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On empirical Prékopa processes 
LAJOS HORVÁTH 

1 . Introduction. In 1 9 6 3 PRÉKOPA [ 8 ] considered the following inventory model. 
Given a time period T during which we observe the production of a factory A. 
In its production factory A uses a type of a material with constant intensity c. 
So in the given period T it needs the amount cT of this material. This should be 
supplied by factory B on the basis of the following contract. 

a) For a fixed number X, O ^ A ^ l , B will deliver the A-portion XcT of the 
cT 

whole amount cT at it time-points ti}...,tn, each time the amount A — .These 
n 

instants are independent random variables (r.v.'s) uniformly distributed on (0, T). 
b) The remaining portion (1— X)cT will be delivered at n time-points rx, ...,r„ 

which are again independent r.v.'s uniformly distributed on (0, T), in amounts 
slt ...,sn, respectively. These amounts are also r.v.'s, they are uniform spacings 
of the interval (0,(1 —X)cT), and the sequence (su..., sn) is independent of both 
(rl5 ...,r„) and (i1; ..., O-

As usual, the spacing variables are constructed as follows. Divide the interval 
(0,(1—X)cT) into n subintervals by n—1 independent, uniformly distributed 
r.v.'s. Then s1}..., sn are the resulting lengths of these subintervals, and they will 
be referred to as "random additions". 

Factory A wishes to avoid lack of material, so it needs an initial stock Mx 

(at t=0) to balance with high prescribed probability the uncertainty in the delivery. 
In order to formulate exactly what Mx is, we have to introduce the following 
quantities. Let q1,-..,q„-i be independent r.v.'s uniformly distributed on (0 , cT) , 
and let and denote 
the respective order statistics corresponding to the sequences t, r, and q. If we 
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introduce the stochastic processes 

Rn(0 = 

0, for O S i S rl, 
qt, for r*k < t si r j + 1 (k = 1, 2, ..., n-1), 
cT, for r* < t S T, 

Kn(t; A, c, T) = 

( l - A K ( i ) , for 0 S / S / Í . 

A - c r + ( l - A ) t f „ ( 0 > for (fc = l , 2 , . . . , n - l ) , n 
XcT+( 1 -A)J?.(0, for C < ( S 7\ 

then (1—A)i?„(f) and Kn(t; A, c,T) represent the amount of random additions and 
the total amount delivered up to time t, respectively. Let e>0. Prekopa's problem 
is: what initial stock Mx=M(E, X, c, T, N) should A posses to ensure the continuous 
production with probability 1—s. In order to obtain a solution we therefore need 
to know the probability 

p„(A) = P( sup (ct—K„(t; A, c, Tj) < M>) = 
0SÍS7" 

to find at least an asymptotic solution Mx of the reliability equation 

(1.1) pn(X) = 1 - e . 

2. Summary. The form of the latter probability suggests to simplify the whole 
model. Following PRÉKOPA [8], let 

X = (Xlt X2, ...), Y = (Yx, Y2, •••), Z = (Z l5 Z2, ...) 
be three sequences of independent r.v.'s uniformly distributed on (0,1). For fixed 
n, are the three corresponding ordered 
samples. Sequences X, Y, and Z will correspondingly play the role of the former 
sequences ft, t2, ...), ft, r2, ...), (qlt q2,...). 

In the original model of Prékopa the delivery times of the fixed amounts and the 
random additions were identical ft='"1, ..., t„—r„), and consequently in the 
simplified model he had X— Y. CSÖRGŐ [5] considered the possibility X^Y, 
assuming that X and Y are independent. The aim of the present paper is to study 
the general model when X and Y can depend on each other, i.e., to "bridge" 
the two-extreme cases considered by Prékopa and later by Csörgő. 

