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The algebraic representation of semigroups and lattices;
representing subsemigroups

N. W. SAUER and M. G. STONE

A-monoid S and a lattice L are jointly algebraic, if there is a universal algebra
A=(4,%) such that S=End W and L=SuU. The major result of this paper
is that if either S or L are finite and if they are jointly algebraic, then every sub-
monoid T of S is jointly algebraic with L. We prove a slightly stronger theorem.

§ 1. Introduction

We adopt the notation of [1] and [2]. If M is a set of partial functions on the
set 4 then we will write sometimes M ~ for # and we will use the following addi-
tional notation: I', Z denote systems of equations with coefficients from M. For
DcA, D=%(D;A,M)= () (SptZ is the set of all points on which X has a

_ DCSptx
solution). We write simply D if 4 and M are understood. For BC 4, ¥B=%(B; A,
M)= U D. We write &¥B if 4 and M are understood. If DCB and D is

D finite, DcB
finite we will henceforth write D ,B.

§ 2. Concrete Results

Lemma 1. If W is any algebra on A whose operations are all substitutive
with M and X is a system of equations over M, then Spt X is a subalgebra of 2.

Proof. It is enough to prove that Spt X is a subalgebra of U,,, the algebra of
all the operations substitutive over M. According to [1] Theorem 1 we have to show
that SptX=%(SptZX; 4, M). Now if DcSptZX, then D= () SptI'cSptZ and

DcSptr
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therefore S (SptX; A, M)= |J cUSptZ=SptZ. By [l] Lemma5, & is a clo-

Dc,SptZ
sure operator and hence Spt XC &£ (Spt Z; 4, M). O

Lemma 2. If DC sA then D is the subalgebra of Wy generated by D and
D=dom g for some partial identity function g€ M.

Proof. Let B be the subalgebra of U,, generated by D. Then by Theorem 1
of[1] B= (J C, thus DcB. Butalso D= () SptZ=Sptl for some system

cc,B DESptz
I by Lemma 2 of [1], and hence DE Su U, by Lemma 1 above. Thus D=B. Clearly
D=domg for g=idtSptI'*, and since SptI'c¢Su, we have gcM because
every identity on a subalgebra of U, is a partial endomorphism. O

Lemma 3. If D is finite, then 4(D; A, M)=%(D; A, M).
Proof. Note U, =Wy, hence the subalgebra generated by D is the same

in both algebras and the result follows from Lemma 2 above. 0O
Corollaryl F(B; A, M)= U %(D AM)= | %(D A, M)=%(B; A, M).
Dc,B

Definition 1. We will write the ordered triple (A; S, L) for a representation
of S as a transformation monoid on 4 and L as an algebraic intersection structure
on A (ie. L is a set of subsets of A, which forms by intersection an algebraic
lattice). Then St, (4; S, L) and Sty;(4; S, L) are abbreviations for the following
Statements:

St;(4; S,L): S= SUL,

(where if M is a set of partial functions on 4, M is the set of total functions
in #) and
St,(4; S, L): B=%(B; A, SUL)= B¢L.

If (4;S,L) and S=End A and L=SuA for some algebra A=(4, #) then
we will say that (4; S, L) is algebraic.

Remark. Then Theorem 3 of [1] reads (using also Theorem 4 of [2]): (4; S, L) '
is algebraic if and only if St, (4; S, L) and St, (4; S, L).

Lemma 5. If Sty(A4; S, L), then (4; SUL, L) is algebraic.

Proof. a) St; (4, SUL, L). Note that SULcSULUL. Put on the other
hand SULUL=44N[(44N(SUL)")UL] c44N[(SUL) " UL]"=44N(SUL) =
=8SUL. This proves St, (4; SUL, L) which says: SUL=SULUL.

