A Mal'cev characterization of tolerance regularity

IVAN CHAJDA

A variety \mathscr{V} of algebras is regular if it contains only regular algebras, i.e. if any two congruences on $\mathfrak{U} \in \mathscr{V}$ coincide whenever they have a congruence class in common. The regularity of varieties is a Mal'cev condition, see [7], [11], [12]. A tolerance T on an algebra $\mathfrak{U}=(A, F)$ is a reflexive and symmetric binary relation on A satisfying the Substitution Property with respect to all operations of \mathfrak{X}; this means that

$$
\left\langle f\left(a_{1}, \ldots, a_{n}\right), f\left(b_{1}, \ldots, b_{n}\right)\right\rangle \in T
$$

for each n-ary $f \in F$ whenever $\left\langle a_{i}, b_{i}\right\rangle \in T$ for $a_{i}, b_{i} \in A(i=1, \ldots, n)$. This notion comes from that of congruence by omitting the requirement of transitivity. The set LT (\mathfrak{H}) of all tolerances on an algebra \mathfrak{H} forms an algebraic lattice with respect to set inclusion (see [2], [6]). Hence, we can introduce the following concepts. If $a, b \in A$ and $M \subseteq A \times A$, denote by $T(a, b)$ or $T(M)$ the least tolerance on \mathfrak{A} containing the pair $\langle a, b\rangle$ or the set M, respectively.

Let $T \in \operatorname{LT}(\mathfrak{H})$. Call $[a]_{T}=\{b \in A ;\langle a, b\rangle \in T\}$ the tolerance class of T containing $a \in A$. This generalizes the concept of a congruence class; other generalizations can be found in [3], [4], [5].

Definition 1. An algebra \mathfrak{A} is tolerance regular if any two tolerances on \mathfrak{H} coincide whenever they have a tolerance class in common. A variety \mathscr{V} of algebras is tolerance regular if each $\mathfrak{A} \in \mathscr{V}$ has this property.

Let $T \in \operatorname{LT}(\mathfrak{H})$ and let $[a]_{T}$ be a tolerance class of T. Denote by Tol $\left\{[a]_{T}\right\}$ the least tolerance on \mathfrak{A} having a tolerance class equal to $[a]_{T}$. Clearly Tol $\left\{[a]_{r}\right\}=$ $=T(M)$ for $M=\{a\} \times[a]_{T}$.

Lemma 1. Let $\mathfrak{U}=(A, F)$ be an algebra and $M \subseteq A \times A$. Then $\langle x, y\rangle \in T(M)$ if and only if there exist a $(k+m+n)$-ary polynomial p over \mathfrak{H} and $x_{i}, y_{i} \in A$ $(i=1, \ldots, k+m+n)$ with $x_{i}=y_{i}$ for $i \leqq k,\left\langle x_{i}, y_{i}\right\rangle \in M$ for $k<i \leqq k+m$ and

Received April 25, 1979; in revised form January 23, 1980.
$\left\langle y_{i}, x_{i}\right\rangle \in M$ for $k+m<i \leqq k+m+n$ such that

$$
x=p\left(x_{1}, \ldots, x_{k+m+n}\right), \quad y=p\left(y_{1}, \ldots, y_{k+m+n}\right) .
$$

Proof. Let R be the set of all $\langle x, y\rangle$ such that there exist a $(k+m+n)$-ary p and x_{i}, y_{i} with the prescribed properties. Clearly R is reflexive and symmetric and $M \subseteq R$. The Substitution Property for R can be shown easily by induction on the rank of polynomials, thus $R \in L T(\mathfrak{H})$ and $T(M) \subseteq R$. If $S \in L T(\mathfrak{H})$ and $M \subseteq S$ then $\left\langle x_{i}, y_{i}\right\rangle \in S$ whether $x_{i}=y_{i},\left\langle x_{i}, y\right\rangle_{i} \in M$ or $\left\langle y_{i}, x_{i}\right\rangle \in M$, hence by the Substitution Property for S, we also have $\langle x, y\rangle \in S$ for $x=p\left(x_{1}, \ldots, x_{k+m+n}\right)$, $y=p\left(y_{1}, \ldots, y_{k+m+n}\right)$. Hence $R \subseteq S$, implying that $R=T(M)$.

