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On Cy-operators with property (P)

L. KERCHY

1. H. Bercovicl [1] has considered the class # of Hilbert space operators T
of class C, having the following property:
(P) any injection X€{T} is a quasi-affinity.

He has shown that 7€ if and only if K m,[T]=1, where m,[T] (n=1,2,..))
n=1

are the inner functions in the Jordan model of T. (Cf. Theorem 4.1 of [1].)

He has proved, furthermore, that every operator 7€¢% has the following
stronger property also:

(P*) for any Xc{T} we have yr(ker X)=y(ker X™).

{Cf. Theorem 7.9 of [1].) Here yr(ker X) and y;(ker X*) are generalized inner func-
tions; they play the roles of determinants of the operators Tlker X and T, x«-
(Cf. sections 6 and 7 of [1].)

Let ¢ be the following relation on the class 2: T; 9T, if there exist 7€ and
Xe{TY such that T, and T, are quasisimilar to Tlker X and T x«, thatis, T}~
~Tlker X, and To~ Ty x«- Then the previous statement can be written in the
following form. If T,, T,6€# and T;0T,, then Yr, =71, (because yr is a quasi-
similarity invariant).

Bercovici has also proved a partial converse of this statement. Namely, he has
proved that if Ty, 7,6 are weak contractions and V1, =7V1,5 then T,0T7,. On
the other hand he has shown that if T, 7,62 are such that Y1, =71, then there
exists S€2 such that 7,95 and S¢7,. The main purpose of this note is to prove
the complete converse of the statement mentioned above, namely,

Theorem. If Ty, T,¢? are such that YT, =V1ys then T, 0T,.

Thus the operators of class £ have, in general, no stronger property than (P*).
In particular, in general it is not true that an operator 7€Z has the property:

(Q) Tlker X and T, . are quasisimilar for any X¢{T}"
(Cf. [2])
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Furthermore, from the Theorem we can easily infer that ¢ is an equivalence
relation on 2.

2. In the sections 6 and 7 of [1] Bercovicl introduced the notions of “gen-
eralized inner function” and ¢C,-dimension of a subspace” in the following way.
Any inner function m€H;” has a factorization m=chs, where ¢ is a complex
constant of modulus one, b is a Blaschke product and s is a singular inner function
deriving from a finite Borel measure p on [0, 2n], singular with respect to Lebesgue
measure. (Cf. [3], Ch. I11.) Let us denote by o (z) the multiplicity of the zero z (|z|<1)
in the Blaschke product 5. Then y(m) will denote the pair y(m)=(s, 1). The class
I of “generalized inner functions” will be the set of pairs y=(o, y), where o is a
natural number valued function defined on D={z: |z|<1} such that ()2;0(1 —lz)=

<o, and p is a (not necessarily finite) Borel measure on [0, 27], which is absolute
continuous with respect to a finite Borel measure v singular with respect to Lebesgue
measure. We define addition and lattice operations in I’ by components.
If T¢#, then it can be proved that y;:= f y(m)EL, where the m;=m;[T]
ji=0

are the inner functions in the Jordan model of 7. (Cf. Theorem 4.1 and Proposi-
tion 6.6 of [1].) If T is an operator of class Co and MeLat, (T) is such that Ty€2,
then y; (M) is defined as yT(i)R)=mi.

For two operators T and T’ we denote by S£(T”, T) the set of intertwining
operators S(T’, T)={X|T'X=XT}. If T'=T, then S(T, T)={T} is the com-
mutant of T.

The next Lemmas will be frequently used in the sequel.

Lemma 1. Let {m,};>, be a sequence of pairwise relatively prime inner func-
tions having a least common multiple m. Then the operator T= é; S(m,) is quasi-

=0

similar.to S(m).
Proof. Cf. Theorem 2.7 of [4]).

Lemma 2. Let m;, m, be inner functions.
() If my divides my (myz=my) and Xu=Pg,  u for all uc$H(my), then
XeSI(S(my), S(my)) is surjective and S(my)|ker X is unitarily equivalent to S (ﬁ]

my
[S(m,)|ker X=S (%]] .
(i) If my=m, and Xu=l"':iu for all ueH(m,), then X¢F(S(my), S(my)) is
1

L. m
injective and S(my),..x»=S |—|.
m
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Proof. We can easily verify this statement by a short computation.

