Y^{*}} \sim \bigoplus_{i=1}^{\infty} S\left(\operatorname{Exp}\left[g_{i}, C E\right]\right)
$$

Therefore, the operator $T=S \oplus R$ will belong to $\mathscr{P}, Z=X \oplus Y \in\{T\}$, and by Lemma 1

$$
T \mid \operatorname{ker} Z \sim \bigoplus_{i=1}^{\infty} S\left(\operatorname{Exp}\left[f_{i}\right]\right)=T_{1}, \quad T_{\text {ker } Z^{*}} \sim \bigoplus_{i=1}^{\infty} S\left(\operatorname{Exp}\left[g_{i}\right]\right)=T_{2} .
$$

That is, $T_{1} \varrho T_{2}$ and the Proposition 2 is proved.

Proof of the Theorem. Let T_{1} and T_{2} be the Jordan operators $T_{1}=\bigoplus_{n=1}^{\infty} S\left(u_{n}\right)$ and $T_{2}=\bigoplus_{n=1}^{\infty} S\left(v_{n}\right)$. The inner functions u_{n}, v_{n} have canonical factorizations $u_{n}=u_{n, 1} \cdot u_{n, 2}, v_{n}=v_{n, 1} \cdot v_{n, 2}$, where $u_{n, 1}, v_{n, 1}$ are Blaschke products, $u_{n, 2}, v_{n, 2}$ are singular inner functions for all $n \in N$. Introducing the operators $T_{1, i}=\bigoplus_{n=1}^{\infty} S\left(u_{n, i}\right)$ and $T_{2, i}=\bigoplus_{n=1}^{\infty} S\left(v_{n, i}\right)(i=1,2)$ we infer by Propositions 1 and 2 that $T_{1,1} \varrho T_{2,1}$ and $T_{1,2} \varrho T_{2,2}$. Taking direct sums and using Lemma 1 we see that $T_{1} \varrho T_{2}$. The proof is done.
4. By this Theorem and Theorem 7.9 of [1] we infer:

Corollary 1. For $T_{1}, T_{2} \in \mathscr{P}$ we have $T_{1} \varrho T_{2}$ if and only if $\gamma_{T_{1}}=\gamma_{T_{2}}$.
We list some immediate consequences of this Corollary.
Corollary 2. ϱ is an equivalence relation on \mathscr{P}.
Corollary 3. Let us suppose that $T_{i} \in \mathscr{P}, \mathfrak{S}_{i} \in \operatorname{Lat}\left(T_{i}\right)$ and $\gamma_{T_{i}}\left(\mathfrak{H}_{i}\right)=\left(\sigma_{i}, \mu_{i}\right)$, where μ_{i} is σ-finite $(i=1,2)$. If $T_{1} \varrho T_{2}$ and $\left(T_{1} \mid \mathfrak{F}_{1}\right) \varrho\left(T_{2} \mid \mathfrak{F}_{2}\right)$, then $\left(T_{1}\right)_{\mathfrak{5}_{1} \perp} \varrho\left(T_{2}\right)_{5_{2}}$.

Proof. This follows from Corollary 7.10 and Lemma 6.5 of [1], and from the above Corollary 1.

Corollary 4. Let T, S be operators of class \mathscr{P} acting on the spaces \mathfrak{G} and $\mathfrak{\Omega}$, respectively, and let $\mathfrak{S}_{j} \in \operatorname{Lat}(T), \mathfrak{\Omega}_{j} \in \operatorname{Lat}(S)$ be such that $\mathfrak{S}_{j} \subset \mathfrak{H}_{j+1}, \mathfrak{\Omega}_{j} \subset \Omega_{j+1}$ $(j=1,2, \ldots)$ and $\bigvee_{j=1}^{\infty} \mathfrak{G}_{j}=\mathfrak{H}, \bigvee_{j=1}^{\infty} \mathfrak{\Omega}_{j}=\Omega$. If $\left(T \mid \mathfrak{G}_{j}\right) \varrho\left(S \mid \mathfrak{\Re}_{j}\right)$ for all $j=1,2, \ldots$, then $T \varrho S$.

Proof. This follows from Corollary 1 and Lemma 7.4 of [1].

References

[1] H. Bercovici, C_{0}-Fredholm operators. II, Acta Sci. Math., 42 (1980), 3-42.
[2] B. Sz.-Nagy, C. Foras, On injections, intertwining contractions of class C_{0}, Acta Sci. Math., 40 (1978), 163-167.
[3] B. Sz.-Nagy, C. Folas, Harmonic Analysis of Operators on Hilbert Space, North HollandAkadémíai Kiadó (Amsterdam-Budapest, 1970).
[4] H. Bercovici, On the Jordan model of C_{0} operators. II, Acta Sci. Math., 42 (1980), 43-56.

