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The algebraic representation of semigroups and lattices; 
representing subsemigroups 
N. W. SAUER and M. G. STONE 

A monoid S and a lattice L are jointly algebraic, if there is a universal algebra 
<$L=(A,^>) such that 5 = E n d 'it and L = Su 21. The major result of this paper 
is that if either S or L are finite and if they are jointly algebraic, then every sub-
monoid T of S is jointly algebraic with L. We prove a slightly stronger theorem. 

§ 1. Introduction 

We adopt the notation of [1] and [2]. If M is a set of partial functions on the 
set A then we will write sometimes M ~ for St and we will use the following addi-
tional notation: T, I denote systems of equations with coefficients from M. For 
DcA, D=<£(D;A,M)= f | (Sp t l is the set of all points on which I has a 

D<=Spt2 

solution). We write simply D if A and M are understood. For Be: A, iPB=y(B\ A, 
M)= U D. We write ifB if A and M are understood. If DciB and D is 

D finite, D<zB 

finite we will henceforth write DczSB. 

§ 2. Concrete Results 

Lemma 1. If 91 is any algebra on A whose operations are all substitutive 
with M and I is a system of equations over M, then Spt E is a subalgebra of 91. 

Proof . It is enough to prove that SptZ is a subalgebra of 9IM, the algebra of 
all the operations substitutive over M. According to [1] Theorem 1 we have to show 
that Spt I = £f(Spt I; A, M). Now if Dc Spt I , then D= f | Spt T c Spt I and 

Z)cSptr 
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therefore ^(Spt I ; A, M) = (J <= USpt I=Spt I. By [1] Lemma 5, ST is a Clo-
s e , Sptr 

sure operator and hence Spt Id ¿^(Spt A, M). • 

Lemma 2. If Dc.fA then D is the subalgebra of 11M generated by D and 
5 = d o m g for some partial identity function g£M. 

Proof. Let B be the subalgebra of 2tM generated by D. Then by Theorem 1 
of [1] B= U C, thus 25cB. But also D= f ) Spt I = Spt r for some system 

C c r B DgSptI 
r by Lemma 2 of [1], and hence D£Su 11M by Lemma 1 above. Thus D—B. Clearly 
Z)=domg for g=id(SptT*, and since Spt.T£Su2iM we have g£M because 
every identity on a subalgebra of 2lM is a partial endomorphism. • 

Lemma 3. If D is finite, then i?(/>; A, M)=(€(D\ A, A/). 

Proof . Note =11 a , hence the subalgebra generated by D is the same 
in both algebras and the result follows from Lemma 2 above. • 

Corol la ry 1. S7(B\A,M)= |J <g(D\A,M)= (J (e{D\A ,M) = 9 ' { B \ A , S i \ 
D<ztB DcijB 

Def in i t ion 1. We will write the ordered triple (A; S, L) for a representation 
of S as a transformation monoid on A and L as an algebraic intersection structure 
on A (i.e. L is a set of subsets of A, which forms by intersection an algebraic 
lattice). Then Stx (A; S, L) and St2 (A; S, L) are abbreviations for the following 
statements: 

St¿A-,S,L): S=> S{JL, 

(where if M is a set of partial functions on A, M is the set of total functions 
in M) and 

St2(^; S,L): B = A, SUL) => B£L. 

If (A; S, L) and 5=End 11 and L=Su5I for some algebra 11 = (A, SP) then 
we will say that (A; S, L) is algebraic. 

Remark. Then Theorem 3 of [1] reads (using also Theorem 4 of [2]): (A; S, L) 
is algebraic if and only if S^ (A; S, L) and St2 (A; S, L). 

Lemma 5. If St2 (A; S, L), then (A\ SiJL, L) is algebraic. 

Proof, a) Stj (A, SUI,L). Note that SULaSULUL. Put on the other 

<=SUZ. This proves Stx(A; SUL,L) which says: S U Z = 5 U L U L . 