Lemma 3. (Proposition 4.6 of [1]) Let T be an operator of class C, acting-
on $ and let H;cLat(T) be such that H;C9H;., (j=1,2,...), and H= V 9H;.
Then Te? if and only if Tg€?, &;=9;1.09; (j=0,1,2, ...; 50—{0}) and
/\ mo[Tgr]=1. (If S is an operator of class Cy, then m,[S] denotes its minimal

functlon )

3. Firstly 'we shall prove the statement of the Theorem in different special
cases in the Propositions 1 and 2, from which the general situation can be derived.
We remark that it can be always supposed that 7; and 7, are Jordan operators.
In the proofs of Propositions 1 and 2 we shall need the next Lemma.

Let us denote by > the set of injections a: N-NU(—N)=N satisfying the
conditions:

() if 1=i<j and ¢(@)e(j)=0, then |o()|<lo(/);

(i) if réo(N), then for all s¢ N such that s-r=0 and |s]<|r] we have s€a(N).
(Here and in the sequel N is the set of natural numbers 1,2, ....) Let ¥ be the set
of sequences: a={a,};>, of real numbers such that' ¢;=za,=...=0 and 4,~0
as n—oo. If a,b€9, then let F,, denote the mapping N—~R defined by

a;, if iEN,
F“’"’)(i)={—bi, if ie(=N).
Lemma 4. Let a, b€Y satisfy the condition: if b,=0 for some néEN, then
there exists mEN such that a,=0. If f a,= fb,,, then there exists a 6€J
such that for all ne N we have " "

0= Z"' Fio,1y(0(i)) = 2 max (a,, b))
i=1
Surthermore Zn' Fion(0@) tends to 0, if n tends to .
i=1 ’

Proof. Let o(1)=1. If we have already defined ¢ for i=1,2,...,j, and
max {o(})}i=1, ..., j}=r;, min {{e()|i=1, ..., ;)}U{0})}= —s;, then

j
_(Sj+ 1) lf % F(a’b)(o'(i)) = bsl+1’

r;+1  otherwise.

o(j+1) =

It can be easily seen that this a¢> will be suitable.

Proposition 1. If Ty, T,€2 are such that yr =yr,=y and y has the form
y=(0,0), then T,0T,.
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Proof. Let T, and T, be the Jordan operators T,= é S(u,) -and T,=
n=1

= é S(v,). From the assumption it follows that u#, and v, are Blaschke products
n=1
having the same zeros (disregarding multiplicities)' 71545 .... Forall n u, and v,

have factorizations u,= ]] U, 15 Ug= ]] v, ;> where u, , and v, are Blaschke factors

-containing only /, as a zero (If 4, 1s not a zero of u, (v,), then u, ;=1 (v, ;:=1).)

Let us denote by ¢ and b the multiplicities of 4, as zero of v, ; and of u,,,
respectively. Then a,= {af,”},‘,’;l, b= {b{}r.,€9, and by virtue of y; =yr, we have

5 d®= 3 b® for all IEN.
-n= =1

By Lemma 4 there exists a 6,€ > such that
i
0= 3 Fu, »,y(c:()) = 2 max (a{”, b{")
i=1

for all j€N. Let ¢{ be defined by ¢ :.21' Fo5y(0/()), and let

I -z}
wiP (z) = (]l:] 1 ’—7,2 ) it 20,
=" if 3,=0; jEN, z€D.
It is clear that w{’ =1, if j is large enough. So the operator T, defined by T,= él S(WP)
has finite multiplicity. On the other hand by the construction it follows that my[7}]=
=(uy, Vo, )%
Let X; be the contraction defined by X,(j@1 £ =j§l g;» where ,-éél fis

_EB EGB HSWP) and g,=0
Poosnfi-y if w2y = wid,

o
& w(') —=f1-1 i Wi =w® for j=2.

