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A Hausdorff—Young type inequality 
and necessary multiplier conditions for Jacobi expansions 

GEORGE GASPER and WALTER TREBELS 

1. Introduction. We shall show how necessary conditions for Jacobi multipliers 
can be derived from certain Hausdorff—Young type inequalities. 

In order to become more precise we first have to introduce the following notation. 
1 

Fix and let denote the space of measurable 

functions on [0, n] such that 

I I / I I P = ( / ( S I N Y J " { c o s l j M \ d m ) " 

is finite where 

dpi(6) = = I s in-j I I cos — I dQ. 

If T = 0 we write Lfa0) = Lp
a, || • ||p;<r>0= || • ||p>, and if, additionally, a = 0 

we use the standard notations LP, ||-|IP- Note that L^aL^aL1 if - ( 2 A + 2 ) < 

< < J P < ( 2 A + 2 ) 0 - 1 ) , - ( 2 J S + 2 ) < T P < ( 2 J S + 2 ) ( / J - 1 ) . Here, as elsewhere, the in-
clusion sign means that the identity map is continuous. Each fZL 1 has an expansion 
of the form 

/(0) ~ Zr(k)hkRk (cos 9) 
k=0 

where Rk(x) = R^e\x) = Pjc
x-i'\x)/P^f)(l), P^\x) being the Jacobi polynomial 

of degree k and order (a, /?), [8]. Also the /c-th Fourier—Jacobi coefficient f ( k ) 
is defined by 

T(k)= ff(9)Rk(cos 0) dn(B) 
o 
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and hk = h£,^ = \\Rk (cos 0) where the % sign means that there are 
positive constants C, C ' such that C'hk^k2x+1^Chk (k2x+1 must be replaced 
by 1 when k—0). 

A sequence m = { m ^ ™ i s called a multiplier from ¿fff>t) into t), 
notation r ; a, /?), if for each fdL£a x) there exists a function 

(1.1) Mf(f$) ~ 2 mkf"(k)hkRk (cos 0), \\Mf\\q.^ ^ C| |/ | |P; f f , t . 
k=0 

The smallest constant C independent of / for which this holds is called the multiplier 
norm of m and it is denoted by \\m\\MipiVtZ). If T=0 we write M9

p(o,0)=Mq
p(o). 

The derivation of sharp sufficient multiplier conditions (see e.g. [2], [3], [6]) 
relies heavily upon the following Parseval type inequality (f(6) being a polynomial 
in cos 0) 

fc=0 ^ 
( i . 2 ) (sin m 

where the fractional difference operator Ay, y£R, is defined by 

Aym - j A - ^ m Ay - {k+A ~ + Amk-ZkAj_k mj, Ak - y fc J - r { k + l ) r { y + l y 

whenever the series converges. So one can expect that the converse of (1.2) 

1, (1.3) 2 \Ayf"(k)\2hk C ( s in | )V(0) 
i c = 0 

proved in [7] for functions f(6) which are polynomials in cos 6, will yield necessary 
multiplier conditions; this will turn out to be true on L2 . However, to obtain 
necessary conditions also on Lp

a, p w e shall need a Hausdorff—Young type 
variant of (1.3). 

The plan of this paper is as follows. In Sec. 2 we derive for the special case a = 

= P = —y, i.e. for cosine expansions, the desired Hausdorff—Young type inequality 

and deduce from it necessary multiplier conditions on LFa. Then in Sec. 3 we consider 

the general case ——, o c > — a n d derive the corresponding Hausdorff— 

Young type inequality and necessary multiplier conditions. Finally we close with 
several remarks concerning our results. 

2. Necessary multiplier conditions for cosine expansions in weighted Lebesgue spaces. 
Consider fZL1 and observe that, since Rk~112, "1/2) (cos 0)=cos k9, 

n 4 It 
f*(k)= f f(6) cos k0d9 = 4- J f(9)(eikB+e-ikB)d6 

0 0 
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and hence 

zlY'(fe) = j f / ( 0 ) 2 + e~'j0) dO = 

Y ff(9){eik0([-ei0y+e-ik0(\-e-wy} d9. 

