
Acta Sci. Math., 42 (1980), 305—304 

Uniform lattices 
F. PASTIJN 

In this paper we shall give a method of embedding a lattice into a uniform 
lattice. We shall use the notation and the terminology of [1] and [2]. Let us recall 
some of this terminology first. 

If L, A, V is any lattice, and e£L, then we denote the principal ideal generated 
by e in L by eL. If e and / are any elements of L such that a.: eL-*fL is an 
isomorphism of eL onto fL, then we shall call a a partial isomorphism of L. 
The set of partial isomorphisms of L forms an inverse subsemigroup TL of the 
inverse semigroup JL of one-to-one partial transformations of L; TL will be called 
the Munn semigroup of L [3]. We define an equivalence relation °llL on L by 

WL= {(e,f)ZLxL\eL^fL}. 

The lattice L will be called uniform if f L = I X l . It can be shown that L is 
uniform if and only if L, A is the semilattice of idempotents of some bisimple 
inverse semigroup [3]. 

If L is any lattice, then the automorphism group of L will be denoted by 
Aut (L), the endomorphism semigroup of L will be denoted by End (L), and 
the lattice of congruences of L will be denoted by 9(L). 

We now proceed with our construction. Let L, A, V be a lattice. Let Z + 

denote the set of positive integers. For any e£ L and any / £ Z + let X® be a set 
and 

x(/>: eL^X^ 
a one-to-one mapping of eL onto X}'\ We shall thereby suppose that X^DX^ = • 
if tV7 or ejif and that ( U ( U X^))C\L= • . Let us put Xe= (J X™ 

eiL i£Z+ i£Z + 
for all e£L, and let X— {J Xe. If Y is a subset of X, then we shall put 

e€X 

Ye = Y DXe, YP = Ynx^ 
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for all e£L and all i € Z + . Let si be a set, the elements of which are the subsets 
Y of X which satisfy the following conditions: 

(i) there is only a finite number of pairs (e, i)£LXZ + for which ^ X f > , 
(ii) for every (e,i)£LxZ+, either • or Y ^ x f ' 1 is of the form 

gL for some g£eL. 
Remark that X£si. Clearly si is a subset of the power set P(X). 

Let 83 be the subset of P(XUL) which is defined by 

a = {eL\JY\e£L, Y£si}Usi. 

8B, Q is a partially ordered set. It is easy to check that 88, Q is in fact a lattice. 
Let us for instance compute the l.u.b. and the g.l.b. of eLUV and fLU W, e,f£L, 
V, WE si, in 88. It is obvious that 

g.l.b. (eLUV, fLUW) = (eLUV)H(fLUW) = (eAf)LU(VCVV) 

since 88 is closed for taking intersections. Let us now define an element U of si 
in the following way: for every (e , i ' )£LxZ + we take 

u ^ • if Ke
(i> = w™ = • , 

£/W = jyW if y(i) = n> 

C/e(i) = vy> if = • , 

and in case VV=(vL)x®, Wp=(wL)x®, take 

£/0) = ((vVw)L)4'K 
Then 

l.u.b. (eLUV, fLUW) = (eVf)LU U. 

From this it follows that the mapping 

q>\ L — 88, e — eLUX 

embeds L isomorphically as a dual ideal in 88. It is therefore possible to conceive 
a lattice Lx which contains £ as a dual ideal, and an isomorphism cpx: 
of Lx onto 88 which extends the isomorphism cp of L into SB. We shall investigate 
the embedding of L into Z^ in several lemmas. 

Lemma 1. L x L Q t y ^ . 

Proof . Let us consider any element e of L. Any element in the principal 
ideal of eLUX in 88 is of the form gLUY or of the form Y, where g£eL and 
YE si. Let cpe be the mapping of the principal ideal of eLUX in 88 onto the 
principal ideal of X in 88 which is defined by 

(gLUY)cpe = (gL)x™U( U Y < L > * < , , - 1 X < L + 1 > ) U ( Y \ R . ) 
¡€Z + 
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and 
Y<pe = ( U Fe<i>4')-ix<i+1))U(F\ye). i€Z+ 

It is easy to verify that q>e is a partial isomorphism of SS. Thus (X, eLUX)^a 

for all e£L. From this it follows that (eLU X, fLU X)€<W3 for all e,f£L. Hence, 
(e,f)£<%Li, for all e,f^.L, and so L X L g ^ . 

Lemma 2. Every partial isomorphism a of L can be extended to a partial 
isomorphism a(1) of Lx in such a way that the mapping 

is an isomorphism of TL into TL . 

