A Mal'cev characterization of tolerance regularity

IVAN CHAJDA

A variety \mathscr{V} of algebras is *regular* if it contains only regular algebras, i.e. if any two congruences on $\mathfrak{A} \in \mathscr{V}$ coincide whenever they have a congruence class in common. The regularity of varieties is a Mal'cev condition, see [7], [11], [12]. A *tolerance* T on an algebra $\mathfrak{A} = (A, F)$ is a reflexive and symmetric binary relation on A satisfying the Substitution Property with respect to all operations of \mathfrak{A} ; this means that

$$\langle f(a_1, ..., a_n), f(b_1, ..., b_n) \rangle \in T$$

for each *n*-ary $f \in F$ whenever $\langle a_i, b_i \rangle \in T$ for $a_i, b_i \in A$ (i=1, ..., n). This notion comes from that of congruence by omitting the requirement of transitivity. The set LT (\mathfrak{A}) of all tolerances on an algebra \mathfrak{A} forms an algebraic lattice with respect to set inclusion (see [2], [6]). Hence, we can introduce the following concepts. If $a, b \in A$ and $M \subseteq A \times A$, denote by T(a, b) or T(M) the least tolerance on \mathfrak{A} containing the pair $\langle a, b \rangle$ or the set M, respectively.

Let $T \in LT(\mathfrak{A})$. Call $[a]_T = \{b \in A; \langle a, b \rangle \in T\}$ the tolerance class of T containing $a \in A$. This generalizes the concept of a congruence class; other generalizations can be found in [3], [4], [5].

Definition 1. An algebra \mathfrak{A} is *tolerance regular* if any two tolerances on \mathfrak{A} coincide whenever they have a tolerance class in common. A variety \mathscr{V} of algebras is *tolerance regular* if each $\mathfrak{A} \in \mathscr{V}$ has this property.

Let $T \in LT(\mathfrak{A})$ and let $[a]_T$ be a tolerance class of T. Denote by Tol $\{[a]_T\}$ the least tolerance on \mathfrak{A} having a tolerance class equal to $[a]_T$. Clearly Tol $\{[a]_T\} = = T(M)$ for $M = \{a\} \times [a]_T$.

Lemma 1. Let $\mathfrak{A} = (A, F)$ be an algebra and $M \subseteq A \times A$. Then $\langle x, y \rangle \in T(M)$ if and only if there exist a (k+m+n)-ary polynomial p over \mathfrak{A} and $x_i, y_i \in A$ (i=1, ..., k+m+n) with $x_i = y_i$ for $i \leq k$, $\langle x_i, y_i \rangle \in M$ for $k < i \leq k+m$ and

Received April 25, 1979; in revised form January 23, 1980.

 $\langle y_i, x_i \rangle \in M$ for $k+m < i \le k+m+n$ such that

 $x = p(x_1, ..., x_{k+m+n}), \quad y = p(y_1, ..., y_{k+m+n}).$

Proof. Let R be the set of all $\langle x, y \rangle$ such that there exist a (k+m+n)-ary p and x_i, y_i with the prescribed properties. Clearly R is reflexive and symmetric and $M \subseteq R$. The Substitution Property for R can be shown easily by induction on the rank of polynomials, thus $R \in LT(\mathfrak{A})$ and $T(M) \subseteq R$. If $S \in LT(\mathfrak{A})$ and $M \subseteq S$ then $\langle x_i, y_i \rangle \in S$ whether $x_i = y_i, \langle x_i, y \rangle_i \in M$ or $\langle y_i, x_i \rangle \in M$, hence by the Substitution Property for S, we also have $\langle x, y \rangle \in S$ for $x = p(x_1, ..., x_{k+m+n})$, $y = p(y_1, ..., y_{k+m+n})$. Hence $R \subseteq S$, implying that R = T(M).

Lemma 2. Let $\mathfrak{A} = (A, F)$ and $x, y \in A$. Then $\langle a, b \rangle \in T(x, y)$ if and only if there exists a binary algebraic function φ over \mathfrak{A} such that $a = \varphi(x, y)$ and $b = \varphi(y, x)$.

This follows immediately from Lemma 1.

Theorem. Let \mathscr{V} be a variety of algebras. The following conditions are equivalent:

(1) \mathscr{V} is tolerance regular;

(2) there exist a (3+m+n)-ary polynomial p and 5-ary polynomials q_j such that $q_j(y, x, x, y, z) = z$ and

$$x = p(x, y, z, q_1(x, y, x, y, z), ..., q_m(x, y, x, y, z), z, ..., z),$$

 $y = p(x, y, z, z, ..., z, q_{m+1}(x, y, x, y, z), ..., q_{m+n}(x, y, x, y, z)).$

Proof. (1)=(2). Let \mathscr{V} be a tolerance regular variety and $\mathfrak{A} = (A, F) = = \mathfrak{F}_3(x, y, z)$ the free algebra of \mathscr{V} with free generators $\{x, y, z\}$. Put T = T(x, y). Since \mathfrak{A} is tolerance regular, we have $T = \text{Tol } \{[z]_T\}$, where $[z]_T$ is a tolerance class of T containing z. However, Tol $\{[z]_T\} = T(M)$ for $M = \{z\} \times [z]_T$, thus T(x, y) = T(M). Since $\langle x, y \rangle \in T(M)$, Lemma 1 implies the existence of a polynomial p^* and elements $x_i, y_i \in A$ with

$$x_i = y_i \text{ for } i = 1, ..., k,$$

$$x_i \in [z]_T, \quad y_i = z \text{ for } k < i \le k + m,$$

$$x_i = z, \quad y_i \in [z]_T \text{ for } k + m < i \le k + m + n$$

such that

$$x = p^*(x_1, ..., x_{k+m+n}), \quad y = p^*(y_1, ..., y_{k+m+n}).$$

Since $\mathfrak{A} = \mathfrak{F}_3(x, y, z)$, there exist ternary polynomials v_i such that $x_i = y_i = v_i(x, y, z)$ for i=1, ..., k, i.e. there exists a (3+m+n)-ary polynomial p such that