* For a function fand ASdom f, fl4 denotes the restriction of fto 4.
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b) Sty (4, S SUL,L). We have (SUL)”"=(SULUL)" because obviously
(SUL)" <(SULUL)” and (SULUL)” =[(4*N(SUL)")UL]" c((SUL)"UL)" =
=(SUL)". Therefore, by Corollary 1, $(B; 4, SULUL)= Z(B; ASULUL)™) =
=%(B; 4,(SUL)")=%(B; 4, SUL). So, if B=%(B; 4, SULUL), then B=
=%(B; A, SUL) and hence BE€L because St,(4;S,L) holds. O

§ 3. Representations

Definition 2. If S is a monoid and L an algebraic lattice, then the partial
universal algebra (4; f),. gy, is a representation of S and L, if all of the operations
in S form a transformation monoid of 4, with (fg)(a)=f(g(a)), id (@)=a and
if all of the operations in L are partial identities with range p(range g=range(pAq)
and the 1 of the lattice is the identity transformation of 4. Furthermore we require
that a representation be faithful: for any two f, g€ S, f>g there exists an a€A
with f(a)>#g(a) and if for any two p,g€L, ps£q, range p“rangeq. We write
simply (4, f) for (4, f)sesy, When SUL is understood. Note (4, {f;f€S},
{f(4); feL)) iff (A, f)esur is a Tepresentation.

We will adopt the notions of [3) for homomorphism, subalgebra, embedding
of partial algebras and will also say that ®B is an extension of U if A is a sub-
algebra of B.

Definition 3. If (4;f),sy. is a representation of S and L then we will

write SUL* to emphasize the function closure cited in St, taken with respect
to that representation of S and L on A4.

Lemma 6. Let : A—~B be a homomorphism from the representation {A; f YresuL
into the representation {(B;f Yresure If the system X of equations with coefficients
in SUL has a solution h at some ac A, then X has also a solution Yyh at Yy(a)€B

Proof. If « is an assignment which satisfies X at a, then clearly Yo is an
assignment which satisfies 2 at y(a). O

Definition 4. Let (4;f)sy; be a representation of S and L and let
(4;: i€l) be a family of subalgebras of 4 with UA =A and (g;:i€l) homo-

morphisms from A4 onto 4; which leave A, elementw1se fixed. ((4;, ¢)): i€I)
is called a cover of (4;f)resur-

Lemma 7. If ((4;, 9): i€I) is a cover of (A;[Ypesur and he SUL", then
h=J h, with each heSUL".

iel

Proof. We prove that At A4;€ SUL*. For each a€ A; there exists a system
X whose unique solution at a is 4. If h(a)¢ 4;, then by applying ¢; and Lemma 6
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we observe that X has a solution at ¢,(a@)=a which is equal to ¢;(h(a))€4,;.
But then X has two different solutions at a, a contradiction. So A} A,€Af.
Because h€ SUL" there exists for every finite subset D of A, a system X whose
unique solution at D is h. .We will have proven that h} 4,€ SUL* if there
exists an assignment o of X at D for Dc A, with a(x)€4; for all the variables
x€XZ., If B is any assignment of X at D, then clearly ¢,f=a has the desired
property. Thus h=ighi for h;=h} A;. 0

Lemma 8. If ((4;, ) i€I) isacoverof (A4;f) and ﬁESULA and x€ AN A;,
then h(x)€A,NA;.

Proof. According to Lemma 7, ht A, €A4f and ht A;€A]s which implies
the assertion. O

§ 4. The Foliation of a Representation

Definition 5. If #=(A4;f) is a representation of S and L, and a€A,
then fa] is the subalgebra of % generated by {a}.

Definition 6. If #=(A4;f) is a representation of S and L, then F (%)=
=(F (A),f)resur> the foliation of #, is an extension of # which is constructed
as follows: for each x€A4, A] ={a,; a€A—[x]} and A4,=A47U[x],

| FA) = U 4,
x€A
with y€F (4) and f¢€ S,

J) if y€d,
MW =1(f(®), if y=a, and fla)c4—[x],
S(a) if y=a, and f(a)elx];
with y€F(4) and p€L,
p(y) i ye€4,

PO = {(p(a)), if y=a,.

(p(y) iseither y or is undefined).
Lemma 9. F(A) is a representation of S and L.

Proof. Let f, g, h€ S with (fg)=h. We want to prove that for all ycF(4),
f(g(y))=l1(y). This is clearly true for y€A4, so let y=a, and assume first that .
g(@)¢[x] and f(g(@))¢[x], so h(a)¢[x] and then: f(g(»))=f(g(a))=f((2(@):)=
=((f2)@),=(h(@):=h(a)=h(y). If g@¢[x] but f(g(@)€Elx], then h(a)€[x]
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and then: f(g())=/((g(@))=f(g@)=(R)(@)=h@=h(a)=h(y). If g(a)€[x].
then f(g(@)€lx] and h(a)[x] and then: f(g(3))=/(g(@.)=/(g(@)=(fe)@)=
=h(@)=h(a)=h(»).

