The algebraic representation of semigroups and lattices; representing subsemigroups

N. W. SAUER and M. G. STONE

A monoid S and a lattice L are *jointly algebraic*, if there is a universal algebra $\mathfrak{A} = \langle A, \mathscr{P} \rangle$ such that $S \cong \text{End } \mathfrak{A}$ and $L \cong \text{Su } \mathfrak{A}$. The major result of this paper is that if either S or L are finite and if they are jointly algebraic, then every submonoid T of S is jointly algebraic with L. We prove a slightly stronger theorem.

§ 1. Introduction

We adopt the notation of [1] and [2]. If M is a set of partial functions on the set A then we will write sometimes M^{\sim} for \tilde{M} and we will use the following additional notation: Γ , Σ denote systems of equations with coefficients from M. For $D \subset A$, $\bar{D} = \mathscr{C}(D; A, M) = \bigcap_{D \subset \operatorname{Spt}\Sigma}$ (Spt Σ is the set of all points on which Σ has a solution). We write simply \bar{D} if A and M are understood. For $B \subset A$, $\mathscr{SB} = \mathscr{S}(B; A, M) = \bigcup_{\substack{D \subset \operatorname{Spt}\Sigma}} \bar{D}$. We write \mathscr{SB} if A and M are understood. If $D \subset B$ and D is finite, $D \subset B$ finite, $D \subset B$.

inite we will henceforth write $D \subset f B$.

§ 2. Concrete Results

Lemma 1. If \mathfrak{A} is any algebra on A whose operations are all substitutive with M and Σ is a system of equations over M, then Spt Σ is a subalgebra of \mathfrak{A} .

Proof. It is enough to prove that $\operatorname{Spt} \Sigma$ is a subalgebra of \mathfrak{A}_M , the algebra of all the operations substitutive over M. According to [1] Theorem 1 we have to show that $\operatorname{Spt} \Sigma = \mathscr{S}(\operatorname{Spt} \Sigma; A, M)$. Now if $D \subset \operatorname{Spt} \Sigma$, then $\overline{D} = \bigcap_{D \subset \operatorname{Spt} \Gamma} \operatorname{Spt} \Gamma \subset \operatorname{Spt} \Sigma$ and

Received April 19, 1978; in revised form January 31, 1979.

This research was supported in part by the National Research Council of Canada Operating Grants A7213 and A8094.

therefore $\mathscr{S}(\operatorname{Spt} \Sigma; A, M) = \bigcup_{\substack{D \subset_f \operatorname{Spt} \Sigma \\ \mathcal{D} \subset \mathcal{G}}} \subset \bigcup \operatorname{Spt} \Sigma = \operatorname{Spt} \Sigma$. By [1] Lemma 5, \mathscr{S} is a closure operator and hence $\operatorname{Spt} \Sigma \subset \mathscr{S}(\operatorname{Spt} \Sigma; A, M)$.

Lemma 2. If $D \subset_f A$ then \overline{D} is the subalgebra of \mathfrak{A}_M generated by D and $\overline{D} = \text{dom } g$ for some partial identity function $g \in \widetilde{M}$.

Proof. Let *B* be the subalgebra of \mathfrak{A}_M generated by *D*. Then by Theorem 1 of [1] $B = \bigcup_{C \subset \mathcal{I}B} \overline{C}$, thus $\overline{D} \subset B$. But also $\overline{D} = \bigcap_{D \subseteq \operatorname{Spt}\Sigma} \operatorname{Spt}\Sigma = \operatorname{Spt}\Gamma$ for some system Γ by Lemma 2 of [1], and hence $\overline{D} \in \operatorname{Su}\mathfrak{A}_M$ by Lemma 1 above. Thus $\overline{D} = B$. Clearly $\overline{D} = \operatorname{dom} g$ for $g = \operatorname{id} \operatorname{Spt}\Gamma^*$, and since $\operatorname{Spt}\Gamma \in \operatorname{Su}\mathfrak{A}_M$ we have $g \in \widetilde{\mathcal{M}}$ because every identity on a subalgebra of \mathfrak{A}_M is a partial endomorphism. \Box

Lemma 3. If D is finite, then $\mathscr{C}(D; A, M) = \mathscr{C}(D; A, \tilde{M})$.