* For a funct ion /and AQdomf,f\A denotes the restriction of / t o A. 
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b) S t 2 (A ,S \ JL ,L ) . We have ( S U L ) " = ( S U £ U £ ) ~ because obviously 
( S U Z O ' C C S T J Z U Z , ) ' a n d ( S U Z , U Z , ) ~ = [ ( ^ N ( 5 U L ) " ) U £ ] ~ C = ( Q S U L ) ~ U L ) ~ = 

=(SUL)~. Therefore, by Corollary 1, S"(3; A, SULl)L) = ̂ (B; A(S\JLUL)~) = 
= &'(B;A,(S{JLy) = &'(B;A,SUL). So, if B=y(B;A, S U J L U L ) , then B = 
= SP{B\ A, SUL) and hence B£L because St2 (A; S, L) holds. • 

§ 3. Representations 

De f in i t i on 2. If S is a monoid and L an algebraic lattice, then the partial 
universal algebra (A\f)fiS UL is a representation of S and L, if all of the operations 
in S form a transformation monoid of A, with (fg)(a) =f(g (a)), id (a)=a and 
if all of the operations in L are partial identities with range p fl range q=range (pAq) 
and the 1 of the lattice is the identity transformation of A. Furthermore we require 
that a representation be faithful: for any two f,g^S,f^g there exists an a£A 
with f(a)^g(a) and if for any two p, q£L, p?±q, rangep^range q. We write 
simply ( A , f ) for (A,f)/€SUL when SUL is understood. Note (A, {f;f£S}, 
{/GO;/€£}) iff (AJ)fisuL is a representation. 

We will adopt the notions of [3] for homomorphism, subalgebra, embedding 
of partial algebras and will also say that SB is an extension of if 91 is a sub-
algebra of S . 

D e f i n i t i o n 3 . If ( A ; f ) / e s U L is a representation of S and L then we will 
write SULA to emphasize the function closure cited in Stx taken with respect 
to that representation of S and L on A. 

Lemma 6. Let i(/: A—B be a homomorphism from the representation (A;f)/€SVL 

into the representation (5; /)/esUA. If the system S of equations with coefficients 
in SUL has a solution h at some ad A, then Z has also a solution \f/h at \j/(a)£B 

Proof . If a is an assignment which satisfies I at a, then clearly i¡/a. is an 
assignment which satisfies I at ip(a). • 

Def in i t i on 4. Let (A; f)fiSUL be a representation of S and L and let 
(At: i£l) be a family of subalgebras of A with [J A-=A and ((pt: i£l) homo-

i€/ 
morphisms from A onto At which leave Ai elementwise fixed. ((At, (pt): i£l) 
is called a cover of (A;f)fiSUL. 

Lemma 7. If ((Al} i£l) is a cover of {A\f)fiSUL and SULA, then 

h=\Jhi with each h£SULA'. 
iei ^ 

Proof . We prove that h \ A^SUL '. For each a£At there exists a system 
I whose unique solution at a is h. If h(a)^Ai, then by applying (pi and Lemma 6 
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we observe that I has a solution at (pi(a)=a which is equal to <Pi(h(a))£A¡. 
But then I has two different solutions at a, a contradiction. So h \ AfcAf'. 
Because h£S\JLA there exists for every finite subset D of At a system I whose 
unique solution at D is h. We will have proven that h ( At£ SULA' if there 
exists an assignment a of I at D for DafAi with a.(x)^Ai for all the variables 
x£Z. If P is any assignment of I at D, then clearly <pf/J=a has the desired 
property. Thus h=\Jh, f ° r h,=h\ Ar • 

i€/ 

Lemma 8. If ((A^ q>j):i£l) isacoverof ( A \ f ) and h£SULA and xZA^Aj, 
then h(x)eAinAj. 

Proof . According to Lemma 7, h\ A^Af' and h\ AfcAp which implies 
the assertion. • 

§ 4. The Foliation of a Representation 

Def in i t i on 5. If &t=(A;f) is a representation of 5 and L, and a£A, 
then ¡a] is the subalgebra of Si generated by {a}. 