Lemma 2. Let $\mathfrak{A}=(A, F)$ and $x, y \in A$. Then $\langle a, b\rangle \in T(x, y)$ if and only if there exists a binary algebraic function φ over \mathfrak{A} such that $a=\varphi(x, y)$ and $b=\varphi(y, x)$.

This follows immediately from Lemma 1.
Theorem. Let \mathscr{V} be a variety of algebras. The following conditions are equivalent:
(1) \mathscr{V} is tolerance regular;
(2) there exist a $(3+m+n)$-ary polynomial p and 5-ary polynomials q_{j} such that $q_{j}(y, x, x, y, z)=z$ and

$$
\begin{aligned}
& x=p\left(x, y, z, q_{1}(x, y, x, y, z), \ldots, q_{m}(x, y, x, y, z), z, \ldots, z\right) \\
& y=p\left(x, y, z, z, \ldots, z, q_{m+1}(x, y, x, y, z), \ldots, q_{m+n}(x, y, x, y, z)\right)
\end{aligned}
$$

Proof. (1) \Rightarrow (2). Let \mathscr{V} be a tolerance regular variety and $\mathfrak{Q}=(A, F)=$ $=\mathscr{F}_{3}(x, y, z)$ the free algebra of \mathscr{V} with free generators $\{x, y, z\}$. Put $T=T(x, y)$. Since \mathfrak{A} is tolerance regular, we have $T=\operatorname{Tol}\left\{[z]_{T}\right\}$, where $[z]_{T}$ is a tolerance class of T containing z. However, Tol $\left\{[z]_{T}\right\}=T(M)$ for $M=\{z\} \times[z]_{T}$, thus $T(x, y)=T(M)$. Since $\langle x, y\rangle \in T(M)$, Lemma 1 implies the existence of a polynomial p^{*} and elements $x_{i}, y_{i} \in A$ with

$$
\begin{aligned}
& x_{i}=y_{i} \text { for } i=1, \ldots, k \\
& x_{i} \in[z]_{T}, \quad y_{i}=z \quad \text { for } k<i \leqq k+m, \\
& x_{i}=z, \quad y_{i} \in[z]_{T} \quad \text { for } k+m<i \leqq k+m+n
\end{aligned}
$$

such that

$$
x=p^{*}\left(x_{1}, \ldots, x_{k+m+n}\right), \quad y=p^{*}\left(y_{1}, \ldots, y_{k+m+n}\right)
$$

Since $\mathfrak{H}=\mathfrak{F}_{3}(x, y, z)$, there exist ternary polynomials v_{i} such that $x_{i}=y_{i}=$ $=v_{i}(\dot{x}, y, z)$ for $i=1, \ldots, k$, i.e. there exists a $(3+m+n)$-ary polynomial p such that

$$
\begin{align*}
& x=p^{*}\left(x_{1}, \ldots, x_{k+m+n}\right)=p\left(x, y, z, u_{1}, \ldots, u_{m+n}\right) \tag{a}\\
& y=p^{*}\left(y_{1}, \ldots, y_{k+m+n}\right)=p\left(x, y, z, w_{1}, \ldots, w_{m+n}\right)
\end{align*}
$$

where $u_{j}=x_{j+k}, w_{j}=y_{j+k}(j=1, \ldots, m+n)$, i.e.

$$
\begin{align*}
& u_{j} \in[z]_{T}, \quad w_{j}=z \quad \text { for } j=1, \ldots, m, \tag{b}\\
& u_{j}=z, \quad w_{j} \in[z]_{T} \quad \text { for } j=m+1, \ldots, m+n .
\end{align*}
$$

