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On the divergence of multiple orthogonal series

F. MORICZ and K. TANDORI

1. Preliminaries. Let I"=_>d<1 [0,1] be the unit cube in the d-dimensional
je

Euclidean space, where d=1 is a fixed integer. The points (X3, ..., X2)y (F1s vves Va)s +--
of I are denoted by the corresponding bold letters x,y,.... Let Z be the set of
d-tuples k=(k,, ..., k;) with positive integral coordinates, the tuple (1,...,1) is
denoted by 1. Z4 is partially ordered by agreeing that k=m iff k;=m; for each j.
Finally, we write

k, = mind k; and k*= maxdkj.

1sjs= 1=js

Let {¢,(x): k€Z%} be a d-dimensional orthonormal system on I, i.e. for every
k and m in Z¢ let

[ o on)dx = b (@x = dx;...dx,).
Id

In particular, if for each j=1,2,...,d the system {p{’(x)}>, is orthonormal on

I=[0, 1], then the functions
d o
(Pkl,.‘.,k.,(xn s Xg) = ]]1 %8’ (xj)

i=
are orthonormal on /.

We shall consider the d-multiple orthogonal series
M 2o X)) = 2 oo 2 Gy, kP, kd(F1s s Xa
k=1 k=1 kz=1
where {a,: k€Z4%} is a given system of numbers (coefficients). For any meéZ4 set
Sp(x) = . 2 mp(x) =

=k=
m, my
= Z o 2 ak]....,kdqpkl,...,kd(xl’ seey xd):
ky=1 ky=1
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which is a rectangular partial sum of (1). In case my=...=my, S (x) is called a
square partial sum of (1). The spherical partial sums of (1) are defined as

S®=_ 3 aa® (r=dd+l,.)

ki 4. +k3=r

The following Theorem A has been published by a few authors, while The-
orems B and C were proved by the first author in [3] and [4].

Theorem A. If
a4
2 ai [ (log 2k))* < <o,
1

k=1 i=

hen the rectangular partial sums S_(x) of (1) converge a.e. on I as m, — .
Here and in the sequel log is of base 2.
Theorem B. If
2, ag (logk*)? <o,
k=1

then both the square partial sums S, . .(X) and the spherical partial sums S,(x) of
(1) converge a.e. on I° as n— oo,

The part concerning the spherical partial sums was stated in [3] in a slightly
different form, but the two statements are equivalent, because

k*)2=ki+... +hki=d(kY)

2 ai =0
k=1

Theorem C. If

then

d
Sa(x) = ox[ﬂlog 2m,-] a.e. onl®as m*—eco,
j=1

2. Results. In this paper we are going to show that these theorems are exact
in the sense that log n cannot be replaced by any sequence ¢(n) tending to < slower
than logn as n—~<. More precisely, let {¢(n)};~, be a non-decreasing sequence
of positive numbers for which

) e(n) = o(logn) (n —<).

Theorem 1. For every d=1 and {o(n)} satisfying (2), there exist an ortho-
normal system {p (x): k€Z%} and a system {a: K€Z1} of coefficients such that

€ 2 ai(log k¥ =202 (k*) <o
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and
@) lmsup [Sp(x)| =< a.e. on I°.

By virtue of Theorem B in case d=2 both the square partial sums and the
spherical partial sums of the series 1(21 a, ¢, (X) occurring in Theorem 1 converge a.e.

Theorem 2. For every dz=1 and {o(n)} satisfying (2), there exist an ortho-
normal system {p,(x): k€ Z%} and a system {b,: k€Z4} of coefficients such that

. [Sm (X)]
> bt <o d hm su
G kT =P logm*y'~Tg(m")

= aq.e. on Il

Theorems 1 and 2 for d=1 are well-known (see, e.g. [1, pp. 99—100]).

Theorem 3. For every d=2 and {o(n)} satisfying (2), there exist an ortho-
normal system {p, (x):)k€Z%} and a system {c,: K€Z%} of coefficients such that

S i (logk") <o
k=1

and

=c a.e. on I°

; 15wl
-’ logm) T o)

Again by Theorem B, both the square partial sums and the spherical partial
sums of the series kZ'l .0, (x) converge a.e.

Our last theorem states the a.e. divergence of the rectangular partial sums of
series (1) for a whole class of coefficient systems. A system {a,: k€Z4 “) of
coefficients is said to be non-increasing in absolute value if for every k, meZ4,

k=m = |a] = |ayl.