Denote by F„(t; X), F„(t; Y) and Fn(t; Z) the n-th stage empirical distri-
bution functions corresponding to the sequences X, Y and Z, respectively. If 

f 0, for x < 0, 
= for 
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1 " 
then, for instance, Fn(t\X)=— ¡/{t—X^. The following equivalent form for 

n i = i 
1 (\x\ \ 

F„ will be used later. Clearly i l / (x)=—\ Hi , if x^O. Since the distribution 
2 \ x ) 

function of the Xk variables is continuous, for each fixed /€[0,1] we have almost 
surely that 

Define the stochastic process 

0, if O ^ t ^ X * , 
ln{t) = Zt, if Xt < t ^ Xjt+1 (k= 1 ,2, . . . , n-1), 

.1 , if 1, 

and for an arbitrarily fixed X (0 ̂  A = 1.) consider 

X{w(t) = (.iimf'\t-Kn(t• X)) = (n/my>2(t-XFn(t; r ) —(1 -X)In(t)), 

where f(X) is an arbitrary function on the interval [0, 1] such that 

(2.1) inf /(A) = A*> 0. ' 0SAS1 

In his first paper PRÉKOPA [8] made an assertion (if X= Y) concerning the limit 
distribution of sup .JfB

1+{1-'l)'(0, which reduced to Smirnov's classical result 
osrsi 

when A=l . Later in [9] he proved more, namely that 

(2.2) . ) - * ( • ) , X=Y, 

where —•- denotes weak convergence in Skorohod's D[0, 1] space and B{t), 
O ^ t ^ l , is the Brownian bridge process (cf. BILLINGSLEY [1]). CSÖRGŐ [5] noticed 
that the X [ w ( t ) process admits the following more convenient representation: 

(2.3) x™(!) = X(nff(X))1/2{t-F„(f, 7)) + ( l - X ) ( n / m y * ( t - F n ( t ; X)) + 

+ (1 -X){m)-V*q n (F n ( r ,X) ;Z- i ) 
where 

is the uniform quantile process, i.e., 

F„(t; Z-1) = inf(*6[0, 1]: F„(x; Z) s t). 

Using (2.3) he gave an easy proof of (2.2) and also proved that 

(2.4) X^B+z(1~A)i(-)—-B(-) with X, Y independent. 
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Assuming a general condition on the dependency structure of sequences X 
and Y, we prove in Section 3 a general weak convergence theorem. The limit 
process is Gaussian, but it is not always a Brownian bridge. A necessary and 
sufficient condition is given to ensure that the limit process be the Brownian bridge. 
So (2.2) and (2.4) become corollaries of the general theorem. In Section 4 we apply 
the general weak convergence result to answer the original question, i.e., to determine 
(asymptotically) the required initial stock Mx for the continuous production. 
Following Prekopa we generalize our general model in Section 5 to the case when 
the consumption of the delivered material in factory A is the same type random 
process as the delivery process. In Section 6 we come back to the two special cases 
in (2.2), (2.4) and apply recent strong approximation results to approximate X ( w 

by a sequences of appropriate Brownian bridges. This result will provide information 
about the accuracy of the asymptotic solutions of our reliability equations. 

3. Weak convergence of the process X f f i . According to our assumption in 
the original (non-simplified) model, we assume throughout that the sequence Z is 
independent of both sequences X and Y. It is also assumed throughout that the 
two dimensional random vectors (Z1; 1^), (X2, Y2)... are independent. Define 
the distribution function of the pair (Xt, Yt) (i— 1, 2, ...) 

P(Xt < t, Yt < s) = Gi(t, s). 

Theorem 3.1. Suppose 

lim - 2 (Gt(t, s) + Gi(s, 0) = G(t, s) n—— n ¡=1 

exists for every t, i£[0,1]. Then 

where XfW is a Gaussian process on [0,1] with EXfW(t) = 0 and 

EXM(t)X«»(s) = ( / ( A ) ) " 1 ^ ! - X ) { G ( t , s )-2?) + /(l - s ) + ( l - X f t { 1 - s ) ] , t ss s. 

Proof . Since Z is independent of X and Y, the limit process of the third 
term of (2.3) and that of the sum of the first two terms are independent. As it is 
well known, the uniform quantile process ^ n ( i ;Z _ 1 ) converges weakly to the 
Brownian bridge, therefore it is enough to study the limit behaviour of the process 

= 0nlf(X))^\X{t-Fn{t; y))+(l-A)0-Fn(/; X))]. 