Proof. Note $\mathfrak{A}_M = \mathfrak{A}_M$, hence the subalgebra generated by D is the same in both algebras and the result follows from Lemma 2 above.

Corollary 1.
$$\mathscr{G}(B; A, M) = \bigcup_{D \subset_{f} B} \mathscr{C}(D; A, M) = \bigcup_{D \subset_{f} B} \mathscr{C}(D; A, \tilde{M}) = \mathscr{G}(B; A, \tilde{M}).$$

Definition 1. We will write the ordered triple (A; S, L) for a representation of S as a transformation monoid on A and L as an algebraic intersection structure on A (i.e. L is a set of subsets of A, which forms by intersection an algebraic lattice). Then $St_1(A; S, L)$ and $St_2(A; S, L)$ are abbreviations for the following statements:

$$\operatorname{St}_1(A; S, L): S \Rightarrow S \overline{\bigcup} L,$$

(where if M is a set of partial functions on A, \overline{M} is the set of total functions in \widetilde{M}) and

$$\operatorname{St}_2(A; S, L): B = \mathscr{S}(B; A, S \cup L) \Rightarrow B \in L.$$

If (A; S, L) and $S = \text{End } \mathfrak{A}$ and $L = \text{Su } \mathfrak{A}$ for some algebra $\mathfrak{A} = \langle A, \mathscr{P} \rangle$ then we will say that (A; S, L) is *algebraic*.

Remark. Then Theorem 3 of [1] reads (using also Theorem 4 of [2]): (A; S, L) is algebraic if and only if $St_1(A; S, L)$ and $St_2(A; S, L)$.

Lemma 5. If $St_2(A; S, L)$, then $(A; \overline{S \cup L}, L)$ is algebraic.

Proof. a) St₁(A, $\overline{S \cup L}$, L). Note that $\overline{S \cup L} \subset \overline{S \cup L} \cup L$. Put on the other nand $\overline{\overline{S \cup L} \cup L} = A^A \cap [(A^A \cap (S \cup L)^{\sim}) \cup L]^{\sim} \subset A^A \cap [(S \cup L)^{\sim} \cup L]^{\sim} = A^A \cap (S \cup L)^{\sim} = \overline{S \cup L}$. This proves St₁(A; $\overline{S \cup L}$, L) which says: $\overline{S \cup L} = \overline{S \cup L} \cup L$.

^{*} For a function f and $A \subseteq \text{dom } f, f \mid A$ denotes the restriction of f to A.

b) St₂ (A, $\overline{S \cup L}$, L). We have $(S \cup L)^{\sim} = (\overline{S \cup L} \cup L)^{\sim}$ because obviously $(S \cup L)^{\sim} \subset (\overline{S \cup L} \cup L)^{\sim}$ and $(\overline{S \cup L} \cup L)^{\sim} = [(A^{4} \cap (S \cup L)^{\sim}) \cup L]^{\sim} \subset ((S \cup L)^{\sim} \cup L)^{\sim} =$ $= (S \cup L)^{\sim}$. Therefore, by Corollary 1, $\mathscr{G}(B; A, \overline{S \cup L} \cup L) = \mathscr{G}(B; A(\overline{S \cup L} \cup L)^{\sim}) =$ $= \mathscr{G}(B; A, (S \cup L)^{\sim}) = \mathscr{G}(B; A, S \cup L)$. So, if $B = \mathscr{G}(B; A, \overline{S \cup L} \cup L)$, then B = $= \mathscr{G}(B; A, S \cup L)$ and hence $B \in L$ because St₂ (A; S, L) holds. \Box

