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On the number of prime factors of integers 
P. ERDŐS and A. SÁRKÖZY 

1. Throughout this paper, we use the following notations: 
c l5 c2, ... denote positive absolute constants. The number of elements of 

a finite set S is denoted by |S|. We write pa\\n if p"\n but not px+lj[n; 
d(n) denotes the number of positive divisors of n: d(ri)=21; 

d|n 
v(n) denotes the number of prime factors of n counted with multiplicities: 

v(«)= 2 « ; p"\\n 
x(n) denotes the number of distinct prime factors of n: x(n) — 2 1; 

Pin 
Tti(x) denotes the number of integers n satisfying n^x and v(n)—i; 
g^x) denotes the number of integers n satisfying n^x and x(n)=i; 
P(n) and p(ri) denote the greatest and least prime factor of n, respectively. 

2. In [2], the authors asserted that for any co>0, there exists a constant 
cx=c!(&>) such that for all sufficiently large x and 1 ^ / ^ c o log log x, we have 

(1) nt(x) < Cl(oj) lQ
X

sx for 1 — I — CO log log X. 

(There was also a missprint: l ^ i ^ c o log x was printed instead of 1 s / ̂ co log log x.) 
We attributed this theorem to Hardy and Ramanujan (referring to [4]), and we used 
it (with co=100) to prove that for all e>0 and large k, 

k 
( 2 ) osis^giogi" , ( f c ) " (log fc)*'>-
and 

(3) 2 k% 

a+Z)iogiogt<i ,v 2(logfe)^>-

(see (25) and (33) in [2]) where 

(4) cp(x) = 1 + x log x—x 
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and z denotes the single real root of the equation (p(x)=cp(l +x); a simple 
computation shows that 
(5) 0,54 < z < 0,55. 

The first author used (1) also in [1], in order to prove that for all e > 0 and 
x>x0(e), we have 

log log X 

(6) 2 < (e log 
. log log x ( l o g X) 

(see (3) in [1]). 
However, (1) is false in the form stated above (as K. K. Norton pointed out it 

in b letter written to the authors). In fact, Hardy and Ramanujan proved (1) with 
Qi(x) in place of 7 t ; ( x ) : 

(7) < c3(a>) l o g X
 (1°g

( '!.g
1)?"1 for l s i s co log log*. 

10 
Furthermore, they proved in [4] that for all ¿>0 , (1) holds with co= — — d : 

, , c4 x (log log x)'"1 «1, , 
^ ^ T l ^ ( ¡ - 1 ) 1 f o r 1 - ' - — ¿ J l o g l o g ^ . 

SATHE [6] extended this result by proving that for all 8 >0, we have 

(8) nt(x) < cB(S) ( 1 ° g
( t

1 ° g
i y 1 for x £ 3 , l s i s ( 2 - 5 ) l o g l o g * . 

SELBERG [7] gave a different proof of Sathe's result and showed that for all d >0, 
we have 
(9) ii ¡(x) ~ c6(x log x)2~l for (2+5) log log x S i S c , log log x. 

This result shows that (1) does not hold for / s ( 2 + 5 ) log log x (while we used (1^ 
with co = 100 in order to prove (3)); in fact, the right hand side of (8) is greater 
than the right hand side of (1). (See also [3] and [5].) 

The aim of this paper is to correct the papers [1] and [2] by deducing an upper 
estimate for nt(x) which is slightly weaker than the best possible but which holds 
for all i: 

Theorem 1. For all 5>0, we have 

(10) *,(*) 

f o r 1 — 1 — (2—¿) log log x 

c9t4 J for 1 — ' 

and for all xs3. 

? 
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Sections 3 and 4 will be devoted to the proof of this theorem. In Section 5, we 
prove two corollaries of Theorem 1. In Section 6, we show that in fact, (2), (3) and 
(6) can be deduced easily from these corollaries. 