Proof . Let a: eL-*fL be any partial isomorphism of L, and let us define 
the partial isomorphism a of the principal ideal of eLUX in SS onto the principal 
ideal of fLUX in 3d by 

(gLUr )a = (got)L\JY, Yd = Y, g^eL, 

Let aP)=q>15i<px
1. Clearly a(1) is a partial isomorphism of Lx which maps eLx 

isomorphically onto fLx, and the restriction of a(1) to L is precisely a. Let us 
now consider the mapping il/x: TL-+ TL , a—a(1). We have 

( a j g ) ^ = (pj.ccPcpi1 = ^ a ^ r 1 = ( ^ « ( p r ^ C ^ i M - 1 ) = 0 > A i ) W i ) -

Since ipx is clearly injective it follows that is an isomorphism of TL into . 

Lemma 3. Every endomorphism y of L can be extended to an endomorphism 
ym of Lx, in such a way that the mapping 

£x: End (L) — End (Lj), y - y№ 

is an isomorphism of End (L) into End (Lj). 

. Proof . Let y be any element of End (L), and let us define the endomorphism 
y of as by 

(eLU Y)y = (ey)LUy, Yy = Y, e£L, Yds/. 

Let y(X)=q>xy(px
1- Then y(1)£End (Lj), and the restriction of y(1) to L is precisely y. 

The mapping End (L)—End (Lx), y—yir> is clearly injective, and for every 
y, <56 End (L) we have 

(y<5Ki = (PxyScpx1 = (pxyS<px
2 = (<px y>r1)(?li^r1) = (V£,)(%) 

Thus £x is an isomorphism of End (L) into End (Lt). 

/ 
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Lemma 4. Every automorphism y of L can be extended to an automorphism 
ym of Ll, and the mapping 

{JAut (£): Aut (.L) - Aut (L^, y - y(1) 

is an isomorphism of Aut (L) into Aut (LJ. 

Proof . Immediate from the definition of ^ in the proof of Lemma 3. 

From Lemma 4 it follows that the mapping iL embeds End (L) isomorphically 
as a submonoid of End (Z^). 

Lemma 5. Every congruence Q on L is the restriction to L of some congruence 
0m on Lx, where the mapping 

0(L)-6(LJ, 

is a lattice isomorphism of 0(L) onto a closed sublattice of 

Proof . If Q is any congruence on L, then we define the relation Q on 38 by 

e={{eLVY,fL\JY)\e,fZL, eQf {(7, 

Let Qil)=q>iQ(Pi1- It can be checked easily that q and q(1) are congruences on 
38 and on L1 respectively, and that Q is the restriction of Q

M

 to L. Let us now 
consider the injective mapping Q{L)-*0(Ln), Let {£>(|z'£/} be any subset 
of 0(L). Clearly 

( f l e,)Ci = <Pi(D edvi1 = <Pi(f) Q)<prx = D ViQiVr1 = fl feCi)-

HI HI HI HI HI 

Let A and B any elements of 38 such that 

IV 

Then there exist elements A=A0, ..., Aj, AJ+1, ..., Ak=B such that for every 
j€{0, ..., k — 1}, AjQjAj+1 for some If A is of the form A = Y, Y^jrf, 
then A=A0=A1=...=Ak=B. If A is of the form eLUY, e£L, Y^st, then Aj is 
of the form ejLUY for all j£{0,...,k}, and for all {0, ..., k-1}, 
thus B is then of the form fLUY, where e (V Qi) / i n L. We conclude that V £?; = 

¡A HI 

Q V Qi- Similarly we can show that V Qi = V Qi- We conclude that V Qi = 
HI _ HI iv i€/ 

= V Qi> a Qd so 
id 

(V Qi)C 1 = <Pi(V Qijvr1 = <Pi(V Qi)(Pi1 = V foiftpr1) = V (0i)C 1-
IV IV HI HI HI 

Therefore Ci is a lattice isomorphism of d(L) onto a closed sublattice of 0(Li). 

We are now in the position to prove our main theorem. 
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Theorem. Every lattice L cart be isomorphically embedded as a dual ideal 
into a uniform lattice L' in such a way that 

(i) every partial isomorphism a of L can be extended to a partial isomorphism 
a' of L' such that the mapping 

TL — TV, a-a' 

is an isomorphism of TL into TL,, 
(ii) every endomorphism [automorphism] y of L can be extended to an endo-

morphism [iautomorphism] y' of L' such that the mapping 

End (L) — End (Z/), y - / 

is an isomorphism of End (L) into End (L') which induces an isomorphism of 
Aut (L) into Aut (Z/)> 

(iii) every congruence Q on L is the restriction to L of some congruence Q' 
on L' where the mapping 

C: 0{L) - Q(L'), q^Q' 

is a lattice isomorphism of 6(L) onto a closed sublattice of 0(L'). 

Proof . Let us consider the sequence of lattices 

L — Lq, Lx, Lj, LJ+1, ... 

where for every jdN, Lj+1 is a lattice which contains Lj as a dual ideal and where 
Lj+1 is constructed from Lj in the same way as Z^ is constructed from L=L0. 