De f in i t i on 6. If ¡%={A\f) is a representation of S and L, then 2F(Sk) = 
= {SP(A),f)JiSUL, the foliation of 0t, is an extension of dt which is constructed 
as follows: for each x£A, Ax ={ax] a£A—[x]} and Ax=A~U[x], 

P{A) = U Ax; xZA 

with y£&(A) and f£S, 

/00 = 

with y€&(A) and p£L, 

/ 0 0 if y€A, 
(/(«))* if y = ax and f(a)eA-[x], 
f(a) if y = ax and f(a)£[x]; 

, , (P(y) if y€A, 
P(y) = \p(a))x if j, = flx. 

(p(y) is either y or is undefined). 

Lemma 9. is a representation of S and L. 

Proof . Let f,g,h£S with ( f g ) = h . We want to prove that for all y£&(A), 
f(g(y))=h(y). This is clearly true for y€A, so let y—ax and assume first that 
i ( a ) i M and /(*(«))<£[*], so A(a)<SM and then: f(g(y))=f(g(ax))=f((g(a))x)= 
={(Jg)ia))Mh{a))x=hiax)=h(y). If *(«)<£[*] but f{g(a))i[xl then h(a)i[x\ 
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and then: / ( ^ ) ) = / ( ( g ( a ) ) x ) = / U ( a ) ) = C/g)(fl)=A(fl)=A(cJ=A(^. If *(«)€[*]. 
then /(s(fl))6[x] and h(a)i[x] and then: f(g(y))=f(g(ax))=f(g(a))=(fg)(a) = 
=h(a)=h(ax)=h(y). 

If id is the unit element in S and y£iF(A), then if y£A clearly id (y)—y 
and if y=ax then ¿7$ fx] and id(a)=a$[x] and hence id (ax)=(id (a))x—ax. 

Let p, q be two elements in L, then p(ax) is defined and equal to ax if 
and only if p(a) is defined. But (on A), range /»Plrange q=range (pAq) is equivalent 
to the condition: (\fa£A) [p(a) and q(a) are defined iff (pAq)(a) is defined]. 
Therefore p(ax) and q(ax) are defined iff (p/\q)(ax) is defined. Furthermore 
we have shown that the identity map on A extends to the identity map on 3F(A). 
Observe that is faithful iff Sk is faithful. • 

D e f i n i t i o n 7. If '(8t) = (^(A)\ f)fesUL is the foliation of 0l=(A;f)fesUL, 
then the maps q>, (<px; x£A), (EX; X£A), (V

X
; x£A) are defined as follows: 

cpx: &(A) - Ax with <px = exvx. 

L e m m a 10. Each of the maps above is a homomorphism onto the indicated 
subalgebra of &(01). 

Proo f , a) v*. Because AUAX is a subalgebra, the restriction of vx to AUAX 

is a homomorphism. First let az£Az and fd S with f(a)^[z]. Then vx(f(az)) = 
= vx((f(d))z)=f(a)=f(vx(az)). If f(a)£[z], then vx(f(az)) = vx(f(a))=f(a)=f(vx(az)). 
For pÇ_L, p is defined at az iff p is defined at a and p(az)=az and p(a)=a, 
hence p (vx (az)) =p (a)=a=vx (az) = vx (p (az)). 

b) (p. This proof is almost identical to the one for vx. 
c) £x. Because Ax is a subalgebra of the representation (AUAx,f) of S and 

L, the restriction of sx to Ax is a homomorphism. So if y£A — [x] and / £ S, 
with fiyMx], then Bxf(y)=f(y)x=f(yx) = f(Bx(y))\ further if f(y)t[x], then 
Zxf(y)=f(y)=f(yx)=f^x(y))- If p£L and p is defined at y€Ax, then p is 
defined at yx and p(y)=y,p(yx)=yx hence p(ex(y))=p(yx)=yx=ex(y)=sx(p(y)). 