By Lemma 2 we infer that X,¢ {7}’ and T|ker X,= EB S (U, 1), (T,)kcr xr = é S(v,,)).
n=1 n=1
Since /\ mo[® T)= /\ ( ]] (41, Vo, )®)=1, by Lemma3 we see that
T= 69 T,e.@ Then X= @ X€ {T} and using Lemma 1 we get

Tiker X = @ Tifker X, = & (& S0n0) = & (& 56 ~ & 56 =T,
=1 n=1

I_ =1

and simildrly Tyeex+~Tp. Therefore, T;0T, and Proposition 1 is proved.
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Proposition 2. If Ty, T,€? are such that yr =yr,=7 and y has the form
y=(0, ), then T, 0T,.

Proof.

(i) Let T; and T, be the Jordan operators Ty= é S(u,) and T-2-= 'EB S(,).

. . . ' . n=1 n=1

From the assumption it follows that there exist a finite Borel .measure v in [0, 27],
singular with respect to Lebesgue measure, and non-increasing sequences {f;}n;,
{g.):>., of non-negative Borel functions from L'(v) which are tending to 0 and

such that _
Exp[f.) =u, and Exp[g,] =v, for all n

Here and in the sequel we use the notations
etttz .
Explf, E](z) = exp [— [ eT_—Zf(t)dv(t)] (z6D), and Exp[f]=Exp[£[0,2q]],
E

for any non-negative Borel function f¢L'(v), and measurable set Ec[0, 2x]. ’
Therefore we see that f(t)={f,()}:2,, g(t)={g.,()};=;€% for all ¢ in [0, 27].
Furthermore we can assume that

5’ fut) = 5 g,(t) for all ¢ in [0, 2],

(i) Let £ be the measurable set of points ¢ in [0, 2x] such that a=g(¢r) and
b=f(t) satisfy the assumptions of Lemma 4. If t€E let 6,3 be the function
constructed in the proof of Lemma 4 taking a=g(¢) and b=f(¢). For all jeN
let 2;€L'(v) be the measurable function defined by

]
__Zl' Fow, raplo: () if t€E}

0 otherwise.

hy(r) =

By Lemma 4 we infer that
0 = h;(¢) = 2max (f,(2), g:(t))
for all jeN, t€[0, 27], and
jli_noao hi(t)=0 forall r€[0,2n]}

Introducing the inner functions {w;};, by w;=Exp [k;], we consider the operator
@ Sw)).
j=1 -

_(iii) We shall show that @ S(w;)€2. By Lemma 3 it is enough to prove

j=1
that m= A my[ P Sw;)]=1.
k=1 j=k

8
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Let ¢ be an arbitrary positive number. There exists a positive é such that if
H is a Borel set and v(H)<d, then f 2 max {f;(¢), g:(¢)}dv(t)<e. By Egorov’s
H

theorem we infer that there exists a Borel set H, such that v(H)<4 and the sequence
{h;};~, converges uniformly to zero on the complement CH,=[0, 2n]\H,. So
there exists a k, such that for all j>k, and t€¢CH, we have h;(t)<e. Therefore
if j>k,, then for all #¢[0,2n] we have h;(r)= h,(t), where h, is the function
defined by

e if teCH,,

R = { )
= 2max (1,0, ga() i reH,.
We infer that the inner function m satisfies the inequality

m = Exp [A,].
Therefore we have

2 )
n(©)] = [Exp [£1(0)] = exp[— [ A()dv(®)] =
=exp[- [AR@Odv@®)- [F()dv(@)] = exp[—e—z-v([0, 27])].
H, CH,

Since ¢ can be chosen arbitrary small, so |m(0)|=1. That is, m=1.
(iv) Let E; ; denote the measurable subset of E defined by

Ej,i = {tEE: at(j'l'l) = l}

for all jeN and i€N. Then {E; };cn cx Will be a system of subsets of E such
that the systems {E; ,};. 5 and {Ej ,}Je ~ consist of pairwise disjoint sets for all ﬁxed
jEN and i€N, respectxve]y, furthermore U =E for all jEN, (U

D{tcE|g(t)=0} if i€N and (U D{tEEIf(t)>0} if ic(—N).

For all jEN let S; be the operator defined by §;=S; 89S, ., where §;,=
=i§% S(Exp [k, E; ;)) and Sj'2=i§?v S(Exp [~;+1, Ej, ).

