Integrability of Rees-Stanojević sums

BABU RAM

1. A sequence $\left\langle a_{n}\right\rangle$ of positive numbers is called quasi-monotone if $n^{-\beta} a_{n} 0$ for some β, or equivalently if $a_{n+1} \leqq a_{n}(1+\alpha / n)$.

We say that a sequence $\left\langle a_{k}\right\rangle$ of numbers satisfies
Condition S^{*} if $a_{k} \rightarrow 0$ as $k \rightarrow \infty$ and there exists a sequence $\left\langle A_{k}\right\rangle$ such that $\left\langle A_{k}\right\rangle$ is quasi-monotone, $\sum_{k=0}^{\infty} A_{k}<\infty$, and $\left|\Delta a_{k}\right| \leqq A_{k}$ for all k.

Condition S^{*} is weaker than Condition S of Sidon introduced in [4].
Recently, Rees and Stanojević [3] (see also Garrett and Stanojevid [2]) introduced the modified cosine sums

$$
\begin{equation*}
g_{n}(x)=\frac{1}{2} \sum_{k=0}^{n} \Delta a_{k}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a_{j} \cos k x \tag{1}
\end{equation*}
$$

and obtained a necessary and sufficient condition for the integrability of the limit of these sums.

The object of this paper is to show that Condition S^{*} is sufficient for integrability of the limit of (1).
2. We require the following lemmas for the proofs of our results:

Lemma 1. (Fomin [1]) If $\left|c_{k}\right| \leqq 1$, then

$$
\int_{0}^{\pi}\left|\sum_{k=0}^{n} c_{k} \frac{\sin (k+1 / 2) x}{2 \sin x / 2}\right| d x \leqq C(n+1),
$$

where C is a positive absolute constant.
Lemma 2. (SzAsz [5]) If $\left\langle a_{n}\right\rangle$ is quasi-monotone with $\sum a_{n}<\infty$, then $n a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

[^0]
3. We prove

Theorem. Let the sequence $\left\langle a_{k}\right\rangle$ satisfy Condition S^{*}. Then

$$
g(x)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[\frac{1}{2} \Delta a_{k}+\sum_{j=k}^{n} \Delta a_{j} \cos k x\right]
$$

exists for $x \in(0, \pi]$ and $g(x) \in L(0, \pi)$.
Proof. We have

$$
\begin{gathered}
g_{n}(x)=\sum_{k=1}^{n}\left[\frac{1}{2} \Delta a_{k}+\sum_{j=k}^{n} \Delta a_{j} \cos k x\right]= \\
=\sum_{k=1}^{n} \frac{1}{2} \Delta a_{k}+\sum_{k=1}^{n} a_{k} \cos k x-a_{n+1} D_{n}(x)+\frac{1}{2} a_{n+1}
\end{gathered}
$$

Making use of Abel's transformation, we obtain

$$
\begin{gather*}
g_{n}(x)= \tag{2}\\
=\sum_{k=1}^{n} \frac{1}{2} \Delta a_{k}+\sum_{k=1}^{n-1} \Delta a_{k}\left(D_{k}(x)+\frac{1}{2}\right)+a_{n}\left(D_{n}(x)+\frac{1}{2}\right)-a_{n+1} D_{n}(x)-a_{1}+\frac{1}{2} a_{n+1}= \\
=\sum_{k=1}^{n-1} \Delta a_{k} D_{k}(x)+a_{n} D_{n}(x)-a_{n+1} D_{n}(x)
\end{gather*}
$$

The last two terms tend to zero as $n \rightarrow \infty$ for $x \neq 0$ and since

$$
\left|D_{k}(x)\right|=O(1 / x) \quad \text { if } \quad x \neq 0 \quad \text { and } \quad \sum_{k=0}^{\infty}\left|\Delta a_{k}\right|<\infty
$$

the series $\sum_{k=1}^{\infty} \Delta a_{k} D_{k}(x)$ converges. Hence $\lim _{n \rightarrow \infty} g_{n}(x)$ exists for $x \neq 0$. Now applications of Abel's transformation and Lemma 1 yield

$$
\begin{gather*}
\int_{0}^{\pi}|g(x)| d x=\int_{0}^{\pi}\left|\sum_{k=1}^{\infty} \Delta a_{k} D_{k}(x)\right| d x= \tag{3}\\
=\int_{0}^{\pi}\left|\sum_{k=1}^{\infty} A_{k} \frac{\Delta a_{k}}{A_{k}} D_{k}(x)\right| d x \leqq \sum_{k=1}^{\infty}\left|\Delta A_{k}\right| \int_{0}^{\pi}\left|\sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x)\right| d x \leqq \\
\leqq C \sum_{k=1}^{\infty}(k+1)\left|\Delta A_{k}\right|= \\
=C\left[\sum_{k=1}^{\infty}(k+1)\left|A_{k}\left(1+\frac{\alpha}{k}\right)-\frac{\alpha A_{k}}{k}-A_{k+1}\right|\right] \leqq \\
\leqq C \sum_{k=1}^{\infty}(k+1)\left|A_{k}\left(1+\frac{\alpha}{k}\right)-A_{k+1}\right|+C \alpha \sum_{k=1}^{\infty} \frac{k+1}{k} A_{k}= \\
=C \sum_{k=1}^{\infty}(k+1) \Delta A_{k}+2 C \alpha \sum_{k=1}^{\infty} \frac{k+1}{k} A_{k},
\end{gather*}
$$

the last step being the consequence of $A_{k}(1+\alpha / k) \geqq A_{k+1}$. But

$$
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n-1}(k+1) \Delta A_{k}+(n+1) A_{n}-A_{1} .
$$

Applications of $\sum_{0}^{\infty} A_{k}<\infty$ and Lemma 2 yield

$$
\begin{equation*}
\sum_{k=1}^{\infty}(k+1) \Delta A_{k}=\sum_{k=1}^{\infty} A_{k}+A_{1}<\infty ; \tag{4}
\end{equation*}
$$

(3) and (4) now imply the conclusion of the Theorem.

Corollary. Let $\left\langle a_{k}\right\rangle$ be a sequence satisfying the condition S^{*}. Then

$$
\frac{1}{x} \sum_{k=1}^{\infty} \Delta a_{k} \sin (k+1 / 2) x=\frac{h(x)}{x}
$$

converges for $x \in(0, \pi]$ and $\frac{h(x)}{x} \in L(0, \pi)$.
Proof. This follows immediately, namely by (2), $2 \sin \frac{x}{2} g(x)=h(x)$.

References

[1] G. A. Fomin, On linear methods for summing Fourier series, Mat. Sbornik, 66 (107) (1964), 144-152.
[2] J. W. Garrett and C. V. Stanojević, On L^{1} convergence of certain cosine sums, Proc. Amer. Math. Soc., 54 (1976), 101-105.
[3] C. S. Rees and C. V. Stanorević, Necessary and sufficient condition for integrability of certain cosine sums, J. Math. Anal. Appl. 43 (1973), 579-586.
[4] S. Smon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc., 14 (1939), 158-160.
[5] O. Szász, Quasi-monotone series, Amer. J. Math., 70 (1948), 203-206.

[^0]: Received March 22, 1979.