d) tpx. <px is a homomorphism as a product of two homomorphisms. • 

L e m m a 11. The sets (Ax: x£A) together with A and the maps {(px: x£A) 
and (p form a cover of ^(8l)=(^r(A);f)/iSVL. 

y if ye AU A, 
a if y = az, z ^ x\ 
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Proof . Clearly ( (J AX)UA=^(A) and furthermore A and each of the 

sets Ax are subalgebras of ¡F(3%). By Lemma 10 the maps q>, and (cpx: x£A) 
are homomorphisms which leave A and (Ax: x£A) pointwise fixed as required. • 

L e m m a 12. (J <px(<g{(p{D)\ A, SUL)) = <£{D: F(A), S\JL), for D<gSF(A). 
x Z A 

Proof . If y€A then q>(y)=y and if y=ax, then q>x(p(>0 — (pxq>(ax) = 
=exvx<p(ax)=ax=y and hence we see by Lemma 6 that a system I of equations 
has a solution at y iff I has a solution at (p(y). Furthermore S has a solution 
at y€A iff I has a solution at (px(y) for each x£A, because again <p<px(y)=y. 
(For y£A: y€[x]=><pq>x(y)=y, and yi[x]=>-cpcpx(y)=y.) This means that D c S p t I 
iff <p(D)c Spt I . In fact for a£A, a^Spt I iff Vx£A, a^[x), a ^ S p t X, thus 
u (px (A fl Spt I)=Spt I. Hence 

x £ A 

<$(D,SF(A),SUL) = f | Sp t I = f l Spt I = 
ZJcSptI <p(Z))i=Spti 

= n ( u ^ n s p t l ) ) 3 U ( n ^ ( ¿ n s p t i ) ) r > 
<p(Z))c Spt I xiA x(A ^(D)cSptX 

^ U <Px{ n ( ^ n s p t i ) ) = u < M n Spt* i ) -
x £ A <P(D)C SptJE x ( A 9(D) c Spt* I 

= U <px(V(<P(B),J.SUL)) 
x € A 

(cf. Lemma 6), where Spt* £ is the support in the original representation Sft=(A; / ) . 
On the other hand, because cpx=exvx is one-to-one on A, we get 

<px{V(<P№A,SUL)) = q>x( H Spt* I ) = f l <P,(SPt*I) = 
9(B) c Spt* J <p(.D)<z Spt* I 

= n <p x ( ^ in sp t l ) c n Sp tz = SVJL). • 
<pU>)cSptI DcSptI 

L e m m a 13. U 9x{Sr{<p(,By,A,S\lL)) = £r(B\&{A),S\JI). 
x £ A 

Proof . Observe that <p(D)c f(p(B)=>1E<z fB such that cp(E) = cp(D) hence 

U <px(^(fp{By,A,SUL))= U <Px{ U n < P ( P ) ; A , S U L ) ) = 
x£A x£A <AB)a,<p(.B) 

= U <Px{ U <${<p{Ey,A,SUL))= U ( U q>x{nv(P)\A,SUL)) = 
xiA E(ZfB D<zfB x€A 

= U V(D; f(A), SUL) = S?(B; &(A), SUL). • 

DtZfB 

Now by intersecting A with each of the expressions in Lemma 13 we have: 

C o r o l l a r y 2. y(<p(B); A, S\JL)=S?(B; f ( A ) , SUL)DA. 
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D e f i n i t i o n 8 . If ¡%={A\f) is a representation of S and L, then we write 
St2 01 or St2 (A; / ) to mean St2 holds for the corresponding triple (see Definition 2): 
St2(^, { / ; / € £ } , {f(A);f£L}). 

L e m m a 14. If M=(A;f> is a representation of S and L with St2 and 
&(0l) = (2F(A),f) is the foliation of 01, then S t , &(m). 

