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Uniform lattices

F. PASTIIN

In this paper we shall give a method of embedding a lattice into a uniform
lattice. We shall use the notation and the terminology of [1] and {2]. Let us recall
some of this terminology first.

If L, A,V is any lattice, and e€L, then we denote the principal ideal generated
by e in L by eL. If e and f are any elements of L such that a:eL—fL is an
isomorphism of eL onto fL, then we shall call « a partial isomorphism of L.
The set of partial isomorphisms of L forms an inverse subsemigroup 7, of the
inverse semigroup %, of one-to-one partial transformations of L; T will be called
the Munn semigroup of L [3]. We define an equivalence relation %, on L by

Uy, = {(e, f)€LXLl|eL == fL}.

The lattice L will be called uniform if %;=LXL. It can be shown that L is
uniform if and only if L, A is the semilattice of idempotents of some bisimple
inverse semigroup [3].

If L is any lattice, then the automorphism group of L will be denoted by
Aut (L), the endomorphism semigroup of L will be denoted by End (L), and
the lattice of congruences of L will be denoted by 0(L).

We now proceed with our construction. Let L, A,V be a lattice. Let Z*
denote the set of positive integers. For any e€L and any i€¢Z* let X® be a set
and

xPD: el - X0

a one-to-one mapping of eL onto X . We shall thereby suppose that X’ Nx¥ =0
if ij or esf, and that (U (U X®))NL=0. Let us put X,= (J X

ecL icZ+ i€zZ+
for all ecL, and let X= |J X,. If Y is a subset of X, then we shall put
e€L

Y,=YNX, YO =vYNx®
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for all e€L and all i€Z*. Let o be a set, the elements of which are the subsets
Y of X which satisfy the following conditions:
(i) there is only a finite number of pairs (e, )¢ LXZ* for which Y= X9,
(ii) for every (e,i)€LXZ*, either YP= or YPxO1 is of the form
gL for some gé€el.
Remark that X¢o/. Clearly & is a subset of the power set P(X).
Let # be the subset of P(XUL) which is defined by

B ={eLUY|ecL, Ye/}UA.

#, < is a partially ordered set. It is easy to check that #, & is in fact a lattice.
Let us for instance compute the L.u.b. and the g.L.b. of eLUV and fLUW, e, f€EL,
V,WesZ, in 8. It is obvious that

glb. (eLUYV, fFLUW) = (eLUVYN(fLUW) = (eAf) LUV NW)

since # is closed for taking intersections. Let us now define an element U of &/
in the following way: for every (e, )€ LXZ* we take

uh =0 if v =wH» =n,
U» =wo if v =n,
U® =v®» if w® =0,

and in case VO=(L)x®, Wh=(wL)»?, take

UD = ((0Vw)L)xD.
Then :
Lu.b. eLUYV, fLUW) = (eNf)LUU.

From this it follows that the mapping
¢: L~AB, e—~elLUX

embeds L isomorphically as a dual ideal in 4. It is therefore possible to conceive
a lattice L; which contains L as a dual ideal, and an isomorphism ¢,: L,—~%
of L, onto # which extends the isomorphism ¢ of L into #. Weshall investigate
the embedding of L into L, in several lemmas.

Lemma 1. LXLEY, .

Proof. Let us consider any element e of L. Any element in the principal
ideal of eLUX in & is of the form gLUY or of the form Y, where g€eL and
Yeof. Let ¢, be the mapping of the principal ideal of eLUX in # onto the
principal ideal of X in % which is defined by

(BLUY) g, = (gL)xP U( | Y13 D)U(Y\Y.)
i€zZ+
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and
Yp. = (U, YOROIHNUEFNT.

icZ+

It is easy to verify that ¢, is a partial isomorphism of #. Thus (X, eLUX)€%,
for all e€¢ L. From this it follows that (eLUX, fLUX)€%, for all e, feL. Hence,
(e,f)E”?lLl, for all e, feL, and so LXLEX,,.

Lemma 2. Every partial isomorphism o of L can be extended to a partial
isomorphism o® of L, in such a way that the mapping

‘#1: TL - TL1’ o — a(l)

is an isomorphism of T, into Ty,.

Proof. Let a:eL—fL be any partial isomorphism of L, and let us define
the partial isomorphism & of the principal ideal of eLUX in # onto the principal
ideal of fLUX in # by

(gLUY)& = (gn)LUY, Ya=1Y, geel, Yeco.