If id is the unit element in S and y€#(4), then if y€A clearly id (y)=y
and if y=a, then a¢[x] and id(@)=ad[x] and hence id (a)=(id (a)),=a,.

Let p,q be two elements in L, then p(a,) is defined and equal to a, if
and only if p(a) is defined. But (on A4), range p/\range g=range (pAg) is equivalent
to the condition: (Vacd)[p(@) and q(a) are defined iff (pAg)(@) is defined].
Therefore p(a,) and g(a,) are defined iff (pAg)(a,) is defined. Furthermore
we have shown that the identity map on A extends to the identity map on £(4).
Observe that () is faithful iff £ is faithful. O

Definition 7. If (#)=(Z(4); )5y i the foliation of B={4; f)rcsuL>

then the maps @, (¢,; Xx€A4), (e,; X€A), (v,; x€A) are defined as follows:
) y if yedUA,,
Vve: F(A) - AUA, with v, (y) = {a i y=a, 2%

(v if yed,,
y= i yed—[x];
y if y€d,
a if y=a,

&: AUA, —~ A, with &.(y) = {

@: F(4) -~ A with ¢(y) = {

@, F(A) - A, with ¢, =¢,v,.

Lemma 10. Each of the maps above is a homomorphism onto the indicated
subalgebra of F(%).

Proof. a) v.. Because AU A, is a subalgebra, the restriction of v, to AUA,
is a homomorphism. First let a,€4, and f€S with f(a)¢[z]. Then v,(f(a))=
=v((f(@).) =@ =f(v:(ar)). If fla)€[z], then v,(f(a,))=v.(f(@)=F(a)=f(v:(a.))-
For peL, p is defined at a, iff p is defined at a and p(a)=a, and p(a)=a,
hence p(v:(a,))=p(a)=a=v.(a;)=v.(p(a,)).

b) ¢. This proof is almost identical to the one for v,.

c) &,. Because A, is a subalgebra of the representation (AUA,,f) of S and
L, the restriction of &, to A, is a homomorphism. So if y€4—[x] and f€S,
with f(3)¢[x], then e, f())=s(M=f(y)=r(e<(»)); further if f())€[x], then
e f(N=f)=f(y)=Ff(e.(»)). If p€L and p is defined at y€AZ, then p is
defined at y, and p(»)=y, p(y:)=yx hence p(e;(»))=p(yy)=y.=&.(»)=¢.(p(»))-

d) ¢.. ¢, is a homomorphism as a product of two homomorphisms. O

Lemma 11. The sets (A,: x€A) together with A and the maps (¢,: x€A)
and ¢ form a cover of F(R)=(F(A); f)resuL-
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Proof. Clearly (U 4,)UA=%(4) and furthermore 4 and each of the
xXEA

sets A, are subalgebras of #(£). By Lemma 10 the maps ¢, and (@,: x€A)
are homomorphisms which leave 4 and (A4,: x€ 4) pointwise fixed as required. O

Lemma 12. | ¢,(%(¢(D); 4, SUL))=%(D: #(4), SUL), for DS F(4).
x€4

Proof. If y€A then ¢(y)=y and if y=a,, then ¢@.0(¥)=9¢.0(a)=
=g, v.@(a,)=a,=y and hence we see by Lemma 6 that a system X of equations
has a solution at y iff Z has a solution at ¢(y). Furthermore X has a solution
at y€A iff Z has a solution at ¢,(y) for each x€ A4, because again ¢o,(y)=y.
(For yeA: ye[x]= o, (») =y, and y¢[x]= 00, (y)= y) This means that DcCSpt X
iff @(D)cSptZ. In fact for acA, aESptE iff ¥x€A, agix],a€SptZ, thus
U go,(AﬂSpt Z)=Spt Z. Hence

¢(D,#(4), SUL) = ﬂ Spt2= () - SptX=

cSptZ o(D)CSptZ

= N (U cD;(AﬂSPtZ))D Ul N tx<Px(/msptf)):>

®(D)CSptZ x€A x€A @(D)cSp
SUe( N NSptD))= U o ( N Spt*Z)=
x€A @(D)CSpt X x€A @(D)CSpt* 2