Proof . Let £f(B;3?(A), SUL)=B; then &((p(B); A, SUL) = cp(B) (other-
wise A 0 B c z c p ( B ) ^ ¿f(<p(B);A, SUL)c:^(B; &(A), SUi) f)A=BPM). Hence there 
is p£L with <p(2?)=rangep in A. Then: 

B = <7(B;SF(A), S\JL) = U <Px(n<P(B); A, SUZ,)) = U <px<p(B) = 
x£A xiA 

= U exvx(p(B) = U S x < p ( B ) = U £x(range p in A) = range p in &(A). 
x£A x£A x£A 

Thus St2#"(^) holds. • 

L e m m a 15. If h£SUl/(A\ then m=h\ A£SUZA, and for all ax£^(A), 
h(ax) = (ma)x if m(a)<{[x] and h(ax)=m(a) otherwise. 

Proo f . By Lemma 7 and Lemma 11 h=mU( U hx) with m£SUL , and 

h \ ax—hx£SUL x. Now to each ax£0r(A) there is a system I , such that h is 
the unique solution to I on {a, ax}. Thus m is the unique solution to I at 
a and hx is the unique solution to I at ax. Note m is a solution to I at a and 
cpx is a homomorphism, thus by Lemma 6, (pxm is a solution to I at ax = cpx(a). 
But h is the unique solution to I at ax, thus h (ax) = <px (ma) = exvx(ma) = £x (ma). 
Hence if ma$[x], h(ax) = (ma)x and if ma£[x], h(ax)=ma. • 

C o r o l l a r y 3. If h £ S [ J l / W and if (h\ A)£S on 01 then h£S on &(®). 

D e f i n i t i o n 9. If !%=(A;f) is a representation of S and L and h£AA, 
then we write h is in the one closure of S 'm 01 (or shortly h£oc(S)m or hCoc(S)) 
if for each a£A there exists / € S with h(a)=f(a). Local closure of S is denoted 
by I.e. (5). 

-'(A) L e m m a 16. If h£S{JL , then m = (h (• A) is in the one closure of S in M. 

P r o o f . Assume there is a£A such that for all fdS f(a)^m(a)=h(a). Then 
there exists a system I of equations, whose unique solution at a is m(a)§_[a\. 
The unique solution of Z at (p„(a) = a is <pa(m(a))=(m(a))a^m(a) which is a 
contradiction. • 

D e f i n i t i o n 10. The representation (%={A,f> of S and L on A is 
algebraic, if the corresponding triple (A; S, L) is algebraic.. 
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Def in i t i on 11. oc$F(0i) — (^(A);/)/£oc(S)UL where @=(A-f)fiSUL a r e -
presentation of S and L on A and the action of the operations in oc (S)UL are 
as determined in SUL 

Lemma 17. If the representation (A;S,L) has each compact t£L singleton 
generated, then (^(A); S,L) also has each compact t£L singleton generated. 

Proof . Observe that for all a£A, we have for each p£L 3x\ax£p in 
{&(A)\ S,L)] iff [a£p on {&(A)\ S, L)] iff Vx[ax£p in (¿F(A); S,L)]. 

Lemma 18. Let (B;S,L) satisfy St2. Suppose a,b£B are such that for 
every p£L [a£p=>b£p]. Then each system of equations I over SUL which has 
a solution at a also has a solution at b. 

Proof . Let I be a system of equations over SiJL which has a solution 
at a. Spt I denotes the set of all points in B on which I has a solution. Clearly 
Spt 1= (J f l Spt T = ^ ( S p t Z; B, SUL) hence by St2 (B; S, L), Spt l£L. 

flC/SptiflSSptr 

Hence ¿>€SptZ as required. • 

Lemma 19. Given (B; S, L) which satisfies St2 and for which each compact 
t£L is singleton generated, if h£SULB and h£oc{S) on (B;S,L) then h£\.c.(S) 
on (B; S, L). 