Let «®=g,dpr". Clearly o« is a partial isomorphism of L, which maps eL,
isomorphically onto fL,, and the restriction of «® to L is precisely «. Let us
now consider the mapping ¥,: T ~T; , a—a®. We have

@By, = Prafoi = ,3Bort = (0,307 (@1 BorY) = () (Bry)-
Since y, is clearly injective it follows that y, is an isomorphism of 7T, into T,,.

Lemma 3. Every endomorphism y of L can be extended to an endomorphism
y® of L,, in such a way that the mapping

¢&: End(L) - End (L), y ~y®
is an isomorphism of End (L) into End (L,).

. Proof. Let y be any element of End (L), and let us define the endomorphism
$ of # by '
(eLUY)s = (ep) LUY, Y3 =Y, e€cL, Yeo.

Let y®=¢,7p; . Then yP€End (L,), and the restriction of y¥ to L is precisely 7.
The mapping ¢&,: End (L)—~End (L,), y—y® is clearly injective, and for every
y,d€End (L) we have

G0)e1 = 079071 = ¢, 75072 = (01707 ) (@137 Y) = (¥E)(5E)
Thus - £, is an isomorphism of End (L) into End (L,).
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Lemma 4. Every automorphism y of L can be extended to an automorphism
y® of L,, and the mapping

E|Aut(L): Aut(L) -~ Aut (L), y -y
is an isomorphism of Aut (L) into Aut (L,).
Proof. Immediate from the definition of &, in the proof of Lemma 3.

From Lemma 4 it follows that the mapping £, embeds End (L) isomorphically
as a submonoid of End (Z,).

Lemma 5. Every congruence @ on L is the restriction to L of some congruence
oW on L,, where the mapping

(i 0(L) ~0(LyY, o~ oW
is a lattice isomorphism of 6(L) onto a closed sublattice of 6(Ly.
Proof. If g is any congruence on L, then we define the relation @ on & by
0 = {(eLVUY, fLUY)le, fE€ L, eof, YeLIU{(Y, Y)Y €4}

Let o®=¢,007" It can be checked easily that g and o@ are congruences on
# and on L, respectively, and that ¢ is the restriction of ¢ to L. Let us now
consider the injective mapping {,: 8(L) ~0(L,), o—~o®. Let {g;]i€I} be any subset
of 8(L). Clearly

N o)l = () (Ne)oit= oi(N@)e = Newdior = N (@l ‘
Let 4 and B any elements of # such that
' A(V 3)B.
icI

Then there exist elements A=A, ..., 4;, 4;41, ..., A,=B such that for every
j€{0, ..., k—1}, A;0;A;,, for some ;€ {gli€}. If A is of the form A=Y, Yeo/,

then A=Ay=A,=...=4,=B. If A is of the form eLUY, ecL, YE&! then A4; is
of the form e;LUY for all j€{0, ..., k}, and for all j€{0,...,k—1}, e;o;e ”1,
thus B is then of the form fLUY, where e ( V 0;) fin L. We conclude that V g,S
zEI
CV p;. Similarly we can show that vV g,g V &;. We conclude that \/ g,=
icl iel icl icl
=V g;, and so
i€l

(_V Qi)Cl = ¢1(.V o)ort = (01(.\/ éi)(Pfl = ‘V (p18:07Y) =V (e)&s-
iel ier ier ier ier
Therefore {, is a lattice isomorphism of 6(L) onto a closed sublattice of 8(L,).

We are now in the position to prove our main theorem.
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Theorem. Every lattice L ‘can be isomorphically embedded as a dual ideal
into a uniform lattice L’ in such a way that _
() every partial isomorphism o of L can be extended to a partial isomorphism
o of L' such that the mapping

lp: TL—’TLI, Ot—>ot'

is an isomorphism of T, into T;.,
(ii) every endomorphism [automorphism] y of L can be extended to an endo-
morphism [automorphism] v’ of L’ such that the mapping

&: End(L) = End (L), y—~y

is an isomorphism of End (L) into End (L) which induces an isomorphism of
Aut (L) into Aut (L),

(iii) every congruence @ on L is the restriction to L of some congruence ¢
on L’ where the mapping

- 0(D)~06(L), e~
is a lattice isomorphism of 0(L) onto a closed sublattice of 0(L’).
Proof. Let us consider the sequence of lattices
L=Ly Ly, Ly, Ljsys -

where for every jEN, L;,, is a lattice which contains L; as a dual ideal and where
L;,, is constructed from L; in the same way as L; is constructed from L=L,.