1t is clear that this is equivalent to the following: for every kéZ4 andj, 1=j=d,
we have

|ak1,...,kj-1,kj,kj+1....,kdl = lakly...,kj-l,kj"'l.kj-(-l ..... kdl'

Theorem 4. For every system {a: KEZ%} of coefficients, which is non-
increasing in absolute value and satisfies the relation

d
&) g’ ai ]_] (log 2k,)? = oo,
there exists an orthonormal system {p,(x): KEZ%} such that

(6) limsup |S,(x)] = a.e. on I°.
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If, in addition, for every me€Z% we have

d
) 2 at ] Qog2kgy = =,
then m*—<o can be replaced by‘m*—-oo in (6).

The two parts of Theorem 4 coincide for d=1. In this case Theorem 4 was
proved by the second author in [5].

3. Notations and an auxiliary result. For the sake of simplicity in notations, we
present the proofs only for the case d=2. We write (x, y) instead of x=(x,, x,)
and (k, I) instead of k=(k,, k).

We agree that {(a, b) means either the open interval (a, b), or one of the half-
closed intervals [a, b) and (g, b}, or the closed interval [a, b}. Given a function f(x, y)
defined on I? and a rectangle R={(a, b)X{c, d)SI?, let us put’

x—a y—c -
f(b—a’d———c-] if (x, )ER,

0 otherwise.

f(R; x,y) =

Given a set HS I3, let H(R) denote the set into which H is carried over by the
linear transformation ¥=(b—a)x+a and y=(d—c)y+c.

A set HSI (or 17 is said to be simple if H can be represented as the union
of finitely many disjoint intervals (or rectangles).

The proofs of all our theorems are based on the following basxc result of MEN-
Sov [2).

Lemma. For every positive integer n there exist a system {y{"(x)}., of step
Junctions, orthonormal on the interval I=[0, 1), and a simple set E™ of I such that

®) mes E® = C,

and for every xCE®™ there exists an integer x(x), 1=x(x)=n, such that Y™ (x)=
l,bx(x) (x)=0 and

)] kf) Y™ (x) = C,Vn log 2n.
=1

Here C, and C, denote positive constants. Further, if ECI (or CI?%), then
mes E denotes the Lebesgue measure of the set £ on the line (or on the plane).

4. Proof of Theorem 4. Part 1. By (5) and the non-increasing property of
{a3)7 1~ we have

2 22*(p+1)2(g+1)2aZes1_q 0001y = oo

0g=

Mg

P
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With the notation
A= 3 24(p41)P(g+1)%ad_y g0, (P=0,1,..)

0=p,g=r
max(p,q)=r

oo

this can be rewritten into the form 3 4,=<c. We can find a sequence {s,};=, of
r=0
positive numbers with the following properties:

lims, =0, s#4,=1 (r=0,1,..)

r—co

and
(10) Sstd, =
r=0

Without loss of generality we may assume that a,=0 for every k,[=1,2, ....

Our goal is to construct a system {@.(x, ¥)}5°;-, of step functions and a system
{H,,}; ;-0 of simple sets of 7% such that these functions be orthonormal on 72, these
sets be stochastically independent with

(1)  mesH,, = C}27*(p+1)*(g+1)°s2aze+1_; 00414 (r,g=0,1,..),
and for every (x, y)€H,,

m n C2
(12) D% A | 3 2 aupu(ny)| = —52—
where r=max (p, q).

The construction will be done by induction on r. If r=0, then let ¢, (x, y)=
=1/sya; on a rectangle H,, of area sia?, and let ¢ (x,»)=0 otherwise. Then
(11) and (12) are satisfied for p=g=0 provided C;,C,=1, which is the case.

Now let r, be a positive integer and assume that the step functions @ (x, )
are defined for k,/=1,2,...,2—1 and the simple sets H,, are defined for p, g=
=0, 1, ...,r,—1 such that these functions are orthonormal on I2%, these sets are
stochastically independent, and the relations (11) and (12) are satisfied for p, g=
=0,1, ..., 7o—1. We are going to define the step functions ¢, (x,y) of the ryth
block successively in the following arrangement: for

k=20,2041, ..., 20+ 1 and l=1;
k=20 20+1,...,20+1—1 and [=2,3;

....................................................................................