First we prove that the finite dimensional distributions of converge 
to those of the Gaussian process with E%m\t)=0 and 

EpM{t)W\s) = ( /(A))-i[A(l-X)[G(t, s ) - 2 i ) + i(l s ) l t s. 
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la order to do this we need the following easy equation 

(3.1) P((t-Xd(s-Yd > 0)+/ ' ((s-Z i)(?-71 . ) > 0 ) = 

= 2[Gt(f, s) + Gt(s, t)]+2-2(t+s), t ^ s, 
and the identity 

taking place with probability one. We need to know the following expectations 
computed by (3.1) 

= 2(tj-tt)+l, t j ^ t , , 

2P((tj-Yi)(t-Xi) > 0 ) - l . 
Ij — Ii *I -Af 

Taking the time-points tlt ..., tk ( 0 ^ t t < t 2 < . . . < t k ^ 1) and real numbers ...,ak 

by the Cramer—Wold device (BILLINGSLEY [ 1 ] , p. 4 9 ) we must show that 

(3-3) 2 o j X ™ ( t j ) ± 2 e j X , w « j ) . 
j=i j=i 

Here —•• stands, naturally, for convergence in distribution on the real line. 
The left hand side of (3.3) can be written as 

(nf(?.))m 2 a} j=i 

= № ) " 1 / 2 i ajtj —{nf(X))~1,z 2 «,, j=i ¡=i 
where the r.v. af is defined by 

ax,a2, ... are independent because the random vectors (X1, F l) , (X2, F2), ... are 
k 

independent. Applying the equalities in (3.2), we get E<x = 2 ajts 0'=1> 2, .••). 
j=i 

Also, if then by (3.1) and (3.2) we find for the products of the terms in 
a.i the following 

Eyj.iJi.i = A20+( 1 -A)%-+A( 1 -^[Giitj, td+G&t, tj)]. 
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Consequently, 

D* I(n/ (A)) - 1 / 2 J «,) - ( n f W ) - 1 2 W 2 a j y J = 
V ¡=I / J=I \j=I / 

= ( n / W ) " 1 2 ( 2 + 2 2 ^ ^ ( ^ / . ¡ y y . i - ^ / . i ^ . , ) ] = ¡=1 \J=1 l^j / 

= ( m ) - 1 1 «3 (21(1 -A) (n-1 i GKO, 0) - o)+o-' ,?)+ 

+2(/(A))-1 2 2 (<?,(/„ + td) + tj(l-td- 2A(1 - A) J -
/•=./ V « ¡ = 1 / 

We saw that a i , a 2 , ••• are independent, and it is easy to see that the moments 
Efa—Ecttf are bounded. Hence the central limit theorem ([10], p. 442) can be used 
to finish the proof of (3.3). 

Now we show that the sequence is tight. Since X/ w (0 )=0 , it is enough 
to prove (cf. Theorem 15.5 of BILLINGSLEY [1]) that for each positive E we have 

(3.4) lim Em P( sup > e) = 0. 
C O N - ~ V | S - , | S C 

Besides the already introduced quantile process, let us also introduce the empirical 
processes jB„(t; U) = fn (Fn(t; U)-t), U=X, Y. We have 

P( sup |Xjr t»(s)- .J t f<»(0l > e) S p[ sup | A,(s; Y)-p„(f, Y) + 
\s-t\sc ^Is-tlac ' 

+ p[ sup \pn(s-,X)-pn{t;X)\ 

+ p{ sup \qn(s-,Z-i)-qn(f,Z-i)\>^l/J!i) + 

+ P( sup \Fn(u;X)-u\> c), 

where X* is of (2.1). Using the Glivenko—Cantelli theorem and the fact that the 
empirical and quantile processes satisfy condition (3.4), the tightness of 
is clear. 

Having the form of the covariance function given in Theorem 3.1, one obtains 
the following 

Coro l l a ry 3.2. Under the conditions of Theorem 3.1, the process X*w converges 
weakly to the Brownian bridge for every X, O^A^l if and only if the following two 
conditions are satisfied 
(i) G(i, s) = kt(l-s)+2t, t =i s 
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where k is a fixed real number with — 

09 /(A) = 1 + fcA(l —A)+(l —A)2. 

The following simple example shows that one can indeed have a limit process 
in Theorem 3.1 which is not a Brownian bridge. If G^t, s) = t—t2(l —s) (t^s), then 

and clearly there is no such /(A), for which the latter would be the covariance 
function of the Brownian bridge. 