Then L'= G L; is a lattice which contains each L;,j€éZ* as a dual ideal; in
A ‘

J
particular L is a dual ideal of L’.
Let «“2 be any partial isomorphism of L; for some jEN. Let us consider
the sequence of partial ‘isomorphisms

o), QUAD | gUHR GUHRD

where for every k€N, aU+**D s a partial isomorphism of L;.;,, which extends
the partial isomorphism oY*® of L., in the way prescribed by the proof of

Lemma 2. Therefore | J aY*¥=¢’ isa partial isomorphism of L’ which extends a@.
kEN

Let us now consider any two elements x, y€L’. There exists a j¢Z* such that
x,y€L;_;. By Lemma 1 we know that there exists a partial isomorphism oY of

L; which maps xL; isomorphically onto yL;. Let «'= ) «Y*® be the partial
kEN
isomorphism of L’ which is obtained from o in the way described above. The

partial isomorphism o« maps xL’ isomorphically onto yL’, and therefore
(x, ¥)€%,.. We conclude that L’ is uniform.

6
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If a=a® is any partial isomorphism of L, then o'= (J a% is a partial
JEN

isomorphism of L’ which extends «. Let us investigate the mapping ¢: T, —~T.,
a—a’. If B=B© is any other partial isomorphism of L, then B'= U =
=pyY€T,., and it follows from Lemma 2 that for all jeN, a@?pP= (aﬁ)(ﬁ From
this it follows that o’'f’=(af)’, and so ¥ is an isomorphism of T, into Tj..
We conclude that (i) is satisfied. Using Lemma 3 and Lemma 4 we can introduce
an injective mapping ¢: End (L)—~End (L), y—~y” which satisfies (ii}: the proof
thereof proceeds along the same lines as for the foregoing case.

Let 0=0® be any congruence on L, and let us consider the sequence of

congruences ,
Q = Q(O)’ Q(l), e Q(J)’ Q‘J+1), i

where for every jEN, ¢U*V is a congruence on L;,, which is constructed from

@Y in the way prescribed by the proof of Lemma 5. It should be clear that for all

i, JEN, i=j, we have oPNL,XL,=0®¥. Furthermore ¢’= |J ¢¥ is a congruence
jEN

i€
on L’, and the restriction of ¢” to L is precisely ¢. Let us investigate the injective
mapping {:6(L)—~06(L"), o—~0o’. Let {g;icI} be any subset of 8(L). Clearly by
Lemma 5 we have

(Ne)t=(Ne)=U(Ne)”= U (Ne?) =
el el JEN el JEN ier
= N(U o) = Nei = N (et

iel jeN
Let us consider (\ ;){=(V e;)’, and let us suppose that x and y are any elements
of I’ such that x l(e\; Qi)’ y. l’ﬁlere exists a jEN such that x, y€L;. Since the restric-
tion of (VI 0;) tlchLj is precisely (V ¢)’, and since by Lemma5 (Vv )P =
=V of?, we must have x (V o{?) yjelgrom (V ef")S(V of) it then foif;ws that
x(:\z o) y. We conclude tha"te I(i\e/l g,.)'g(i\e/l Q,{)'.E ILet us ::f)lnversely suppose that x

and y are elements of L’ such that x (\/ ¢;) y. Then there exist elements x=x,, X, ...
iel .

.., %=y in L’ such that for every j€{0, ..., k—1}, x;0jx;41, 0;€{0ili€I}. There

exists some n€N such that {x;,...,x}SL,, and then x;0{"x;,, for every

Jj€{0, ..., k—1}. Therefore x (V ¢{”) y, and by Lemma5 we have (V of”)=
icl icl

=(V 0)®. Clearly (V g,-)(")g(V ), and so x (V ;) y. We conclude that

(V Q)C (V o) = _V ol= V (Q,)C Thus the mapping C satisfies (iii). This concludes
, the proof of the theorem.
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Remark. The concepts *“partial isomorphism”, “Munn semigroup”, “uniform”
were originally introduced for semilattices. The results of this paper remain valid
if we deal with semilattices only; if we do so several simplifications in our construction
may be conceived. Anyhow, our main theorem still holds if L and L’ are semi-
lattices; L is then embedded as a dual ideal in the uniform semilattice L’ in such
a way that (i), (ii) and (iii) are satisfied. That every semilattice can be embedded
as a subsemilattice in a uniform semilattice also follows from Reilly’s results in [4].
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