= xL€JA (Px(%((p(D)’ 4, SUL))

(cf. Lemma 6), where Spt* ¥ is the support in the original representation #=(4; f).
On the other hand, because ¢,=g,v, is one-to-one on A, we get

?(%(0(D); 4, SULD)=9,( (N Spt*X)= (1 ¢.(Spt*2) =
@(D)CSpt*Z @(D)CSpt*Z
= N ¢ (ANSptZ)c () SptZ =%(D;#(4), SUL). m]
@(D)cSptZ DcCSptZ

Lemma 13. UA 0.(#(9(B); 4, SUL))=%(B; #(4), SUL).
x€ .

Proof. Observe that ¢(D)C ;¢ (B)=3EC B such that ¢(E)=¢(D) hence
U ex(“@®); 4,5UD)= U o.(_ U €(e(D); 4,SUD) =

@(D)c, (B

= U ¢.(U ¢@E);4,5UD)= U (U o(%(pD); 4, SUL) =
x€4 EC,B DC,B x€4

= U_¢(D; F(4), SUL) = #(B; #(4), SUL) m]

Now by intersecting 4 with each of the expressions in Lemma 13 we have:

Corollary 3. &(¢(B); 4, SULY=%(B; #(4), SUL)NA.
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Definition 8. If #=(4;f) is a representation of S and L, then we write
Sty Z or St, {A4; f) tomean St, holds for the corresponding triple (see Definition 2):

Sta(d, {£: /€ S}, {f(4); feL}).
Lemma 14. If #={(A4;f) is a representation of S and L with St, #, and
F(R)Y=(F(A),f) is the foliation of R, then Sty F(R).
~ Proof. Let #(B; #(4), SUL)=B; then ¥(¢(B); A4, SUL)=¢(B) (other-
wise ANBC@(B)Z #(¢(B); A, SUL)c #(B; F(A4), SUL)N A=BN A). Hence there
is p€L with ¢@(B)=rangep in A. Then:

B=¢(B; #(4), SUL) = xLéJA 0. (#(p(B); 4, SUL)) = xLéJA ¢, 0(B) =

= U &v,0(B)= U &¢(B) = | &(range p in 4) = range p in F(4).
x€A x€A x€EA
Thus St, Z(£) holds. O
F(A4)

Lemma 15. If h¢SUL™, then m=ht AcSUL", and for all a.cF(4),
ha)=(ma), if m(@4¢[x] and h{a)=m(a) otherwise.

Proof. By Lemma 7 and Lemma 11 A=mU(J h,) with me SUL", and
x€A

hya,=h€ SUL"*. Now to each a,€F(A) there is a system Z, such that % is
the unique solution to X on {a,a.}. Thus m is the unique solution to X at
a and A, isthe unique solution to 2 at a,. Note m is a solution to 2 at a and
¢, is a homomorphism, thus by Lemma 6, ¢,m is a solution to X at a,=¢,(a).
But 7 is the unique solution to X at a,, thus k(a,)=¢.(ma)=¢v.(ma)=¢,(ma).
Hence if ma¢[x], h(a,)=(ma), and if ma€[x], h(a,)=ma. O

Corollary 3. If he SUL®™ and if (ht A)ES on B then he S on F(R).

Definition 9. If #=(4;f) is a representation of S and L and hcA44,
then we write 4 is in the one closure of S in 2 (or shortly h€oc (S), or hcoc(S))
if for each a€A there exists f€S with h(a)=f(a). Local closure of S is denoted
by L.c.(S).

Lemma 16. If h€ SULf(A), then m=(ht A) is in the one closure of S in A.

Proof. Assume there is a€ A such that for all €S f(a)=m(a)=h(a). Then
there exists a system X of equations, whose unique solution at a is m(a)4[a].
The unique solution of X at g@,(@)=a is ¢, (m(a))=(m(a)),=m(a) which is a
contradiction. O

Definition 10. The representation #2=(4,f) of S and L on A4 is
algebraic, if the corresponding triple (4; S, L) is algebraic..
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Definition 11. oc F(B)=(F (4); [Yrcocyur Where R=(A4;[Ycsu. 2 Te-
presentation of S and L on A4 and the action of the operations in oc (S)UL are
as determined in SUL*",

Lemma 17. If the representation (A; S, L) has each compact t€L singleton
generated, then (#(A); S, L) also has each compact t€L singleton generated.

