On a partial solution of the transitive algebra problem

B. S. YADAV and S. CHATTERJEE

Let $B(H)$ denote the Banach algebra of all bounded linear operators on an infinite-dimensional separable complex Hilbert space H. A subalgebra \mathscr{A} of $B(H)$ is called transitive if it is weakly closed, contains the identity operator and its only invariant subspaces are $\{0\}$ and $H . B(H)$ is obviously transitive. Whether there exists any other transitive algebra is a well known open problem, the so-called 'transitive algebra problem'. The problem was first raised by Kadison [5] and it continues to be still unsolved. However, partial solutions of the problem have been obtained by many mathematicians; see, for example, Arveson [1], Barnes [2], Douglas and Pearcy [3], Nordgren [8], Nordgren, Radjavi and Rosenthal [9], and Radjavi and Rosenthal [10], [11]. The first such solution was given by Arveson [1] who proved that if a transitive algebra \mathscr{A} contains a maximal abelian self-adjoint algebra, then $\mathscr{A}=B(H)$. In the same paper, he also proved that $B(H)$ is the only transitive algebra containing a simple unilateral shift. By using Arveson's techniques, Nordgren, Radjavi and Rosenthal [9] have shown that a transitive algebra containing a Donoghue operator (backward weighted shift with a monotone decreasing and square-summable weight sequence) equals $B(H)$. The purpose of this note is to go a step further in this direction and show that every transitive algebra containing a certain type of weighted shift, more general than a Donoghue operator, coincides with $B(H)$. Our result assumes significance in the light of the conjecture that every transitive algebra containing a weighted shift is equal to $B(H)$.

We shall denote by $H^{(n)}$ the direct sum of n copies of H, and by $A^{(n)}$ the operator on $H^{(n)}$ which is the direct sum of n copies of A.

Let $\left\{w_{k}\right\}_{k=1}^{\infty}$ be a bounded sequence of non-zero complex numbers and let $\left\{e_{k}\right\}_{k=0}^{\infty}$ be an orthonormal basis of H. The operator T on H defined by the requirement

$$
T e_{0}=0 \quad \text { and } \quad T e_{k}=w_{k} e_{k-1} \quad(k=1,2, \ldots)
$$

is called a weighted unilateral (backward) shift with the weight sequence $\left\{w_{k}\right\}_{k=1}^{\infty}$.

[^0]We may and shall assume, without any loss of generality, that the weights w_{k} are positive real numbers [4]. In this case, $\left\{w_{k}\right\}_{k=1}^{\infty}$ is said to be of bounded p th-power variation if

$$
\sum_{k=1}^{\infty}\left|w_{k}-w_{k+1}\right|^{p}<\infty
$$

(For $p=1$, we simply say "bounded variation".)
The following theorem is an important tool to obtain our results:
Theorem A. [9, Corollary 1] If a transitive algebra \mathscr{A} contains an operator A such that
(i) every eigenspace of A is one-dimensional, and
(ii) for every n, each non-trivial invariant subspace of $A^{(n)}$ contains an eigenvector of $A^{(n)}$,
then $\mathscr{A}=B(H)$.
In the rest of this paper, \mathscr{A} will denote a transitive algebra containing a weighted unilateral shift T with the weight sequence $\left\{w_{k}\right\}_{k=1}^{\infty}$. Our first result is

Theorem 1. If $\left\{w_{k}\right\}_{k=1}^{\infty}$ is of bounded variation and

$$
\begin{equation*}
\delta=\delta(n)=\sum_{k=0}^{\infty}\left(\frac{w_{k+2} \ldots w_{k+n}}{w_{2} \ldots w_{n}}\right)^{2}<\infty \tag{1}
\end{equation*}
$$

for all $n \geqq 2$, then $\mathscr{A}=B(H)$.
Proof. We know that there is a disc of eigenvalues for a backward weighted shift, but they are all of multiplicity one. Thus T satisfies condition (i) of Theorem A. Next, let ($x_{1}, x_{2}, \ldots, x_{n}$) be a non-zero element of a non-zero invariant subspace M of $T^{(n)}$ and let

$$
x_{j}=\sum_{i=0}^{\infty} x_{i j} e_{i}, \quad 1 \leqq j \leqq n
$$

If, for each j, the sequence $\left\{x_{i j}\right\}_{i=0}^{\infty}$ has only finitely many non-zero terms, then the invariant subspace of $T^{(n)}$ generated by $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is finite-dimensional and thus contains an eigenvector. We therefore assume, without loss of generality, that for every $m \geqq 0$, there is a number $r=r(m) \geqq m$ and a number $s=s(m), 1 \leqq s(m) \leqq n$, such that

$$
\begin{equation*}
\left|x_{r, s}\right|=\max _{i \geqq m ; 1 \leqq j \leqq n}\left\{\left|x_{i j}\right|\right\}>0 \tag{2}
\end{equation*}
$$