Thus we obtain 
2 0 

(2.1) sup\ATQ£) | ^ C / (siny)V(0) dO 

and hence, by applying the Riesz—Thorin interpolation theorem to (1.3) and (2.1) 

a/p-
(2.2) [ z \ ^ f \ k ) \ A S C H / I U , 1 = P ^ 2, y = 0, 

o > 
1 1 

for polynomials /(0) in cos 0, where p' is defined by — h — = 1 . To state our 
P P 

necessary conditions for cosine multipliers we need to use the following sequence 
spaces of weak bounded variation (see [4]): for 1 y >0, 

wbvq,y = ||m||4,y.w < 
where 

\M q , y : w = IMU + sup 2 

for and, in case q=°°, 

NIU,v;w = ||m|U + sup|fcM''m t|. kiN 

Theorem 1. If 0<y-=l — l/p, 2, and m£Mj;(y), then m£wbvp^y and 
||m||p-iV.wsC||m||MpW, i.e., Mp(y) <= wbvp,,y. 

Remark . At the AMS Summer Institute in Williamstown, Mass., 1978, 
Muckenhoupt, Wheeden and Wo-Sang Young announced necessary and sufficient 
conditions for a sequence to belong to M\(y) when y >1/2. Here we treat the case 

— — , 7 ^ 0 (note: M\(y)—M\(—y)). By combining the sufficient condition 
2 2 j 

in [6] and the present necessary one it follows for 0<|y |<— that 

wbvitS c Mi(y) c wbv2iM, 6 > max j—, |y|j. 



250 George Gasper and Walter Trebels 

Proof of Theorem 1. For the Dirichlet kernel 

sinin+-H0 sin i n I 
£>„(0) = 1+2 2"cos k6 = 

t = i 0 
sin — 2 

1 - I - Y 
which we will use as a testfunction, it is easy to check that ||I>n||po,^C« p , 

< ) i < l . In order to apply our Hausdorff—Young type inequality (2.2) 
P P 

we need a decomposition of {mk} into a set of sequences with finite support. In 
fact, setting 

1, 2 ' - 1 ^ k < 2 1 , 

otherwise, 
each sequence E(l) — {Ek(l)}l10 has support on a dyadic block and so by (2.2) 

fij-i \Vt>' (j (2.3) ( j ' l . l ' m . r ' j 

(2J-1 \VPF OO ( ZJ—I \VP 

z \Ay(mk(EkU) + Ek(j+l)))\"'\ + 2 \ 2 \^(mkEk(l))\"'\ £ 
~ / 2->-l \1/p' 

— C\\m\\Mpm\\D2jD2j-i-i\\piy + \\m\\„ 2 2 (2')"yp' 
p l=j+l v-lc = 2^-1 ' 

since for 2 J ~ 1 ^k<2 J , /3=/+l, 

A?(mkEM) = *2 A~}kym„ S C||m||„(2')"". 
n = 2'-1 

1 
Now observe that ^rn\\m^C\\m\\MP i y) and multiply both sides of (2.3) by (2J)y+T~1 

to obtain 

(2̂ —1 f CO "1 

2 S C11|m||Mp(y)11 + (2J)r^2^ (2')~yj ^ C\\m\\MPp(y), 

which establishes the theorem since C is independent of j. 