(a)
$$x = p^*(x_1, ..., x_{k+m+n}) = p(x, y, z, u_1, ..., u_{m+n}),$$
$$y = p^*(y_1, ..., y_{k+m+n}) = p(x, y, z, w_1, ..., w_{m+n}),$$

where $u_j = x_{j+k}$, $w_j = y_{j+k}$ (j=1, ..., m+n), i.e.

(b)
$$u_j \in [z]_T, \quad w_j = z \text{ for } j = 1, ..., m,$$

 $u_j = z, \quad w_j \in [z]_T \text{ for } j = m+1, ..., m+n.$

If $u_j \in [z]_T$, $w_j = z$ then $\langle u_j, z \rangle = \langle u_j, w_j \rangle \in \text{Tol } \{[z]_T\} = T(x, y)$. By Lemma 2, there exists a binary algebraic function φ_j such that $u_j = \varphi_j(x, y)$ and $z = \varphi_j(y, x)$. Since $\mathfrak{A} = \mathfrak{F}_3(x, y, z)$, there exists a 5-ary polynomial q_j over \mathscr{V} such that $\varphi_j(r, s) = q_j(r, s, x, y, z)$, i.e.

(c)
$$u_j = q_j(x, y, x, y, z)$$
 and $z = q_j(y, x, x, y, z)$.

We can proceed analogously if $u_i = z$, $w_i \in [z]_T$. Thus (a), (b), (c) imply (2).

(2)=(1). Let $\mathfrak{A} = (A, F) \in \mathscr{V}, T_1, T_2 \in LT(\mathfrak{A})$ and let $[z]_{T_1} = [z]_{T_2}$ be a common tolerance class of T_1, T_2 . Suppose $\langle x, y \rangle \in T_1$. Then also

$$\langle q_i(x, y, x, y, z), z \rangle = \langle q_i(x, y, x, y, z), q_i(y, x, x, y, z) \rangle \in T_1,$$

i.e. $q_j(x, y, x, y, z) \in [z]_{T_1} = [z]_{T_2}$. Therefore $\langle q_j(x, y, x, y, z), z \rangle \in T_2$ for j=1, ..., m+n. By (2), we have $\langle x, y \rangle \in T_2$, i.e. $T_1 \subseteq T_2$. The converse inclusion can be proved analogously, thus \mathfrak{A} and also \mathscr{V} is tolerance regular.

Remark. Since every congruence is a tolerance, tolerance regularity of \mathscr{V} implies regularity of \mathscr{V} , i.e. (2) of the theorem is a sufficient condition for the regularity of \mathscr{V} . If \mathscr{V} is, moreover, congruence-permutable, then Werner's Theorem in [9] implies LT $(\mathfrak{A}) = \operatorname{Con}(\mathfrak{A})$ for each $\mathfrak{A} \in \mathscr{V}$, thus (2) of the Theorem is also necessary. A simpler Mal'cev characterization of permutability and regularity is given by the author in [10].

References

- S. BULMAN-FLEMING, A. DAY, W. TAYLOR, Regularity and modularity of congruences, Algebra Universalis, 4 (1974), 58-60.
- [2] I. CHAJDA, Lattices of compatible relations, Arch. Math. (Brno), 13 (1977), 89-96.
- [3] I. CHAJDA, Partitions, coverings and blocks of binary relations, Glasnik Mat., 14 (1979), 21-26.
- [4] I. CHAJDA, J. DUDA, Blocks of binary relations, Ann. Univ. Sci. Budapest, Sect. Math., 22-23 (1979-1980), 3-9.
- [5] I. CHAJDA, J. NIEDERLE, B. ZELINKA, On existence conditions for compatible tolerances, Czech. Math. J., 26 (1976), 304-311.

Ivan Chajda: A Mal'cev characterization of tolerance regularity

- [6] I. CHAJDA, B. ZELINKA, Lattices of tolerances, Časopis Pěst. Mat., 102 (1977), 10-24.
- [7] B. CSÁKÁNY, Characterizations of regular varieties, Acta Sci. Math., 31 (1970), 187-189.
- [8] B. CSÁKÁNY, E. T. SCHMIDT, Translations of regular algebras, Acta Sci. Math., 31 (1970), 157-160.
- [9] H. WERNER, A Mal'cev condition on admissible relations, Algebra Universalis, 3 (1973), 263.
- [10] I. CHAJDA, Regularity and permutability of congruences, Algebra Universalis, to appear.
- [11] G. GRÄTZER, Two Mal'cev-type theorems in universal algebra, J. Combin. Theory, 8 (1970), 334-342.
- [12] R. WILLE, Kongruenzklassengeometrien, Lecture Notes in Mathematics, vol. 113, Springer-Verlag (Berlin-Heidelberg-New York, 1970).

TRÍDA LM 22 750 00 PŘEROV, CZECHOSLOVAKIA