Now, for a given integer m, we have

$$
\frac{\left(T^{(n)}\right)^{r}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{x_{r, s} w_{r} \ldots w_{1}}=\left(\frac{x_{r, 1}}{x_{r, s}} e_{0}, \frac{x_{r, 2}}{x_{r, s}} e_{0}, \ldots, \frac{x_{r, n}}{x_{r, s}} e_{0}\right)+\left(y_{r, 1}, y_{r, 2}, \ldots, y_{r, n}\right)
$$

where

Now

$$
y_{r, j}=\sum_{k=r+1}^{\infty} \frac{x_{k, j} w_{k} \ldots w_{k-r+1}}{x_{r, s} w_{r} \ldots w_{1}} e_{k-r}
$$

$$
\begin{aligned}
& \left\|y_{r, j}\right\|^{2}=\sum_{k=r+1}^{\infty}\left(\frac{w_{k} \ldots w_{k-r+1}}{w_{r} \ldots w_{1}}\right)^{2}\left|\frac{x_{k, j}}{x_{r, s}}\right|^{2}=\sum_{k=0}^{\infty}\left(\frac{w_{k+2} \ldots w_{k+r+1}}{w_{1} \ldots w_{r}}\right)^{2}\left|\frac{x_{k+r+1, j}}{x_{r, s}}\right|^{2} \geqq \\
& \leqq \sum_{k=0}^{\infty}\left(\frac{w_{k+2} \ldots w_{k+r+1}}{w_{1} \ldots w_{r}}\right)^{2}, \quad \text { by (2), } \\
& \left.=\frac{1}{w_{1}^{2}} \sum_{k=0}^{\infty}\left(\frac{w_{k+2} \ldots w_{k+r}}{w_{2} \ldots w_{r}}\right)^{2} w_{k+r+1}^{2}=\frac{1}{w_{1}^{2}} \sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{w_{i+2} \ldots w_{i+r}}{w_{2} \ldots w_{r}}\right)^{2}\left(w_{k+r+1}^{2}-w_{k+r+2}^{2}\right)
\end{aligned}
$$

(by Abel's transformation [12])

$$
\begin{aligned}
& \quad \leqq \frac{\delta}{w_{1}^{2}} \sum_{k=0}^{\infty}\left|w_{k+r+1}^{2}-w_{k+r+2}^{2}\right|, \quad \text { by }(1), \\
& =\frac{\delta}{w_{1}^{2}} \sum_{k=0}^{\infty}\left|w_{k+r+1}-w_{k+r+2}\right|\left(w_{k+r+1}+w_{k+r+2}\right) \leqq \\
& \leqq \\
& \frac{2 \delta \mu}{w_{1}^{2}} \sum_{k>r}\left|w_{k}-w_{k+1}\right|, \quad \text { where } \quad \mu=\sup _{k}\left\{w_{k}\right\},
\end{aligned}
$$

and hence $y_{r j} \rightarrow 0$ as $m \rightarrow \infty$.
Also, for each $j(1 \leqq j \leqq n)$, the sequence $\left\{\frac{x_{r, j}}{x_{r, s}}\right\}_{m=1}^{\infty}$ is contained in the unit disc, and hence admits a convergent subsequence converging to a number, say z_{j}. A routine check reveals that a number j_{0} lying between 1 and n will occur infinitely often as a value $s=s(m)$ and corresponding to this j_{0}, we have $z_{j_{0}}=1$. The upshot of the above deliberation is that M contains an eigenvector of $T^{(n)}$, viz. ($z_{1} e_{0}, z_{2} e_{0}, \ldots, z_{n} e_{0}$). Thus, T also satisfies condition (ii) of Theorem A and we are done.

Theorem 2. If $\left\{w_{k}\right\}_{k=1}^{\infty}$ is of bounded pth-power variation and

$$
\begin{equation*}
\delta=\delta(n)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} \frac{w_{j+2} \ldots w_{j+n}}{w_{2} \ldots w_{n}}\right)^{q}<\infty \tag{3}
\end{equation*}
$$

for all $n \geqq 2$, where $1<p<\infty$ and q is the Hölder conjugate of p, then $\mathscr{A}=B(H)$.