By Lemma 1 we infer that S, ; and §; , are quasisimilar to S(w;) and S(w;,1),

respectively, for all jc N, Therefore the operator S= é S; is quasisimilar to the
j=1

operator (é S(w,-))ea(é; S(w;)), which belongs to £ by section (iii) and Proposi-
j=1 j=2
tion 4.4 of [1}. By Corollary 4.3 of [1} we see that S€Z.
Since S;, , is quasisimilar to S;,, ;, there exists a quasiaffinity Y ;€ #(S;.1,1, S}, 2)
(JEN). We may assume that Y; is a contraction.



On C,-operators with property (P) 115

For all jEN, i€ N let
Z; € f(S(EXP [h41, E;,i])> S(Exp [h;, E;, -]))
be the operator defined by

Exp[h;.1, E;,] .

——2 Ly, if €N,
Zj,i'n - Exp [hj,Ej,l]

P5(EXP[hj+1,Ej,i])n1 if IE(_N),

where me H(Exp [h;, E; |]).
Then for all jEeN we infer that Z;= @ Z; £ F5(S;,2, S}, -
i€n

Let X<{SY} be the operator defined by
XIEEBN S(Exp[h;, E; ) =Z; and Xlé% SExplhj, E;D=7Y;

for all jEN.

Then by Lemmas 1 and 2 we infer

Siker X = & (& SExo 11 B ) = & (8 SExoLfin £,.D) ~

Jj=1\i=1,

~ @ SExplfi, E]), and similarly,

i=1

SkerX* ~ _6_91 S(EXp [gi9 E])

(v) It is clear that for all ¢ CE=[0, 2n]\ E we have that a=f(t) and b=g(t)
satisfy the assumptions of Lemma 4. Replacing E, f,(?), g.(t), dv(¢) by (CE) =
={t€[0, 2n)2n —t€CE}, g,2n—1t), f,(2n—t) and dv(2n—t), respectively, we
repeat the reasoning of the sections (ii), (iif) and (iv). Also taking adjoints we get
that there exist operators R€# and Y€ {R} such that

Riker¥ ~|@® S(Exp[fi, CE) and Ryeys ~ @ S(Exp lgi, CED.
i=1 i=1

Therefore, the operator T=S@®R will belong to 2, Z=XapYc{T}, and
by Lemma 1

TlkerZ~ @ SExpfi) = Ta,  Tierz ~ D SExp el = T..

That is, T; 0T, and the Proposition 2 is proved.

8*



116 L. Kérchy: On C,-operators with property (P)

Proof of the Theorem. Let T} and T, be the Jordan operators Tl=é Su,)
n=1

and T,=@ S(v,). The inner functions u,, v, have canonical factorizations
n=1
Up=Up 1 Uy g, Un=Up 1" Un g, Where u,,, v, are Blaschke products, u, ,, v, o are

singular inner functions for all #€N. Introducing the operators 75 ;= é S,
n=1

and T, ;= é S(v,,) (i=1,2) we infer by Propositions 1 and 2 that Ty.07:,
n=1

and T, ,0T; ,. Taking direct sums and using Lemma 1 we see that T;0T,. The

proof is done.

4. By this Theorem and Theorem 7.9 of [1] we infer:
Corollary 1. For Ty, To€? we have T,oT, if and only if yr =vr,.
We list some immediate consequences of this Corollary.

Corollary 2. g is an equivalence relation on 2.

Corollary 3. Let us suppose that TcP, H,¢Lat (T) and yri(ﬁi)=(a,~, 1),
where p; is o-finite (i=1,2). If TyoT, and (T1|9) o(T:|Ds), then (T)sito(To)sf-

Proof. This follows from Corollary 7.10 and Lemma 6.5 of [1], and from the
above Corollary 1.

Corollary 4. Let T, S be operators of class P acting on the spaces H and K,
respectively, and let $H;cLat(T), K;€Lat(S) be such that H;TH;41, K;CR; 4y

(=1,2,..) and V $;=9, V &;=8 If (T|$)e(SI]) for all j=1,2,...,
=1 f=1
then TpS. ’ !

Proof. This follows from Corollary 1 and Lemma 7.4 of [1].
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