If the variables Xit Yi are identical then k=0, if the variables Xt, Yi are 
independent then k = — 2, thus (2.2) of PRÉKOPA [9] and (2.4) of CSÖRGŐ [5] follow 
from Theorem 3.1. Also, it follows from Theorem 3.1 that the processes 
and X/(0) converge to a Brownian bridge, if /(1) = 1 and / (0 )=2 for every func-
tion G(t, s). Indeed, in the first case our process is merely the classical empirical 
process (on the Y sequences), while in the second case "the empirical process 
with random jumps". It can also be noted here that LÁSZLÓ [7] managed to compute 
the exact distribution of the supremum of the process X/ ( 0 ) , / (0)=2. 

4. Application to the solution of the reliability equation. The result of the 
preceding section can be applied to obtain an asymptotic solution of the reliability 
equation (1.1). 

Theorem 4.1. If the conditions of Corollary 3.2 are true, then the asymptotic 
solution of the reliability equation is 

Proof . The reliability equation can be written in the form 

Therefore, for large enough n, the reliability equation is 1—exp ——J——j = 

= 1—e, and hence the theorem. 
Let us imagine that the "dependency constant" k, — ( b e t w e e n the 

transportation instants of the fixed amounts and the random additions) has already 
been determined (probably by some independent statistical procedure). The 

EX™(t)X'w(s) = i(l ~s)(l +(1 -A)2-2A(1 — A)í)(/(A))-1, t á s, 

Mk\* n 

X 
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minimum of /(A) =/¿(7.) is attained at Xk=(2—k)l2{\—k), and fk(A*) = 
=(fc+5 —1/(1— k))/4. Regarding fk(Xk) as a function of k we see that it strictly 
increases on [—2,0]. Consequently, the initial stock is minimal if the random 
variables X{, Y. are independent, and it is maximal if the r.v.'s XT, YT are identical. 
At first it may seem surprising that the initial stock is minimal, when the delivery 
process is "most unorganized". On the other hand this is intuitively clear if we 
think that there are 2n independent deliveries in this case. Now we also have 

a concrete measure of this intuitive feeling. Since the maximum is Mx 

and the minimum is Mx , the proportion of the minimal and 

the maximal stock is (2/3)1/2«0,82. 

5. Random consumption. We interpret the consumption process Tn(t; ¡i) 
similarly as we interpreted the arrival process K„(t; A) in Section 1. The function 
H^t, s) and H(t, s) are defined as we defined the functions G, (f, s) and G(t, s) 
there, respectively. We assume that the process Tn(t;p) and K„(f, A) are in-
dependent for every n. In this case the reliability equation is 

where K is the total amount of the material used by the factory in its production. 

Theorem 5.1. The process («/(/(A)+g(/i)))1/2(rn(i; ¡i)-Kn(f, A)) converges 
weakly to the Gaussian process Z(t) with EZ(t)=0 

EZ(t)Z{s) = (/(AHgOO)"1 [A(l — A)(G(i, s ) - 2 f ) + 2 i ( l - s ) + 
+ (1 —A)2<(1 - s ) + / x ( l - p ) { H ( t , s)—2i) + ( l - p f t i 1 - s)], t ^ s. 

Proof . Because the limit processes of (n/g(j i)) l l 2( t—Tn( t;p)) and 
(«//(A))1/2(i—K„(t; A)) are independent, the proof follows from Theorem 3.1. 
The same way as in the preceding section we have 

Coro l l a ry 5.2. The process («/(/(A)+g(/i)))1/2(7T„(/; fi)—K„(f, A)) converges 
weakly to the Brownian bridge for every X and for every p. OsA, p^l if and only if 

(i) G(i,s) = M ( l - s ) + 2 i 

H(t, s) = k2t( 1 —s) + 2t, tiës 

where kx, k2 are fixed real numbers with —2^k1, k2 = 0, 
(ii) /(A) = M ( 1 -A) +1 +(1 -A)2 

g(fi) = k2p( l - ^ + l+(1-^)2. 
Under the conditions of Corollary 5.2 the asymptotic solution of the reliability 

(5.1) 
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equation (5.1) is 

The proportion of the minimal and maximal initial stock is again (2/3)1'2. 