If $u_{j} \in[z]_{T}, w_{j}=z$ then $\left\langle u_{j}, z\right\rangle=\left\langle u_{j}, w_{j}\right\rangle \in \operatorname{Tol}\left\{[z]_{T}\right\}=T(x, y)$. By Lemma 2, there exists a binary algebraic function φ_{j} such that $u_{j}=\varphi_{j}(x, y)$ and $z=\varphi_{j}(y, x)$. Since $\mathfrak{U}=\mathscr{F}_{3}(x, y, z)$, there exists a 5 -ary polynomial q_{j} over \mathscr{V} such that $\varphi_{j}(r, s)=q_{j}(r, s, x, y, z)$, i.e.

$$
\begin{equation*}
u_{j}=q_{j}(x, y, x, y, z) \quad \text { and } \quad z=q_{j}(y, x, x, y, z) . \tag{c}
\end{equation*}
$$

We can proceed analogously if $u_{j}=z, w_{j} \in[z]_{T}$. Thus (a), (b), (c) imply (2).
$(2) \Rightarrow(1)$. Let $\mathfrak{H}=(A, F) \in \mathscr{V}, T_{1}, T_{2} \in \mathrm{LT}$ (\mathfrak{H}) and let $[z]_{T_{1}}=[z]_{T_{2}}$ be a common tolerance class of T_{1}, T_{2}. Suppose $\langle x, y\rangle \in T_{1}$. Then also

$$
\left\langle q_{j}(x, y, x, y, z), z\right\rangle=\left\langle q_{j}(x, y, x, y, z), q_{j}(y, x, x, y, z)\right\rangle \in T_{1},
$$

i.e. $q_{j}(x, y, x, y, z) \in[z]_{T_{1}}=[z]_{T_{2}}$. Therefore $\left\langle q_{j}(x, y, x, y, z), z\right\rangle \in T_{2}$ for $j=1, \ldots$ $\ldots, m+n$. By (2), we have $\langle x, y\rangle \in T_{2}$, i.e. $T_{1} \cong T_{2}$. The converse inclusion can be proved analogously, thus \mathfrak{A} and also \mathscr{V} is tolerance regular.

Remark. Since every congruence is a tolerance, tolerance regularity of \mathscr{V} implies regularity of \mathscr{V}, i.e. (2) of the theorem is a sufficient condition for the regularity of \mathscr{V}. If \mathscr{V} is, moreover, congruence-permutable, then Werner's Theorem in [9] implies LT $(\mathfrak{H})=\operatorname{Con}(\mathfrak{H})$ for each $\mathfrak{U} \in \mathscr{V}$, thus (2) of the Theorem is also necessary. A simpler Mal'cev characterization of permutability and regularity is given by the author in [10].

References

[1] S. Bulman-Fleming, A. Day, W. Taylor, Regularity and modularity of congruences, Algebra Universalis, 4 (1974), 58-60.
[2] I. Chajda, Lattices of compatible relations, Arch. Math. (Brno), 13 (1977), 89-96.
[3] I. Chajda, Partitions, coverings and blocks of binary relations, Glasnik Mat., 14 (1979), 21-26.
[4] I. Chaida, J. Duda, Blocks of binary relations, Ann. Univ. Sci. Budapest, Sect. Math., 22-23 (1979-1980), 3-9.
[5] I. Chajda, J. Niederle, B. Zelinka, On existence conditions for compatible tolerances, Czech. Math. J., 26 (1976), 304-311.
[6] I. Chajda, B. Zelinka, Lattices of tolerances, Časopis Pěst. Mat., 102 (1977), 10-24.
[7] B. Csákány, Characterizations of regular varieties, Acta Sci. Math., 31 (1970), 187-189.
[8] B. Csákány, E. T. Schmidt, Translations of regular algebras, Acta Sci. Math., 31 (1970), 157-160.
[9] H. Werner, A Mal'cev condition on admissible relations, Algebra Universalis, 3 (1973), 263.
[10] I. Chajda, Regularity and permutability of congruences, Algebra Universalis, to appear.
[11] G. Grätzer, Two Mal'cev-type theorems in universal algebra, J. Combin. Theory, 8 (1970), 334-342.
[12] R. Wille, Kongruenzklassengeometrien, Lecture Notes in Mathematics, vol. 113, SpringerVerlag (Berlin-Heidelberg-New York, 1970).

TRIDA LM 22
75000 PŘEROV, CZECHOSLOVAKIA

