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On sets which contain sum sets

ROBERT E. DRESSLER

Introduction. Let Z be the set of integers and let ECZ. For AcZ denote
by |A| the cardinal number of 4. For n=1, define ¢,(E)=sup {min (4,|, |45}, ...
voor |4a]): A+ Ay +...+A,CE, A,CZ). For n=2, E iscalled a g, setif g, (E)<o
and Qn—l(E) =oo.

Many authors have studied g, sets in various connections; see, for example,
[1] and [2]. A set D of integers is called dissociate if every integer has at most one
representation of the form &,d,+... +¢,d, with ¢; = +1(1=j=m) and dy<d,<...
...<d, arein D. For n=1, suppose D,,i=1, 2, ...,n are such that D,ND;= if kI,
D= for i=1,2,...,n, and L"J D, is a dissociate set. It then follows from [3]

i=1

that Dy+D,+...+D, isa g,,, set which is not a ¢, set. The proof of this fact
uses the techniques of harmonic analysis. Our purpose here is to indicate, for any
n=2, a very simple construction (which uses only the definition of a g, set) to
obtain a new class of sets which are ¢,.; sets but not g, sets. We will actually
construct a set, &, of positive integers which is the sum of two infinite sets of
positive integers such that & isa (93 set. It is clear from the construction we give
how to construct, for any n=2, a class of sets, &,, such that &, is the sum of
n infinite sets of positive integers and &, is a g,,, set. Furthermore, it is not
hard to see that in our construction Z may be replaced, with appropriate modi-
fications, by any infinite abelian group; cf. [3].

Moreover, although the sets we construct are not necessarily of the form
D,+D,+...+D,, where L"J D, is dissociate, our proof can be easily modified

i=1
to prove the result for any such sets.

The Construction. Before we begin our construction of the set &, we observe
that, since & will be a set of positive integers, and we will be concerned with showing
that sup {min (X, |Y|, |W]): X+Y+WcS; X, Y, W cZ} is finite, it suffices
throughout to consider only sets X, ¥, and W of positive integers. '
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First take two singletons of positive integers A,={a,} and B,={b,}. Next

4
choose a;>3(a,+b,) and b1>-3—a1. Write 4,=4,U{a,} and B,=B,U {b,}.
In general, if A4, and B, have already been constructed then take a,;,>

4
>3 max (4,+B,) and b,,HE?a,,H and write A4,,,=4,U{a,;,} and B,,,=

=B,U{b,:.}. We define ¥= U 4, +B,,)
Observe first, that for any n, App1+B,1=(A4,U{a, ) +(B,U{bs1])=
4
=(A4,+B)U(B,+ {a,4:. DU, + {b,+.1) U {a,.+,+b,4,}. Notice that bn+l>? pi1™>

>a,,,+max(4,+B,)>max (a,,,+B,) so that each element of A4,+ {b,,,} is
greater than each element of B,+{a,.;}. Also, neither A4,, B,, B,+{a,+}, nor
A,+{b,+1} contains a sum of two doubletons or a translate of a sum of two
doubletons. For example, if x"+({y, ya}+{w1, wz})Ca,,+1+B with y;<yp,
and w,<wy then for some b’<b”<b”<b” in B, we have

X +y14w = @1 +b, X+yi+we=a,+b", X' +y,+w, =a,.1+b”,
X+ Yot Wy = G,y +b",
or .
X+ y+wy = @ua+ b, X' +yptw = a,,,4b", X+yi+w, =a,,,+b7,

X' +yptwy = apey+57.

In either case, we obtain b” —b”=b"-—b" which is impossible since each member
of B, is more than twice its predecessor.

Now suppose that, for some n, if X, Y, and W are sets of positive integers such
that if X+Y+WcA,+B,, then min (|X|, |Y|, [W|)<4. Suppose also that X7,
Y’, W’ are sets of positive integers with |X”|, |[Y’], |W’| each at least 4 and D=
X' +Y' +W cA,,1+B,,;. By the induction hypothesis, D¢ A4,+B, and so
DN (B,+{a,+1)#0 or DN(A4,+{b,s1})#0 or D\{a,,1+b,,,}=0. Thus, some
element of X’ or Y’ or W’ must be greater than max (4,+B,) because
3 max (4,+B,)<a,,,. Without loss of generality, call this element x’€¢ X’.

Now, if |¥’|=4 and |W’|=4, then we can see that either B,+{a,.,} or
A,+{b,+,} must contain a translate of a sum of two doubletons as follows:

Say y,<y,<ys<y, are the four smallest elements of ¥’ and w,<w,<w,<w,
are the four smallest elements of W’. Look at w;=x"+y,+w;, ug=x"+y;+w,,
uy=x"+y;+wy, and wu;=x"+y,+w,. If w,€A4,4+{b,..}, then clearly u,, up, us,
u€ A, +{bps1}. I w,€B,+{a,.,}, then we’re done unless u,€A4,+ {b,4,}. But
then x’+({ys, ys}+ {Wa, ws)) CA,+ {b,+1} and we are done. We now have a contra-
diction and so it follows that min (JX’|, |Y’|, |W’'|)<4.
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Thus, by induction, for any n, if X,Y, and W are three sets of positive
integers with X+Y+WcA4,+B,, then min (|X|, Y], |[W[)<4.

Clearly .9’=D (4,+B,) is not g,. However, if X,Y, and W are three
n=0

finite sets of positive integers with X+Y+ W<, then X+Y+WcCA,+B,
for some n and so min (|X|, Y}, |W|)<4. Thus, & is a g3 set. Finally,

7= (A,,+B,,)=[[] A,,)+[D B,,] because A,CA,., and B,CB,., for all
n=0 n=0 n=0
n and so & is a sum of two infinite sets.
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