Proof . Fix {£>!, ..., b„}czfB. Let p£L be generated by {b1,...,bn}; thus 
p is compact, and there exists b£B which generates p as well. Let I be a system 
of equations with coefficients from SUL such that h is the unique solution on 

Since h£oc(S) there is some f£S with f(b)=h(b). Hence 
h is also the unique solution on {&} to the system r = I U { / x 0 = x 1 } . By Lemma 18 
T has also a solution on each ¿¡, i= 1, . . . , n. But so the solution to f on 
{blt ..., ¿>„} is h. On the other hand ( /x 0 =x 1 ) c r hence the solution to T on 

6„} i s / . Thus /(Ai)=A(6j) for /=1, ...,n, so /¡Gl.c.(S) as required. • 

Lemma 20. Let N be a monoid and L an algebraic lattice such that (A; N, L) 
with St2 (A; N, L), then if S is a submonoid of N we have St* (A; S, L). 

Proof . Clearly #(£>; A, NUL)cz^(D; A, SUL) and hence for each Be.A, 
B<zS?(B; A, N\JL)<zS?(B; A, SUL). So if B=S?(B; A, SUL) we get 
=S?(B; A,NUL) and then B£L in ( A ; N , L ) . • 

Theorem 1. If (A;N,L) is algebraic and each compact t£L is singleton 
generated in that representation then for each submonoid SQN we have 
(JP(A); l.c.(S), L) is algebraic, where l.c.(S) is the local closure of S in the repre-
sentation (A); S, L). 
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Proof . Let t(A;N,L) satisfy the hypothesis of the theorem and let S be 
a submonoid of N. By Lemma 20 (A; S, L) satisfies St2, and clearly each compact 
t£L is singleton generated in (A; S, L) as well. By Lemmas 14 and 17 (^(A); S, L) 
also satisfies St2 and each compact t€L is singleton generated in that representation. 
Furthermore by Lemma 5 (#"(A); SUlf ( A ^, L) is algebraic, and here again each 

A) 

compact t£_L is singleton generated. We claim that SUX =l.c.(<S), the local 
closure of S in (^(A); S,L); this will establish the result of the Theorem. 
Evidently SUL w i l . c . ( S ) 

so really only the other containment need be argued. 
Let heSUlfiA\ Note h ] A£oc (5) in ( J * ( A ) \ S , L ) , since by Lemma 16 we 
have m=h\ Aeoc(S) in (A; S, L). In fact hdoc(S) in (&(A); S, L). To 
see that we need only check h(ax) for ax€^(A). If h (a) $ [x] we get h(ax)~ 
={h{aj)x=(f(a))x for some / € S and if A(a)G[x] we get h(ax)=ha=fa=f(ax) 
for some f£S by use of Lemma 15 and the definition of action by S in ¿F(A) 
(see Defn. 6). Now apply Lemma 19 with (B; S, L)=(#r(A); S, L) to get 
A€SUL*rW)noc(5)=»-Ael.c.(S) on A) ;S ,L) as required. • Lemma 21. The local closure of any finite monoid S is equal to S. 

Proof . Let the monoid S be represented on some set A and assume that 
h£ local closure 5 and h^S. For each / 6 S let af£A be such that h (af) ̂ f ( a j ) 
then D={af;f£S} is finite and clearly h\ D^f\ D for any fdS, contrary to 
the selection of h in the local closure of S. Hence each h in local closure S also 
belongs to S. • 

Theorem 2. For each universal algebra 91 there is a universal algebra 23 
satisfying End 2tsi End S and Su9I=Su23; moreover every finitely generated 
subalgebra of S is generated by a single element. 

Proof . Let 91 = (A, F), S=End 91 and L=Su9T. For any CQA we set 
oo 

C*= (J C". (Remark that we do not distinguish between C and C 1 and thus 
n=l 

CQC*.) With any <p£S we associate a transformation cp*: A*~*A* defined by 
<?*((*!, ...,xfc))=(<i!>(xi), • (p(xk)), (xlt ...,xk)£A*. Let S* = {<p*\(p£S} and 
L* = {C*\C£L}. Then and We shall construct an algebra SB = (A*,G) 
such that S*=End 23, Z*=Su 23 and every finitely generated subalgebra of SB 
is generated by a single element. 