Then L'— (J Lj is a lattice which contains each Lj,j(LZ+ as a dual ideal; in 
j=o 

particular L is a dual ideal of L'. 
Let a 0 ) be any partial isomorphism of Lj for some j£N. Let us consider 

the sequence of partial 'isomorphisms 

au\ <xu+1> «0'+"), ccU+k+i)! 

where for every k£N, a<J+k+1) is a partial isomorphism of Lj+k+1 which extends 
the partial isomorphism a(J+k) of LJ+k in the way prescribed by the proof of 
Lemma 2. Therefore (J a°'+ , t )=a' is a partial isomorphism of L' which extends a0 ) . 

kiN 
Let us now consider any two elements x, y£L'. There exists a j £ Z + such that 

x, y^Lj-x. By Lemma 1 we know that there exists a partial isomorphism a ( j ) of 
L; which maps xL - isomorphically onto yL,. Let a ' = U a u + k ) be the partial 

k£N 
isomorphism of L' which is obtained from a ( j ) in the way described above. The 
partial isomorphism a' maps xL' isomorphically onto yL', and therefore 
(x,y)£%v. We conclude that L' is uniform. 

6 
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If a=a ( 0 ) is any partial isomorphism of L, then a ' = IJ is a partial 
UN 

isomorphism of L' which extends a. Let us investigate the mapping ip: TL-*TL,, 
a—a'. If p=pm is any other partial isomorphism of L, then f}'= (J f f i ) = 

jiN 
=P\KTL., and it follows from Lemma 2 that for all j£N, a(J)fiU)=(afi)(J\ From 
this it follows that afi'=(afi)', and so >p is an isomorphism of TL into TL.. 
We conclude that (i) is satisfied. Using Lemma 3 and Lemma 4 we can introduce 
an injective mapping £: End (L)—End (U), y—y' which satisfies (ii): the proof 
thereof proceeds along the same lines as for the foregoing case. 

Let Q=6 m be any congruence on L, and let us consider the sequence of 
congruences 

e = e(0). e a \ eu+1), -

.where for every jdN, £>0+1) is a congruence on LJ+1 which is constructed from 
in the way prescribed by the proof of Lemma 5. It should be clear that for all 

i, N, i=j, we have £0)nz.;XL;=i? ( i ). Furthermore q'— (J q0) is a congruence 
JiN 

on L', and the restriction of Q' to L is precisely Q. Let us investigate the injective 
mapping C:0(L)-0(L'), Let be any subset of 0(L). Clearly by 
Lemma 5 we have 

( n e,)C = ( n <?«)' = U ( n = U (D eln) = 
HI HI JiN HI j£N HI 

- n ( U e P ) - n e\ = n (e,)C-
HI j£N HI HI 

Let us consider (V Qi)C = { V £?,)', and let us suppose that x and y are any elements 
HI HI 

of L' such that x (V Qi)' y- There exists a such that x, y£Lj. Since the restric-
HI 

tion of (V £>,)' to Lj is precisely (V 8i)u\ and since by Lemma 5 (V ¿?;)(j) = 
HI HI ' HI 

= V Q(ij), we must have x (V o-J)) y. From (V eP)) = (V Qi) it then follows that 
HI HI HI HI 

* ( V Qi) y- We conclude that (V £?*)' = ( V Qi)- Let us conversely suppose that x 
HI HI HI 

and y are elements of L' such that x (V e'i) y- Then there exist elements x=xQ, x l 5 ... 
HI 

•...,xk=y in L' such that for every 0, ..., k—\}, XjQjXJ+1, Qj£ {^iC/}. There 
exists some n£N such that {x0, . . . , x k } Q L n , and then xJQ(j")xJ+1 for every 

0, . . . , /c- l} . Therefore x (V (?in)) y> and by Lemma 5 we have (V &in))= 
iil HI 

= (V Qi)(n)• Clearly (V e i ) ( n ) i ( V Q,)\ and so x (V Qt)' y. We conclude that 
HI HI HI HI 

(V Qi) C = (V 8i)' = V Qi= V Thus the mapping ( satisfies (iii). This concludes 
HI HI HI HI 

the proof of the theorem. 
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Remark . The concepts "partial isomorphism", "Munn semigroup", "uniform" 
were originally introduced for semilattices. The results of this paper remain valid 
if we deal with semilattices only; if we do so several simplifications in our construction 
may be conceived. Anyhow, our main theorem still holds if L and L' are semi-
lattices ; L is then embedded as a dual ideal in the uniform semilattice L' in such 
a way that (i), (ii) and (iii) are satisfied. That every semilattice can be embedded 
as a subsemilattice in a uniform semilattice also follows from Reilly's results in [4]. 
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