3. The case o c S ^ S - y , a > ~ . In [7, Sec. 2] it was shown that if y > - l , / ( 0 ) 

is a polynomial in cos 0, and • n / a \2a+2y+l * Q\W+1 dk= / / ( 0 ) ^ + ' - « ( c o s 0 ) [ s i n | - J ( c o s y j do 

then 

(3.1) AV(n)= 2Bk(n)dk k=n 
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where Bk(n)-Bk(n-, <x, p,y) = 0{ky~1) for fcë/i+1 and Bn(n) = 0(ny). Since, 
by SZEGÔ [8; Theorem 7.32.3], 

j//t£a- « R[«' « (cos 0) (sin y ) 2 (cos y ] I S C 

we have 
A + Y + I 

dk i W ^ 3 C / 1/(0)1 (sin 2 (cos 2 d9 

and so from (3.1) and the fact that h (^+ y ' p )^k 2 a + 2 y + 1 it follows that 

(3.2) sup | fhnAyf - (n)| ^ C / (sin y j [cos y J /(0) d9. 

Application of the Riesz—Thorin theorem to (3.2) and our previous result [7; 
Theorem lb] 

(3.3) [n2\fKàyr(nf] s c ( / | ( s i n y j (cos y J /(0) 

then gives (in combination with (2.2)) 

Theorem 2. Let l ë />â2 , y^O, a è j S è - y , a > - y awd/e/ /(0) 6e a 

polynomial in cos 0. Then there exists a constant C independent of f such that 

( I l f h n A y r { n f ) l l P ^ C\\f\\p,a_x 

where a = y + (2oc +1) ( y - - ^ ) a n d t = (2)3+1) ( y - ™ ) • 

Unfortunately, when a > — y theDirichletkernel for Jacobi series is too bad 

a test function to obtain necessary conditions for multipliers on LP(a w analogous 
to Theorem 1. In order to estimate test functions with "nice" Jacobi coefficients 
we shall need 

Lemma 1. Let a, p, p, a, x be as in Theorem 2 and let have 
compact support; set 

(3-4) h : = Z k X + x + ^ - y - 7 \ A ^ g k |. 
fc=0 

2 )T 
de\ 
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1 
Then, for some integer A>a+y, 

i „ i i y + ä+— ß+-í f I ~ ( 8Y BY 
[ / | ZogthMcos 0) [sinyJ [cos — j | dflj ^ CI,. 

Proo f . Set . 

(3.5) g(fl) = Z gk Z ¿i-jhjRj(cos 0). 
k=0 j=0 

Then, by SZEGŐ [8, Sec. 9.41], (3.5) and the substitution x=cos 0, 

( ( fí\7+*+^ ( Ylp 

llgllp;a,T = [ / |g(0)(sin-yj [cOSyJ | d ö j S 

^C Z \Ay+1gk\ z j a + A + 2 G ( f c , X) ( f |Pj"+A+1-«(x)(l - X p + 2 4 

k=0 j=0 

•(l+jc)l» 4 dx)llp 

where Gj{k, jI) is defined as in [8, (9.4.6)]. The above integral can be estimated 
with the aid of [8; Ex. 91] by o ( / 7 + 1 / 2 - 1 / p ) and so, by [8; (9.41.7)], 

HglUxS C 
k=0 

Finally a standard argument shows that g (k)=gk. 
Next we have to use Lemma 1 to estimate the jLfff t) norm of certain functions 

<t>n(6) arising from a partition of the unit sequence {1,1, ...}. Consider q>a£C°° 
with compact support such that 0^(po(i) = l , 

1, 2~113 ^ t ^ 21'3, 
2~2/3 or t ^ 22/3, 

eo 
and Z <Pn(0=1 f° r ' = 1 where we set (pn(t)=(p0(2~"t). Now define 

r 1, 2 - 1 / 

= z <Pn(k)hkRk(cosO). 
k=0 

Then, for integer l > a - t - y , 

»=0 
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and so, by Lemma 1, 

(3.6, ( ; > , 4 i 4 f ' = o ( 2 - K - " - i > ) . 

3 1 1 1 
T h e o r e m 3. Let 1 0 < y < a + y — —, a > — — and a ^ / J ^ — y . If 

<7=y + ( 2 a + l ) ( y — a n d T = (20 + 1) ( y - y ) then M£(cr, T; a, P)<zwbvp.,y. 