Let gx, g2 be unary operations and h a binary operation on A* defined by 
the rules: 

gi((*i, ..., xk))= xx, g2((xl5 ..., = (xk, XX, ..., Xfc-j) 
and 

h((xx, ...,xk), {yx, ...,y,)) = (xx, ...,xk, yx, ...,y,) 
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for every (xx, ..., x*), {yx, ..., y,)£A*. Furthermore, with each operation f£F 
we associate an operation / s on A* as follows. The arity of fm equals the one 
of / and fm is defined by 

/„((*}, ...,xZ„))=/M, ...,xi), (xi, ...,4)iA*, i = 1, 

Now set G= {/B | /€F}U fe, 
First consider End SB. It is clear that .S*gEndS8. Let # £ E n d S . If x€A 

then 0(x) = $(g1(x))=g1(<P(x))£A showing that <P f A = cp£AA. Furthermore, 
if / £ F is n-ary and x1( ..., x„£A, then (p(f(xi, ..., x„))=$(/ !B(x1, ..., xn))= 
=/b-(#(*i)> •••> #CO)=/(<H*i), —,(P(X„)), i.e. £ (• ^ = End 91=5'. Now we show 
by induction on k that (1) $((x l5 ..., xt)) = (<p(xi), ..., cp(xk)), (x1( ..., xk)£A*. If 
k=l then (1) holds. Supppose (1) holds for k— 1. Then i>((x1, ..., xk)) = 
= $(h((x1, ..., xk_j), xk))=h(<P((x1,..., xk_J, ${xk))=h(((p(xj),..., <p(**-i))> <p(xk)) = 
= (<p(x1), ...,tp(xk)). Hence <P = cp*£S*. 

Now consider Su SB. It is clear that X*^SuSB. Let 56SuSB. Taking into 
account that gz,g2 and h are operations of SB, one can show that B=(Bf)A)*. 
Furthermore, 5fU(ESu 9I=L. B={BC\A)%L*. Finally, if a subalgebra B of 
SB is generated by the elements (xj, ..., x^), ..., (x£, ..., x^^A* then B is also 
generated by (xj, ..., x^ , ..., x^, ..., x l ^ A * which completes the proof. • 

Coro l l a ry 4. If the monoid N and the algebraic lattice L are jointly algebraic 
and S is a finite submonoid of N, then S and L are jointly algebraic. 

Proof . Let (A; N,L) be algebraic, with each compact t£L singleton gene-
rated in that representation. By Theorem 1 (^(A); l.c.(S), L) is algebraic. By 
Lemma 21 l.c.(S)=S since S is finite, hence (2F (A); S, L) is algebraic and S and 
L are (abstractly) jointly algebraic. • 

Coro l l a ry 5. If SczT are two monoids and if L is an algebraic lattice for 
which the highest element 1 is compact and if T and L are jointly algebraic, then 
S and L are jointly algebraic. 

Proof . Let 91=(A; &>) be such that Z,=Su2I and T=End 91. We may 
assume each compact t£L is singleton generated in 91. For the triple (A; T, L) 
given by 91 we have (^(A); l.c.(S)., L) algebraic. In fact by Lemma 17 each 
compact t£L is singleton generated in this representation. In particular l£L 
which is compact by hypothesis is singleton generated. It follows that l.c.(S)= 5 
in that representation, hence {&(A); S, L) is algebraic and S, L are (abstractly) 
jointly algebraic. • 

Coro l l a ry 6. If the monoid T and the algebraic lattice L are jointly algebraic 
but not both infinite then every submonoid of T is jointly algebraic with L. 
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Proof . Follows now immediately from Corollaries 4 and 5. • 

Acknowledgement. The authors are grateful to Dr. L. Szabo for providing 
the short proof given above for Theorem 2. The original proof that a single generator 
representation could be obtained on the set of all finite sequences of a given repre-
sentation made use of [1], and required some tedious verification. 
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