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Contributions to the ideal theory of semigroups 

S. LAJOS 

Let S be a semigroup. A subsemigroup A of S is said to be an (m, n)-ideal of 
S if the inclusion Am SA" A holds, where m, n are non-negative integers, A0 is 
the empty symbol. The author [4] proved that the product of two (1, l)-ideals of S 

is again a (1, l)-ideal. Thus the collection of all (1, l)-ideals of a semigroup S is a 
semigroup with respect to the ordinary set product. This semigroup will be denoted 
by B(S). Also, the collection of all left [right] ideals of S is a multiplicative semi-
group. This semigroup will be denoted by L(5) [R(5) ] . It is easy to see, that L (S ) 
is a right ideal and R (5 ) is a left ideal of B(5"). Their intersection, the multiplicative 
semigroup of all two-sided ideals of S is a quasi-ideal of B(S). 

In this short note certain classes of semigroups will be characterized by prop-
erties of the semigroups B(S) and L(S). For the undefined notions and notations 
we refer to [1], [2], and [12]. 

We begin with two lemmas. 

Lemma 1. A semigroup S is regular if and only if BSB—B holds for every 

bi-ideal B of S. 

This is an easy consequence of a result by J. LUH [10]. 

Lemma 2. A semigroup S is a semilattice of groups if and only if the inter-

section of any two (1,1 )-ideals of S is equal to their product. 

For this criterion, see the author [5] or [6]. 
Our first main result is contained in the following 

Theorem 1. For a semigroup S the following conditions are equivalent: 

(1) S is a semilattice of groups. 

(2) B(S) is a distributive lattice with respect to the set product and the set-theo-

retical union. 

(3) B(S) is a regular monoid with respect to the set product. 

Received January 30, 1979. 



118 S. Lajos 

Proof. (1) =>-(2): If S is a semigroup which is a semilattice of groups, then 
every bi-ideal of S is a two-sided ideal of S. Hence this implication is straight-
forward by Lemma 2. 

(2)=>(1): by Theorem 1 of [6]. 
(1)=>(3) is obvious. 
(3)=>(1): Suppose that S is a semigroup whose bi-ideal semigroup B(S ) is 

a regular monoid with respect to set product. If A is the identity element of B(S), 
we have S=ASAQA. Hence A-S. Therefore BS=SB=B holds for any 
•bi-ideal B of S, whence B is a two-sided ideal of S. On the other hand, the regularity 
of B(S) together with Lemma 1 implies that S is regular. Thus S is a regular duo 
semigroup which is a semilattice of groups. 

Corol lary 1. If S is a semilattice, then B(S) is a distributive lattice. In partic-

ular, if iS is a diagonal semilattice (i.e., every non-zero element of S is an atom), 

then B(S) is a Boolean algebra. 

Corol lary 2. The bi-ideal semigroup B(S) of a semigroup S is a Boolean algebra 

if and only if S is a diagonal semilattice of groups. 

The following criterion is due to the author [7]. 

Lemma 3. A semigroup S is a semilattice of left groups if and only if Bf]L=BL 

holds for every bi-ideal B and every left ideal L of S. 

By making use of Lemma 3, further characterizations can be given for semi-
groups that are semilattices of left groups in term of the bi-ideal semigroup B(S). 

Theorem 2. For a semigroup S the following conditions are equivalent: 

•(I) S is a semilattice of left groups. 

{2) B(5") is a band and S is a right identity of it. 

• ¡(3) B(S) is a regular semigroup and S is a right identity of it. 

Proof. (1)=>(2): If S is a semigroup which is a semilattice of left groups, 
then, by Lemma 3, the relation LC\R=RL holds for every left ideal L and every 
right ideal R of S, thus S is regular. Moreover Lemma 3 implies BS=B for every 
bi-ideal B of 5, whence 5 is a right identity of B(S'). Then Lemma 1 implies that 
every bi-ideal of S is globally idempotent, i.e., B(S) is a band. 

(2)=>(3) is clear. 
(3)=>-(l): If (3) holds, then it follows that S is a regular left duo semigroup 

which is a semilattice of left groups. 
T. SAIT6[11] has proved the following criterion. 

Lemma 4. A semigroup S is a semilattice of left simple semigroups if and 

only if the intersection of any two left ideals of S is equal to their product. 
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Now we are ready to prove the following result. 

Theorem 3. For a semigroup S the following conditions are equivalent: 

(1) S is a semilattice of left simple semigroups. 

(2) L (S ) is a distributive lattice with respect to the set product and set-theoretical 

union. 

(3) L (S ) is a multiplicative semilattice. 

Proof. (1)=>(2): If S is a semilattice of left simple semigroups, then, by 
Lemma 4, every left ideal of S is a two-sided ideal. Hence the implication follows 
by Lemma 4. 

(2)=>(3) is obvious. Finally, (3)=»(1) by [11]. 
Next an ideal-theoretical characterization will be given for homogroups. A semi-

group S is called a homogroup if it has a subgroup which is at the same time a two-
sided ideal of 5 (for an equivalent definition see [13]). For instance, a semigroup 
with zero element is a homogroup. 

Theorem 4. A semigroup S is a homogroup if and only if the bi-ideal semi-

group B(S) has a zero element. 

Proof. Let 5 be a homogroup with the group-ideal G. Let B be a bi-ideal 
of S. Then the product BG is a right ideal of S, and BGQG. Hence it follows that 
BG=G, because a group has no proper right ideals. Similarly, we get GB=G 

and G is the zero element of B(S). 
Conversely, if S is a semigroup whose bi-ideal semigroup has a zero element 

Z, then we have SZ=ZS=Z. Hence Z is a two-sided ideal of S. For any element 
z of Z the product Zz is a left ideal of S. Thus we have Z = Z ( Z z ) = Z z , since 
the set product is associative for non-empty subsets of S. Similarly we get zZ=Z 

for any element z of Z. Therefore Z is a subgroup of S, and S is a homogroup, 
indeed. 

Remark. It is easy to see that Theorem 4 remains true with P (S ) instead of 
B (S), where P (S ) is the power semigroup of S, i.e., the multiplicative semigroup 
of all non-empty subsets of S. 

Finally, we are interested in semigroups whose bi-ideal semigroup is a monoid. 

Theorem 5. For a semigroup S the bi-ideal semigroup B(S) is a monoid if and 

only if (i) every bi-ideal of S is a two-sided ideal of S, and (ii) every two-sided ideal of 

S is complete (i.e. IS-SI=I). 

Proof. First, let S be a semigroup having properties (i), (ii). Then the bi-ideal 
semigroup B(S) is the multiplicative monoid of all two-sided ideals of S with the 
identity S. 
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Secondly, if the (1, l)-ideals of a semigroup S form a monoid with identity A, 

then we have S=ASA^A, whence it follows that A = S. Thus BS=SB=B 

for every bi-ideal B of S, that is, every (1, l)-ideal B is a complete (two-sided) ideal 
of S. Theorem 5 is completely proved. 

For the characterizations of completely regular semigroups in terms of (m, «)-
ideals, see the author [8] and [9]. 
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