k=202041,..,20t1—1" and I=2%,20+1,.., 20+ ~1;
k=202 207241, ..., 2%—1 and I=2%,20+1,..,20%1—1;

k=23 | and L= 20, 2041, ., 20411
k= and =20, 2041, ..., 2041 1;
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.and the simple sets H, ,,H, ,,...H, ,,H _,,,...,H , ,H,, 6 insuch a way
i rg,0 rg 1 o To ro—L,ro 1,ry 0,rq
that the functions ¢ (x,») (k,/=1,2,...,2%% —1) be orthonormal on 72, the
sets H,, (p,q=0,1, ...,r) be stochastically independent, and the relations (11)
.and (12) be satisfied for p, ¢=0, 1, ..., r,.
For the sake of definiteness, let us assume that the sets H, ,, H, ,, ..., H,

r5,35—1

(1=g,=ry) and the functions ¢,(x, y) for k=2",2%+1, ..., 2°"—1 and I=1,2, ...
...,2%—1 have been appropriately defined. Let us apply Men$ov’s lemma firstly
‘with n=2", secondly with n=2%, and set

Porosk—1.29041-1 (% ¥) = PEFI() Yoy (k=1,2,...,20; 1=1,2,..,2%).

Then by (9) for every (x,y)€ F=E®?XE®™ we have

m n
max max | 3 3G, .. Poro k100111 V| =
1sm=20 1=nm2to | 51 5 2fo+k—1,29041—1 7 20 +k—1,29 +1—1

= C22 | 2r°+q°(r0+ 1)(q0+ 1)a2Po+1_1,2qo+1_1'
Let Q be an arbitrary rectangle in I? with
mes Q = 20+ %(ry+1)2(go+ l)zsfoag,oa_l‘zqo“_l

(the quantity on the right is not greater than 1 because of the choice of s,), and
let us “‘contract™ the functions @ from /2 to Q:

5 x,y) = ¢2'°+"—1.2‘70+1—1(Q§ X, ¥)
2F0 4k —1,290 +7-1 K V2ot (ry+1)(go+1)s,,azr0+11,200+1 1

(k=1,2,...,20; 1=1,2,...,2%).

Tt is not hard to check that these step functions are also orthonormal on 72, by (8)
(13) mes F(Q) = mes FmesQ = (mes E€)2 mesQ =

= Ci20%%(ro+1)%(qo+ 1) 58, B3rg41_y pqp+1_y>
and for every (x, y)€F(Q)

m o = C?
>(14) 1:,1"8;2'0 lgriléazx‘lo kgl' 1=21, a2’°+k—1.2q°+1—1(p2'0+k—l, 2qo+l—1(x’ y) = —570- "

Since the functions ¢,(x, y) and the sets H,, defined so far are step functions
.and simple sets, respectively, we can divide 72 into a finite number of disjoint rec-
tangles R,, R,, ..., R, such that each function ¢ (x,y) (&,I=1,2,...,2"—1;
k=27 2041, ..,20t 1 and [=1,2,...,2%—1) is constant on each R,
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(s=1,2, ...,0) and each set H,, (p, ¢=0, 1, ..., rq—1; p=r, and ¢=0,1, ..., g,—1)
is the union of certain R,. Let R, and R denote the two halves of R;, i.e., if R;=
={a, byX{c, d), then let R;=(a, (a+b)/2]X{c,d) and R;=((a+b)/2,b)X(c, d).
We set

-
(02"0+k_1’2110+[_1(x’ y) = Zqogro.*_k_l’qu..L]_l(R;; x’ y)_

aro_n.k 1,29 +1— 1(R.;': X, y) (k_ 1 2 °; l=1, 2: ---92q°)

ma

and

Hoo= (U 6RO (L_JIG(R;')),
where G=F(Q).

It is easy to verify that the step functions ¢u(x,y) (k,1=1,2,...,20—1;
k=20,2041,...,2%%—1 and =1, 2, ..., 29271 —1) form an orthonormal system
on I%, the simple sets H,, (p,q=0,1,...,r,—1; p=r, and ¢=0,1,...,q,) are
stochastically independent, by (13)

mes H, ,, = mes F(Q) = C72 %% (ry+1)%(q+ 13t 2r0+1—1,2qo+1_-1 s

and by (14) for every (x, y)€H

o 90
Zm' 2 :
max max a,, 2 @, " xy)=—.
1=m=2"0 1=n=2d0 | k=1 i= 2To+k—1,290 +1—-1 7 2M0+k—1,2% +I—1 sro

The above induction scheme shows that the orthonormal system {@u(x, )} -,
and the system {H,}> _, of stochastically independent sets can be defined so that
the conditions (11) and (12) hold true.