Proof. Proceeding as in the proof of Theorem 1, we have

$$
\begin{aligned}
& \left\|y_{r, j}\right\|=\left(\sum_{k=r+1}^{\infty}\left(\frac{w_{k} \ldots w_{k-r+1}}{w_{r} \ldots w_{1}}\right)^{2}\left|\frac{x_{k, j}}{x_{r, s}}\right|^{2}\right)^{1 / 2} \leqq \sum_{k=r+1}^{\infty}\left(\frac{w_{k} \ldots w_{k-r+1}}{w_{r} \ldots w_{1}}\right)\left|\frac{x_{k, j}}{x_{r, s}}\right| \leqq \\
& \leqq \sum_{k=r+1}^{\infty} \frac{w_{k} \ldots w_{k-r+1}}{w_{r} \ldots w_{1}}, \quad \text { by (2) } \\
& =\frac{1}{w_{1}} \sum_{k=0}^{\infty} \frac{w_{k+2} \ldots w_{k+r}}{w_{2} \ldots w_{r}} w_{k+r+1} \leqq \frac{1}{w_{1}} \sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} \frac{w_{j+2} \ldots w_{j+r}}{w_{2} \ldots w_{r}}\right)\left|w_{k+r+1}-w_{k+r+2}\right|
\end{aligned}
$$

(by Abel's transformation [12])

$$
\begin{gathered}
=\frac{1}{w_{1}}\left(\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} \frac{w_{j+2} \ldots w_{j+r}}{w_{2} \ldots w_{r}}\right)^{q}\right)^{1 / q}\left(\sum_{k>r}\left|w_{k}-w_{k+1}\right|^{p}\right)^{1 / p} \quad \text { (by Hölder's inequality) } \\
=\frac{\delta^{1 / q}}{w_{1}}\left(\sum_{k>r}\left|w_{k}-w_{k+1}\right|^{p}\right)^{1 / p}, \quad \text { by (3); }
\end{gathered}
$$

and hence, $y_{r, j} \rightarrow 0$ as $m \rightarrow \infty$.
The rest of the proof follows as that for Theorem 1.
Let $l^{p}, 1<p<\infty$, be the Banach space of all complex p th-power summable sequences $x=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ with the norm

$$
\|x\|=\left(\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}
$$

Then a weighted unilateral (backward) shift T on l^{p} appears as

$$
T\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}=\left\{w_{1} x_{1}, w_{2} x_{2}, \ldots\right\}
$$

We denote by \mathscr{L} a strongly closed subalgebra of $B\left(l^{p}\right)$ containing the identity operator and with no non-trivial invariant subspaces. We have the following analogue of Theorem 1 for l^{p} spaces, which we state without proof:

Theorem 3. If \mathscr{L} contains T with

$$
\sum_{k=0}^{\infty}\left(\frac{w_{k+2} \ldots w_{k+n}}{w_{2} \ldots w_{n}}\right)^{p}<\infty \quad \text { for all } n \geqq 2
$$

then $\mathscr{L}=B\left(l^{p}\right)$.

Remark. A subalgebra \mathscr{L} of $B(H)$ is called strictly cyclic if there exists a vector $x_{0} \in H$ such that $\left\{A x_{0}: A \in \mathscr{L}\right\}=H$, and an operator $A \in B(H)$ is strictly cyclic if the algebra generated by A is strictly cyclic. Lambert [7] has shown that. every transitive algebra which contains a strictly cyclic algebra equals $B(H)$. It. follows, in particular, that every transitive algebra containing a strictly cyclic operator is equal to $B(H)$. Every Donoghue operator is strictly cyclic [6]. Whether the weighted shifts T in our Theorems 1 and 2 are also strictly cyclic, is not known. In case they are, these theorems will follow as corollaries to Lambert's theorem [7, Theorem 4.5]. In fact, we strongly feel that the following is true:

Conjecture. Every weighted unilateral shift whose weight sequence is of bounded variation and square-summable is strictly cyclic.

References

[1] W. B. Arveson, A density theorem for operator algebras, Duke Math. J., 34 (1967), 635647.
[2] B. A. Barnes, Density theorems for algebras of operators and annihilator Banach algebras, Michigan Math. J., 19 (1972), 149—155.
[3] R. G. Douglas and C. Pearcy, Hyperinvariant subspaces and transitive algebras, Michigan Math. J., 19 (1972), 1-12.
[4] P. R. Halmos, A Hilbert space problem book, Van Nostrand (Princeton, N. J., 1967).
[5] R. V. Kadison, On the orthogonalization of operator representations, Amer. J. Math., 78 . (1955), 600-621.
[6] A. Lambert, Strictly cyclic weighted shifts, Proc. Amer. Math. Soc., 29 (1971), 331-336.
[7] A. Lambert, Strictly cyclic operator algebras, Pacific J. Math., 39 (1971), 717-726.
[8] E. A. Nordgren, Transitive operator algebras, J. Math. Anal. Appl., 32 (1970), 639-643.
[9] E. A. Nordgren, H. Radjavi and P. Rosenthal, On density of transitive algebras, Acta Sci. Math., 30 (1969), 175—179.
[10] H. Radjavi and P. Rosenthal, On invariant subspaces and reflexive algebras, Amer. J. Math., 91 (1969), 683-692.
[11] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag (Berlin-HeidelbergNew York, 1973).
[12] A. Zygmund, Trigonometric series, vol. I, 2nd ed., Cambridge Univ. Press (New York, 1959).

[^0]: Received February 20, 1979.