3. In order to prove Theorem 1, we need two lemmas. 

Lemma 1. For all non-negative real numbers Z and A, let G(Z, A) denote 
the number of positive integers n satisfying n^Z and x(n)^A. Then there exists 
an absolute constant c10 such that for all Z and A, we have 

(11) G(Z, A) ^ cw2~AZ log (Z+2). 

Proof . If x(n)SA then we have 

d(n) = JJ d(p') ^ JJ2= JJ2 = 2x(n) S 2A 

P'lln p" lln p|n 
thus 

(12) Zd(n)^ 2 d ( n 2 2a = 2aG(Z,A). 
nSZ BSZ nSZ 

x(n)mA x(n)mA 

On the other hand, it is well-known that for Z— + 

2 d(n)~ZlogZ 
nSZ 

thus for all Z(^0) , we have 

(13) 2 d(n) ^ c n Z l o g ( Z + 2 ) . 
nSZ 

(12) and (13) yield (11). 

Lemma 2. For a positive real number y and a non-negative integer a, write 

F(y,a)= 2 I -
v(n)=a 

Then there exists an absolute constant c12 such that for y^2 and all a, we have 

(14) F(y, a) ^ c12(a +1)2""(logy)2. 

Proof . Let us write 

m = n = 2 °,t l 
p-syk=0\P' f = 0 

(where m=a7t(>')). Then obviously, all the coefficients ai are non-negative and 
we have F(y, a)=aa. Thus 

m 
(15) /(2) - 2 a,2' ^ a . * = 2*F{y, a). 

i = 0 
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On the other hand, by the definition of f(t) and using the Mertens-formula, we 
obtain that 

(16) f(2)= n ¿ i ^ ) * = («+i ) 77 ¿ ( 4 ) = ( « + ! ) 77 2 ( 4 ) = 

= («+D 77 
3SpSJ> J 

77 
3SP3JI J 1_ 

p J 
/ L ( ' 4 F ( - r = 3=spsj> 

= ( « + ! ) 77 
33p3J> J 

1 n 77 
I 

P5j> J 

/> 

' t f (n-iy 
nil ( n - 2 ) n 

< (a+l)(c1 3 logy)2 '2 = c14(a+l)(log>-)2. 

(15) and (16) yield (14). 

4. Completion of the proof of Theorem 1. If 1^/^(2—<5)loglog;c then the 
first inequality in (10) holds by the Sathe—Selberg formula (8). Thus it is sufficient 
to prove that • 

(17) < c9 i4 * X for all x ^ 3 and 1 s i. 

Let us fix a real number and a positive integer i. Let S denote the set 
of the positive integers n satisfying nsx and v(n) = i (so that nt(x) = |S|). 
Furthermore, let Sx denote the set of the positive integers n for which n^x 
and there exists a positive integer t such that ?>2' and t2/n. Write S2=S— Sx. 
Then we have 

(18) 

and 

(19) 

(18) implies that 

(20) 

Obviously, we have 

S c SiUSa 

s i n s , = 0. 

ni(x) = \S\^\S1\ + \S2\. 

(21) 
r x ] 1 

(=2' + lnSx l=2' + lL» J r=2' + l I 
t*\n 

+ ~ 1 ( 1 JC 
^ 7 t = T ) t = x , = £ + 1 I T ^ T ' T J . = Y -
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In order to estimate |S2|> let us write all n£S in the form n—nxn2 where 

(22) p(n2) > 2'. 

If there exists a prime number p such that p>2' and p2\n2 then by the definition 
of Si, we have n€S x thus by (19), n$S2. In other words, for all n£S2, n2 is 
squarefree thus 

(23) x(na) = v(«2) = v(ri)-v(nj = i-vinj. 

If ndS2 and we put v{nj)—a. then by (23), 

(24) 0 g a = i - ^ W S i. 