Proof. Observe that for all a€A4, we have for each péL 3Ix[a.€p in
(#(4); S, L)] iff [a€p on (F(4); S, L)] iff Vx[a.ep in (F(4); S, L)].

Lemma 18. Let (B; S, L) satisfy St,. Suppose a,bEB are such that for
every peL [acp=>bEp). Then each system of equations L over SUL which has
a solution at a also has a solution at b.

Proof. Let Z be a system of equations over SUL which has a solution
at a. Spt X denotes the set of all points in B on which X has a solution. Clearly
SptZ= U N SptI'=%(Spt Z; B, SUL) hence by St,(B; S, L), Spt Z¢ L.

Dc,SptX DESptT

Hence b€SptX as required. O

Lemma 19. Given (B; S, L) which satisfies St, and for which each compact
te L is singleton generated, if h€ SUL? and heoc (S) on (B; S, L) then hele.(S)
on (B; S, L).

Proof. Fix {b,...,b,}cB. Let pcL be generated by {b,,...,b,}; thus
p- is compact, and there exists b€ B which generates p as well. Let 2 be a system
of equations with coefficients from SUL such that # is the unique solution on
{b, by, by, ..., b,}. Since h€oc(S) there is some f€S with f(b)=h(b). Hence
h is also the unique solution on {b} to the system I' = XU { fx,=x,}. By Lemma 18
I’ has also a solution on each b;, i=1,...,n. But I'22 so the solution to I' on
{by, ..., b,} is h. On the other hand (fxo=x)€I" hence the solution to I' on
{6y, ..., by} is f. Thus f(b)=h(b) for i=1,...,n, so hclc.(S) asrequired. O

Lemma 20. Let N be a monoid and L an algebraic lattice such that (4; N, L)
with Sty (A; N, L), thenif S is a submonoid of N we have St, (4; S, L).

Proof. Clearly 4(D; A, NUL)c%(D; A, SUL) and hence for each BCA,
BCcY(B; A, NUL)c#(B; A, SUL). So if B=9%(B; A, SUL) we get B=
=%(B; A, NUL) and then B€L in (4; N, L). O

Theorem 1. If (A; N, L) is algebraic and each compact t€L is singleton
generated in that representation then for each submonoid SEN we have
(F(AQ); 1.c.(S), L) is algebraic, where 1.c.(S) is the local closure of S in the repre-
sentation (F(A4); S, L).
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Proof. Let (4;N, L) satisfy the hypothesis of the theorem and let S be
asubmonoid of N. By Lemma 20 (4; S, L) satisfies St,, and clearly each compact
t€L is singleton generated in (4; S, L) as well. By Lemmas 14 and 17 (#(4); S, L)
also satisfies St, and each compact ¢¢€ L is singleton generated in that representation.
Furthermore by Lemma 5 (#(4); SUL®Y, L) is algebraic, and here again each
compact t€L is singleton generated. We claim that m’%‘)ﬂ.c.(S), the local
closure of S in (#(4); S, L); this will establish the result of the Theorem.
Evidently ﬁ?“’”gl.c. (S) so really only the other containment need be argued.
Let he SUL®“Y. Note At Acoc (S) in (#(4); S, L), since by Lemma 16 we
have m=ht A€oc(S) in (4; S,L). In fact h€oc(S) in (F(4); S, L). To
see that we need only check %(a,) for a,€F(A). If h(a)¢[x] we get h(a)=
=(h(a)),=(f(a)), for some f€S and if h(a)€[x] we get h(a)=ha=fa=f(a,)
for some f€S by use of Lemma 15 and the definition of action by § in F(4)
(see Defn. 6). Now apply Lemma 19 with (B; S, L)=(#(4); S, L) to get

he SUL“’Noc (S)=helc(S) on (F(4); S, L) as required. a
Lemma 21. The local closure of any finite monoid S is equal to S.

Proof. Let the monoid S be represented on some set A4 and assume that
h€local closure S and 44 S. For each f€S let a;€4 be such that h(a,)#=f(ay)
then D={a,; fe S} is finite and clearly h} D=f} D for any f¢S, contrary to
the selection of % in the local closure of S. Hence each 4 in local closure S also
belongs to S. 0

Theorem 2. For each universal algebra U there is a universal algebra B
satisfying End A~End B and SuWU=SuB; moreover every finitely generated
subalgebra of B is generated by a single element.