6. Strong approximation of the process When talking about approximation 
of the empirical and quantile process by appropriate Gaussian processes, we think 
of constructing the latter on the probability space of the former so that they should 
be near to each other with probability one. This can be done if this probability 
space is rich enough in the sense that an infinite independent sequence of Wiener 
processes can be defined on it, which is also independent of the originally given 
i.i.d. sequence (cf. M . C S Ö R G Ő — P . RÉVÉSZ [3] and KOMLÓS—MAJOR—TUSNÁDY [6]) . 

It will be assumed that the underlying probability space is rich enough in this sense. 

Theorem 6.1. If X,Y are independent or X=Y then one can define, for 
each n, a Brownian bridge {Bn(t), O ^ i S 1} such that we have 

P( sup \X?»(t)-Bn(t)\ > K(\og nf^n-1'4) < Ln~2 

o s r s i 

where /(A)=A2+2(1—A)2 (X, Y are independent) or /(A) = l+ (1 -A) 2 (X=Y), and 
K, L are appropriate positive absolute constants. 

Proof . Using the celebrated approximation result of K O M L Ó S — M A J O R — 

TUSNÁDY [6] for the empirical process and that for the uniform quantile process 
of M. CSÖRGŐ and P. RÉVÉSZ [3], there exist Brownian bridges B™(t), B(2\t), Bf(t), 
which are independent (if X, Y are independent) or B^){t)=B(2)(t) (X=Y) and 
they are near to f)„(t;X), p„(t; Y), q„(t; Z - 1 ) . The representation (2.3) and the 
precise form of the Komlós—Major—Tusnády approximation easily gives 

iP( sup \Xf
nM(t)-Bn(t)\ > KQognyi'n-1'*) s 

0 3 ( 3 1 

S a h + P ( o S j i p J <?„ ( F „ ( / ; X ) ; Z " 1 ) - B ^ ( 0 1 > y ( l o g n f * n " ^ 

^ L 1 « ~ 2 + i ' i sup sup | ( f + s ; Z- 1 ) -B™(01 > (log n)3/4n"1/4) + 
M)3tSl |s|3(logn/n) l /2 ^ > 

+ P( sup |F„(i; JO -11 > (log n/nf2) == 
0 S Í 3 1 

^ Lin~2+p{ sup \qn(f, > ^Oog")3/4«-1/4) + 
V ö s t ü l o ) 

+ 2P\ sup sup |5(i + s ) - 5 ( 0 l > -^-(log«)3/4n-1/4l + 
V03(31 03s3(lOgn/n) l / a O ' 

+ P( sup \Fn(t; X) — t\ (logn/nY'2) 
0 3 Í 3 1 
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for any K, and a suitable 0. Let now A^=max (6 A, 6 /30) where A is an 
appropriate constant to make the first probability here less then L2n~z, using the 
quantile process approximation with a suitable Z,2>0. Using the lemma of 
D V O R E T Z K Y — K I E F E R — W O L F O W I T Z [2], the third probability is again smaller than 
L3n~2, where £ 3 > 0 is some constant. Therefore the only problem now is to 
show that the second probability behaves the same way. Since B(t)—JV(t)—ifV( 1) 
with a standard Wiener process, this probability is not greater than 

p{ sup sup \W(t+s)-W{f)\ > (logri)3,in~ 1/41 + 

f o s t á l OSsSOogn/n)1'« 2 ) 

+ p((logn/n)1/2 |W(l)| > y ^( logn) 3 ' 4 / !" 1 ' 4 ] S 

=s 40(n/logn)1/2n~5/2 + 2(157t ) (n logn)1/4 exp ( - 15(n logn)1/2/2) sá L4n~2 

where we have used the routine tail estimation of a normal variable, and, for the 
first term, Lemma 1 of M. CSÖRGŐ and P. RÉVÉSZ [4]. 

It follows (among others) under the conditions of Theorem 6.1 that 
sup |P( sup X{w(t) < x)-P( sup B(t) < x)\ = 0((log n)3/in-1!i). 

- » < i < » osr s i osrai 
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