Proof . Let a, /}). For any Minkowski's inequality and 
(3.6) give 

(2̂ —1 \1/?' ~ / 2̂ —1 

2 |VhkA*mkn * 2 \ 2 IVhkA>(mk<pn(k))n ^ 2 J-1 ' n=./-l V&/-1 > 

2 7 P>+C 2 2 \fhiMmk<pMn 
n=j + i V " ' / 

(3-7) (S'k-MkMVm.l"') 

1_ 3\ „ /2-'—1 
+ 2 [ 2 \1hkA\mk<pn(k)f\ 

P N=J + 2V2J-L / 

_ \l/p' 

â C\\m\\M^. 

and therefore 

_ C\\m\\MP^n + C2J^P "*) % \ 2 \fhkAy(mk<pn(k)f 

But, since 

\Ay(mk<pH(k))\ = \ , 2 , ¿r-\-lm,<PnW\ = O(||m||002-^) 

the last term in (3.7) can be estimated by 

C2'y P " 2J|MU2-«[2 — C\\m\\„. 

Noting that IML^Cflm| |M ; ( ( , i t ; a > w we finally obtain 

(2J— 1 ^IP1 

uniformly in _/, i.e. the assertion of Theorem 3. 

R e m a r k s . 1. In the unweighted case a = x ~ 0 , we conclude that if a > — -
2 

and then 

(3.8) Mpp (o, 0; a, - y ) c wbvp.,y, y = (2a +1) ( j - y ) • 
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2. Application of (3.8) to 

w i A U > 
< > = { 0 ) 

AUJAU O ^ S n , 
k > n 

and duality shows that in order for ||/M(n)|| 

bounded it is necessary that <5>(2a+2) 

long as 5 SO (which is a consequence of t 
1 

m 
n , to be uniformly 

1 1 
——; this is only non-trivial as 

Note that <5>(2a+2) 
1 1 

2 " 7 

2 P 
îe trivial necessary condition : / " z> M£). 

- - is sufficient [4, Sec. 8] for Nw[|mP(0i0;cIiW=C»(1), 

1 
1 =/>s= in the case p=1, (3.8) leads only to the restriction 5 ë a + y . 

3. In [6] it is proved for L<P<oo that 

(3.9) wbv2,x c M£(0, 0; a, /?), I > max | (2a+2) y - y j . 

Thus, when and l</><2 the required smoothness parameter A in the 

sufficient condition (3.9) differs from the necessary smoothness parameter y in 
1 1\ il 1 

(3.8) by any positive number larger than ( y j . But the exact difference ( y j 

is needed for the embedding, i.e. wbv2Xc:wbvp.tll holds if X— y j , l < p ^ 2 ; 

see [4; Theorem 5]. 

4 . Application of ASKEY'S [1] transplantation theorem to Theorem 3 yields 

M / ( 0 , 0 ; a , P ) c w b v p . , 7 , 1 < p < 2, 

provided that 0<y = (2<x+l) ( — - — ) < 1 - — and Os=(20 + 1) (— - — ] < 1 — - . 
\p 2) p \p 2) p 

5. A little modification of Theorem 3 allows us to give necessary conditions 
for M"p multipliers, for, arguing as in the proof of Theorem 3 it 
follows that 

\2J-1
 ' 

mllMj(<7,t;a,p) 

which implies that 

/ 2̂ —1 \ W 
yg ik-*i*\k>A-'mk \< J S C || m M"(a,T;a,ß)> 
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that is, in the wbvqy5 notation of [5] 

M« (A, T; A,P)cz wbvq.iyA/q._llp., 1 IS p < q ^ 2, 

when a ^ s - y , < x > - y , 0<y = <x + ( 2 a + l ) ( y - y ) , and T = (2j3 + 1) ( y - - . 

In particular, 

M§ (o, 0; a, - y j c wbvq,tyylfq, _1/p., 1 p < q S 2, 

when 0 < y = ( 2 a + l ) ( - ^ - - y j . 

6. By analogous techniques one can also obtain necessary Hankel multiplier 
conditions. 
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