Proof. Let U=(4, F), S=End ¥ and L=SuU. For any CSA we set
C*= O C". (Remark that we do not distinguish between C and C! and thus
n=1

CEC*) With any @€ S we associate a transformation ¢*: 4*~A4* defined by
o*((x1s s x))=(@(xD), ..., @(x))s (%1, ..., x)€A*. Let  S*={p*lpcS} and
L*={C*|CeL}. Then S*= S and L*= L. We shall construct an algebra B={4*, G)
such that S*=End B, L*=Su B and every finitely generated subalgebra of B
is generated by a single element.

Let gy, g, be unary operations and % a binary operation on A* defined by
the rules:

gl((x19 seey xk)):‘ X1 gz((xn (] xk)) = (xka X1y eees xk—l)
and

h((‘xl’ Teey xk)a (y15 AR .YI)) = (xla ceey Xigs V15 w00 yl)
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for every (xy,...,xy), (31, --., ¥)€A*. Furthermore, with each operation f¢F
we associate an operation fy on A* as follows. The arity of f; equals the one
of f and fg is defined by

f%((x}, sees x}:])’ cies (x:’ ,xﬁ,.)) =f(x%’ (SR x{)’ (X§, L] X;.‘i)EA*, i= l, ceey R

Now set G={/glf€F}U{g,, g., 4}

First consider End B. It is clear that S*CEnd 8. Let &¢End B. If x¢c4
then ®(x)=®(g,(x))=g1(P(x))€4 showing that &} A=¢cA* Furthermore,
if feF is n-ary and x;,..,x,€4, then @(f(x1, ... x))=P(fu(>1, ..o x))=
=f - (P(x); ..., D(x))=f(@p (xD), ..., 9 (x,)), i.e. &+ A=¢p€End U=S. Now we show
by induction on k that (1) ®((xy, ..., x))=(@(x), .-, @(Xp)), (x1, ..., X )€A*. If
k=1 then (I) holds. Supppose (1) holds for k—1. Then &((x,, ..., x))=
= Q(h((xl, cees X—1)s xk))=h(‘p((x1’ ces Xg—1)s ds(xk))sh(((l7(xl)a cees (0(_?‘k—1)), (p(xk))z
=(p(xy, ..., (x,)). Hence d=¢*cS*

Now consider Su B. It is clear that L*CSu®B. Let B¢SuB. Taking into
account that gy, g, and 4 are operations of B, one can show that B=(BNA)*.
Furthermore, BNA€SuU=L. B=(BNA)*€L*. Finally, if a subalgebra B of
B is generated by the elements (xI, ..., x,%l), e (15 ees x,'(l)EA* then B is also
generated by (x], ..., x,ﬁl, e X3y ey x;.)EA* which completes the proof. O

Corollary 4. Ifthe monoid N and the algebraic lattice L are jointly algebraic
and S is a finite submonoid of N, then S and L are jointly algebraic.

Proof. Let (4; N, L) be algebraic, with each compact t€L singleton gene-
rated in that representation. By Theorem 1 (& (4);1c.(S), L) is algebraic. By
Lemma 21 l.c.(S)=S since S is finite, hence (."/7 4); S, L) is algebraic and S and
L are (abstractly) jointly algebraic. O

Corollary 5. If ScT are two monoids and if L is an algebraic lattice for
which the highest element 1 is compact and if T and L are jointly algebraic, then
S and L are jointly algebraic.

Proof. Let A=(4; 2) be such that L=Su WA and T=End A. We may
assume each compact t€L is singleton generated in . For the triple (4; T, L)
given by A we have (F(A4);Llc(S)., L) algebraic. In fact by Lemma 17 each
compact t€L is singleton generated in this representation. In particular 1¢L
which is compact by hypothesis is singleton generated. It follows that lLc.(S)=S
in that representation, hence (#(A4); S, L) is algebraic and S, L are (abstractly)
jointly algebraic. O

Corollary 6. If the monoid T and the algebrdic lattice L are jointly algebraic
but not both infinite then every submonoid of T is jointly algebraic with L.
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Proof. Follows now immediately from Corollaries 4 and 5. a
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