§ 3. Representations

Definition 2. If S is a monoid and L an algebraic lattice, then the partial universal algebra $\langle A; f \rangle_{f \in S \cup L}$ is a representation of S and L, if all of the operations in S form a transformation monoid of A, with (fg)(a)=f(g(a)), id (a)=a and if all of the operations in L are partial identities with range $p \cap \text{range } q=\text{range}(p \land q)$ and the 1 of the lattice is the identity transformation of A. Furthermore we require that a representation be faithful: for any two $f, g \in S, f \neq g$ there exists an $a \in A$ with $f(a) \neq g(a)$ and if for any two $p, q \in L, p \neq q$, range $p \neq \text{range } q$. We write simply $\langle A, f \rangle$ for $\langle A, f \rangle_{f \in S \cup L}$ when $S \cup L$ is understood. Note $\{A, \{f; f \in S\}, \{f(A); f \in L\}\}$ iff $\langle A, f \rangle_{f \in S \cup L}$ is a representation.

We will adopt the notions of [3] for homomorphism, subalgebra, embedding of partial algebras and will also say that \mathfrak{B} is an extension of \mathfrak{A} if \mathfrak{A} is a sub-algebra of \mathfrak{B} .

Definition 3. If $\langle A; f \rangle_{f \in S \cup L}$ is a representation of S and L then we will write $\overline{S \cup L}^A$ to emphasize the function closure cited in St₁ taken with respect to that representation of S and L on A.

Lemma 6. Let $\psi: A \rightarrow B$ be a homomorphism from the representation $\langle A; f \rangle_{f \in S \cup L}$ into the representation $\langle B; f \rangle_{f \in S \cup L}$. If the system Σ of equations with coefficients in $S \cup L$ has a solution h at some $a \in A$, then Σ has also a solution ψ h at $\psi(a) \in B$

Proof. If α is an assignment which satisfies Σ at a, then clearly $\psi \alpha$ is an assignment which satisfies Σ at $\psi(a)$.

Definition 4. Let $\langle A; f \rangle_{f \in S \cup L}$ be a representation of S and L and let $(A_i: i \in I)$ be a family of subalgebras of A with $\bigcup_{i \in I} A_i = A$ and $(\varphi_i: i \in I)$ homomorphisms from A onto A_i which leave A_i elementwise fixed. $((A_i, \varphi_i): i \in I)$ is called a *cover* of $\langle A; f \rangle_{f \in S \cup L}$.

Lemma 7. If $((A_i, \varphi_i): i \in I)$ is a cover of $\langle A; f \rangle_{f \in S \cup L}$ and $h \in \overline{S \cup L}^A$, then $h = \bigcup_{i \in I} h_i$ with each $h_i \in \overline{S \cup L}^{A_i}$.

Proof. We prove that $h
i A_i \in \overline{S \cup L}^{A_i}$. For each $a \in A_i$ there exists a system Σ whose unique solution at a is h. If $h(a) \notin A_i$, then by applying φ_i and Lemma 6

we observe that Σ has a solution at $\varphi_i(a) = a$ which is equal to $\varphi_i(h(a)) \in A_i$. But then Σ has two different solutions at a, a contradiction. So $h \models A_i \in A_i^{A_i}$. Because $h \in \overline{S \cup L}^A$ there exists for every finite subset D of A_i a system Σ whose unique solution at D is h. We will have proven that $h \models A_i \in \overline{S \cup L}^{A_i}$ if there exists an assignment α of Σ at D for $D \subset_f A_i$ with $\alpha(x) \in A_i$ for all the variables $x \in \Sigma$. If β is any assignment of Σ at D, then clearly $\varphi_i \beta = \alpha$ has the desired property. Thus $h = \bigcup_{i \in I} h_i$ for $h_i = h \models A_i$.

Lemma 8. If $((A_i, \varphi_i): i \in I)$ is a cover of $\langle A; f \rangle$ and $h \in \overline{S \cup L}^A$ and $x \in A_i \cap A_j$, then $h(x) \in A_i \cap A_j$.

Proof. According to Lemma 7, $h \nmid A_i \in A_i^{A_i}$ and $h \restriction A_j \in A_j^{A_j}$ which implies the assertion.