Putting (10) and (11) together we see that

(15) 2> 2 mes H,, = .
p=04g=0

Thus the second Borel—Cantelli lemma implies that almost every (x, y)€I® belongs
to an infinite number of sets H,,. Taking into account (12) this means that for aimost
every (x, y) there exist four sequences {m;}, {M;}, {n;} and {N;} of positive integers
such that m;=M; and n=N, (i=1,2, ...), max (m;, n)~>o as i—o, and

lim kZ 2 auPu(x, y)| =
Since the double sum in absolute value is equal to
SM;,N;(xa y)—SM(,"(—l(x9 y)—Sm;-l,N.-(x, y)+Sm1—1,m—1(x’ y)’
(6) follows.
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Part 2. Now suppose that (7) is also satisfied, i.e. for every m and n we have
k b 12: af, (log 2k)? (10g 21)? = oo
Then, using the non-increasing property of {aZ,}, for every r we have
2"2 20+4(p+ 1)2(q+1)2a30+1_y gora_y = oo
This makes it possible to define a sequence O=ro<r,<r,~<... of integers such that

A= 3 S e 1gr e =1 (=01, ..).
p=r;+1 g=r;+1 . .
Finally, let {s;};>, be a sequence of positive numbers with the properties
lims{ =0, ()P4i=1 (=0,1,..)
and o

(16) S (sl = .
i=0

After this modification we have only to repeat the construction of Part 1. Rela-
tions (11) and (16) imply that

o Tren T
> mes H,, = oo,

1 g=r;+1

-~
i}

o
-]
1
o
+

which is stronger than (15). The second Borel—Cantelli lemma yields that almost

every (x,y)€I? now belongs to an infinite number of sets H,, with r;<p,g=r;,,,

i=0, 1, ... . This already ensures that m*—c can be replaced by m —< in (6).
The proof of Theorem 4 is complete.

5. Proofs of Theorems 1—3 run along the same lines as that of Theorem 4
with the exception that now there is no need of a “‘contraction” of the functions @.
In particular, at present

o -
Qo rpor, 7 4i-1(X, ¥) = Z; Por+k-1,27+1-1(R53 X, ¥)— 21 Por k-1, 11-1(RS 5 %, ),
s= §=
where
Porsk-1,2741-106 V) =Y W () (k1=1,2,...,2; r=0,1,..),

while the other ¢,(x, ) are indifferent from our point of view (of course, they have
to be normal and orthogonal to each other). Further,

#,= (0 Fo)u( O F),
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where F=E®) < E®), By (8)
) : mes H,, = mes F = (mes E®))2 = C2,

Let g(n)=(¢(n) log n)*2. Then by (2)
o(n) =o0(g(n)) and g(n) =o(logn) (n ).
Hence there exists a sequence {n;=27}72, of.integers such that n;=2n;_, (n,=1),
o(m) _1 em _ 1 .
18 —— = — and =— if n=n
us) en) — j logn = j !
The definition of the coefficients is the following: set for k,/=1,2, ..., n;;
j=12, ...

(G=1,2..).

1 .
anj+k—1,'lj+l~1 - njé(zn‘,) log 2nj (ln Theorem 1)!
a(2ny) -
by +k-1,np41-1 = Wg—é;j— (in Theorem 2),
___e@ny . ;
an+k—1,nj+l—1 - n,(lOg 2nj)2 (ln Theorem 3)’

al’ld ak,:‘bk,:CkI:O fOI‘ k, l=1, 2, veny nl'_].;

k=n;,..,2n;—1 and I=1,2,..,n;—

L;
k=2n;,..,n;,,—1 and I=12,..,n;,,—1;

k=1,2,..,n;—1 and Il=n;,...,2n;—

=1
k=1,2..,2n,—1 and l=2n;..,n;,,—1; j=12,...
After this preparation it is quite easy to conclude the proofs. For example,
let us carry out the proof of Theorem 1.

If (x, y)EH,J, ' (recall n;=27), then by (9) and (18)

(19) b= DAX 2 2 aueulny)| =
jEMA<N;4.q k=n;+1 I=n;+1
ng n; (log 2nj)2

=CY (j=1,2,..).

n;@(2n;) log2n;
By virtue of the second Borel-—Cantelli lemma (17) implies that

mes(limsup H,,,) = 1.
jroo
Thus (19) provides (4).
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Besides, by (18)
> a} (log max (k, I))?¢? (max (k, )) =

n,§k,l<2n,

(log 2n;)20%(2n;) 1
22

ItA

2- G2 “= see Jo
"I RE G, (og 2nF = J (j=12..)

Since the remaining a,;=0, hence (3) follows immediately. This finishes the proof
of Theorem 1.
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