By (22), (23) and (24), we have 

is«l = 2 i = 2 2 2 ^ 2 2 2 i-
n1n2^x a = 0 n^x a=0 n1 = x n2^x/n1 P(n1)^2', p(n2)>2' P(n,)m2' p(n2)=-2> P(n,)S!' «(«jtSi-i 

y(ni)+x(nt) = i v (n , )=a x(n2) = i—a v(n1)=a 

In order to estimate the inner sum, we use Lemma 1 with Z=x/n1 and A = i—a 
We obtain that 

\S2\^2 2 c102-i+"-^-logi-f+2)< 
a=0 i i jSi V « i / 

J»(ni)S2' VC"I)=A 

< < h » 2 2 2-'+« — log(x+2)-= 
«=0 11,31 Ml 

v(ni)=a 

< c15 2 2~i+xx log x 2 — = CM 2 2-i+*xlogxF(2', <x) 
a=0 P(n1)^2i «1 a=0 

vCni)=® 

where F(>>, a) is defined in Lemma 2. By using Lemma 2, we obtain that 

(25) |Si| < c15 2 , 2- , + a xIogx .c 1 2 ( a+ l )2 -" ( log2 i ) 2 < 
a«0 

i 
< c1 6 i22- 'xlogx ^ i a + O < c1 7 i42- 'xlogx. 

a = 0 

(20), (21) and (25) yield that 

n^x) =§ ISil + ISal < 2~ix+c1iii2~ix log* -= 

< c18i42~'x logx 

which proves (17) and this completes the proof of Theorem 1. 
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5. It can be deduced easily from Theorem 1 that 

Coro l l a ry 1. If 

(26) <5>0 and l < 3 > < 2 - 5 

then we have 

(27. 

for y = 7/1 °g log x — 2-5, x > x0(y, <5); 

furthermore, we have 

(28) 2 < c 2 0 j ^ f o r all j and 
iSj 

Proof . First we prove (28). By Theorem 1, we have 

(29) 2" *,(*) i * ^ = c9xlogx • 
i s j imj i S j L 

Obviously, for we have 
(t + 1)4 

2i+1 < 3 2i 
thus for j^i'o, 

y i l j l y ( l ) ' = 7 l l 
isj 2' 2J ,=o v 3 J V 

hence 

(30) - m a x { 1 1 ( ^ 2 ' . - ) , 3 } . ^ = 

for all j. (29) and (30) yield (28). . 
Now we prove (27). The function <p(x)=1 log x—x is increasing for 

x > l , thus writing 

* - ^ - 2 log 2 ' 

we have 0<?/. Thus Theorem 1 and (28) yield (with respect to (26)) that for 
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x>x0(y, 3), 

(31) 2ni(x)= 2 + 2 *.•(*) < 
imj j ' 3 i s [ (2 - i | ) log logx] [ (2 - i j ) log logx]+ la / 

< 2 c ( (5)) X (^g10^^)'"1 | 
iSlsSK^loglogx] log X (i — 1)! 

([(2 — rj) log log x] +1)4 

* (log log ^ y - 1 y (log log x)'~ 
2 2 1 > LOGX 0 - 1 ) ! ySlS[(24loglogx] jO' + l ) - ( ¿ - 1 ) 

, (2 log log x)4 , 
+ C21 2 ( 2 _ , ) ] o g l o g ; c * l o g x < 

^ . * (log log xy'-1 flog log x)'~J , 
0 - 1 ) ! M X — H + 

(log logx)4 

+ C2gX' (log - 21/) log 2+1/ log 2 - 1 

^ * (log log x y - 1 +; 
c3aC5)-r—::—71—m—2 y +-log x 0 - 1 ) ! ,=0 (logxy2-2")'0«2-^"/2 

>• X (log log X Y - 1 X 
= c 2 2 ( 0 ) - — 7 7 — - —TVi h-y — \ logx 0 - 1 ) ! ( l ogx^ -^+ 'Z 2 

„ _ J X (log log xy-1
 , X c 23( i> )——77———71—rn h-3» —1 logx 0 - 1 ) ! (logx)«,(2-i>+"/2' 