§ 4. The Foliation of a Representation

Definition 5. If $\mathscr{R} = \langle A; f \rangle$ is a representation of S and L, and $a \in A$, then [a] is the subalgebra of \mathscr{R} generated by $\{a\}$.

Definition 6. If $\mathscr{R} = \langle A; f \rangle$ is a representation of S and L, then $\mathscr{F}(\mathscr{R}) = \langle \mathscr{F}(A), f \rangle_{f \in S \cup L}$, the *foliation* of \mathscr{R} , is an extension of \mathscr{R} which is constructed as follows: for each $x \in A, A_x^- = \{a_x; a \in A - [x]\}$ and $A_x = A_x^- \cup [x]$,

$$\mathcal{F}(A) = \bigcup_{x \in A} A_x;$$

with $y \in \mathcal{F}(A)$ and $f \in S$,

$$f(y) = \begin{cases} f(y) & \text{if } y \in A, \\ (f(a))_x & \text{if } y = a_x \text{ and } f(a) \in A - [x], \\ f(a) & \text{if } y = a_x \text{ and } f(a) \in [x]; \end{cases}$$

with $y \in \mathcal{F}(A)$ and $p \in L$,

$$p(y) = \begin{cases} p(y) & \text{if } y \in A, \\ (p(a))_x & \text{if } y = a_x. \end{cases}$$

(p(y) is either y or is undefined).

Lemma 9. $\mathcal{F}(\mathcal{R})$ is a representation of S and L.

Proof. Let $f, g, h \in S$ with (fg) = h. We want to prove that for all $y \in \mathscr{F}(A)$, f(g(y)) = h(y). This is clearly true for $y \in A$, so let $y = a_x$ and assume first that $g(a) \notin [x]$ and $f(g(a)) \notin [x]$, so $h(a) \notin [x]$ and then: $f(g(y)) = f(g(a_x)) = f((g(a))_x) = = ((fg)(a))_x = (h(a))_x = h(a_x) = h(y)$. If $g(a) \notin [x]$ but $f(g(a)) \notin [x]$, then $h(a) \notin [x]$

and then: $f(g(y)) = f((g(a))_x) = f(g(a)) = (fg)(a) = h(a) = h(a_x) = h(y)$. If $g(a) \in [x]$. then $f(g(a)) \in [x]$ and $h(a) \in [x]$ and then: $f(g(y)) = f(g(a_x)) = f(g(a)) = (fg)(a) = (fg)(a)$ $=h(a)=h(a_x)=h(y).$

If id is the unit element in S and $y \in \mathcal{F}(A)$, then if $y \in A$ clearly id (y) = yand if $y=a_x$ then $a \notin [x]$ and $id(a)=a \notin [x]$ and hence $id(a_x)=(id(a))_x=a_x$.

Let p, q be two elements in L, then $p(a_x)$ is defined and equal to a_x if and only if p(a) is defined. But (on A), range $p \cap range q = range (p \land q)$ is equivalent to the condition: $(\forall a \in A) [p(a) \text{ and } q(a) \text{ are defined iff } (p \land q)(a) \text{ is defined}].$ Therefore $p(a_x)$ and $q(a_x)$ are defined iff $(p \wedge q)(a_x)$ is defined. Furthermore we have shown that the identity map on A extends to the identity map on $\mathcal{F}(A)$. Observe that $\mathcal{F}(\mathcal{R})$ is faithful iff \mathcal{R} is faithful. Π