By the Stirling-formula, we have 

(32) 1 (log logx)"-1
 = 1 k (log logx)* 

logx (k—1)! ~~ logxloglogx k! ~ 

l o g x l o g l o g x l k ) 

fcl/2 
= CO. (log x) ~1+^1 - l o g №/Iog log x))fc/log log x _ 

**loglogxv 

fc1/2 

= c2 4-—: (logx)-^10«10«*) for X S 3 and k - + «,. log log X • 
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Thus with respect to (26), for j>^.//log log x^2—5, x^x^y, 5, r])=x1(y,5,t](S))= 
=x2(y, 5) we have 

. 1 * (log logx)-1 '1 

(33) e n V ) — ^ ( . _ 1 } ! > 

> c25(y, <5) x (log log x) "1 / 2 (log x) - ,osx~> > 

> c25(y, <5)x(loglogx)"1/2 ( l o g x ) - ^ - ^ > x ( l o g x ) - < p V - » - m \ 

(31) and (33) yield (27) and this completes the proof of Corollary 1. 

C o r o l l a r y 2. If y> 1 and £>0 then for y log log x^j, x>x0(s) we have 

(34) 
is} 

(logx)^- if l<y<2 

(log xy1-"»108 2 * z r i f 2 

Proof . If 1+(logx) _ e ' 2 S 2—e/2 then (27) (with e/2 in place of <5) and 
(32) yield that 

v ( \ t /-n 1 1 (log log xy'"1 
< c 1 9 ( £ /2) — S — ( . _ 1 ) , < 

•1/2 

< C2q(fi)(log X)E^X *j——: (log x) -fO'/loglogx) < xflog^-PW+e 
log log X 

for X>x1(e), while if +(log x)"e/2 then (34) holds trivially for X > X 2 ( E ) 

since we have 
lnn<p(0 = ii)(l) = 0 

and, for all j, 

isj 

If 2 - e / 2 < y then by (28), we have 

^ . 4 * l o g x x l o g x 
(35) 2 n,(x) < c 2 0 j 4 — — < ^ s 

x l o g x x 
2(l-E/4)yloglogx (Jog —e/4)y log 2—1 
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for x>x3(e). If 2 ^ y then this yields (34). Finally, if 2—z\2<y-^2 then we obtain 
from (35) that 

X 

~~ ( l o g x ) ( 1 + y l o g y ~ + } ' ( l 0 g 2 - log y) - (2 - j>) - (ey log 2)/4 ~~ 

_ X 
( l o g x)«^)+y(log 2 - log y) - (2 - y) - (£y log 2)/4 ^ 

X X 

^ (logx)" ,w-£/2-£/2 = ( l o g x ) ^ - ' 

which completes the proof of (34). 

6. In this section, we correct the proofs of (2), (3) and (6). In the proof of (2), 
we used (1) only for z'^z log log k. Thus we need (1) with co=z<0,55<10/9 but 
in this case, (1) holds by the classical Hardy—Ramanujan result. 

Now we are going to prove (3). Let 5 = 5 (a) denote a small positive number 
such that we have 

(p(\+z-S) ><p(l + z)-e /2 = p(z) -e /2 
a 

(note that q>(l+z)=(p(z) by the definition of z). By using Corollary 2 with 
1+z—5, e/2, k? and [(1 +z—S) log log /c2] + 1 in place of y, e, x and j, respectively, 
we obtain that 

(l + r)Ioglogk^i [ ( 1 + 2 - l o g log fc2] + 13 i 

^ fc2 ka 

^ (log/c2)^14"2-«-^2 < (logfc)«,(z)-E/2-£/2 _ (log k)"(2>-£ 

for k>k0(e) which proves (3). 
Finally, note that the right hand side of (6) can be rewritten in the form 

log log X 

(e\os2) 1o«2 = - = -(log x)l~e 5 ( l o g x ) l -e- ( l + loglog2)/log2 (log x)<p(l/log2)-e 

so that (6) can be obtained from Corollary 2 with 1/log 2 (<2) in place of y. 

2 
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