Definition 7. If $(\mathcal{R}) = \langle \mathcal{F}(A); f \rangle_{f \in S \cup L}$ is the foliation of $\mathcal{R} = \langle A; f \rangle_{f \in S \cup L}$, then the maps φ , $(\varphi_x; x \in A)$, $(\varepsilon_x; x \in A)$, $(v_x; x \in A)$ are defined as follows:

$$v_{x}: \mathscr{F}(A) \to A \cup A_{x} \text{ with } v_{x}(y) = \begin{cases} y & \text{if } y \in A \cup A_{x}, \\ a & \text{if } y = a_{z}, z \neq x; \end{cases}$$
$$\varepsilon_{x}: A \cup A_{x} \to A_{x} \text{ with } \varepsilon_{x}(y) = \begin{cases} y & \text{if } y \in A_{x}, \\ y_{x} & \text{if } y \in A_{-}[x]; \end{cases}$$
$$\varphi: \mathscr{F}(A) \to A \text{ with } \varphi(y) = \begin{cases} y & \text{if } y \in A, \\ a & \text{if } y = a_{x}; \end{cases}$$
$$\varphi_{x}: \mathscr{F}(A) \to A_{x} \text{ with } \varphi_{x} = \varepsilon_{x}v_{x}. \end{cases}$$

Lemma 10. Each of the maps above is a homomorphism onto the indicated subalgebra of $\mathcal{F}(\mathcal{R})$.

Proof. a) v_x . Because $A \cup A_x$ is a subalgebra, the restriction of v_x to $A \cup A_x$ is a homomorphism. First let $a_z \in A_z$ and $f \in S$ with $f(a) \notin [z]$. Then $v_x(f(a_z)) =$ $=v_{x}((f(a))_{z})=f(a)=f(v_{x}(a_{z})). \text{ If } f(a)\in[z], \text{ then } v_{x}(f(a_{z}))=v_{x}(f(a))=f(a)=f(v_{x}(a_{z})).$ For $p \in L$, p is defined at a_z iff p is defined at a and $p(a_z) = a_z$ and $p(a) = a_z$. hence $p(v_x(a_z)) = p(a) = a = v_x(a_z) = v_x(p(a_z)).$

b) φ . This proof is almost identical to the one for v_x .

c) ε_x . Because A_x is a subalgebra of the representation $\langle A \cup A_x, f \rangle$ of S and L, the restriction of ε_x to A_x is a homomorphism. So if $y \in A - [x]$ and $f \in S$, with $f(y) \notin [x]$, then $\varepsilon_x f(y) = f(y)_x = f(y_x) = f(\varepsilon_x(y))$; further if $f(y) \in [x]$, then $\varepsilon_x f(y) = f(y) = f(\varphi_x) = f(\varepsilon_x(y))$. If $p \in L$ and p is defined at $y \in A_x^-$, then p is defined at y_x and p(y) = y, $p(y_x) = y_x$ hence $p(\varepsilon_x(y)) = p(y_x) = y_x = \varepsilon_x(y) = \varepsilon_x(p(y))$.

d) φ_x . φ_x is a homomorphism as a product of two homomorphisms.

Lemma 11. The sets $(A_x: x \in A)$ together with A and the maps $(\varphi_x: x \in A)$ and φ form a cover of $\mathscr{F}(\mathscr{R}) = \langle \mathscr{F}(A); f \rangle_{f \in S \cup L}$.

Proof. Clearly $(\bigcup_{x \in A} A_x) \cup A = \mathscr{F}(A)$ and furthermore A and each of the sets A_x are subalgebras of $\mathscr{F}(\mathscr{R})$. By Lemma 10 the maps φ , and $(\varphi_x: x \in A)$ are homomorphisms which leave A and $(A_x: x \in A)$ pointwise fixed as required. \Box

Lemma 12.
$$\bigcup_{x \in A} \varphi_x(\mathscr{C}(\varphi(D); A, S \cup L)) = \mathscr{C}(D; \mathscr{F}(A), S \cup L), \text{ for } D \subseteq \mathscr{F}(A).$$

Proof. If $y \in A$ then $\varphi(y) = y$ and if $y = a_x$, then $\varphi_x \varphi(y) = \varphi_x \varphi(a_x) = = \varepsilon_x v_x \varphi(a_x) = a_x = y$ and hence we see by Lemma 6 that a system Σ of equations has a solution at y iff Σ has a solution at $\varphi(y)$. Furthermore Σ has a solution at $y \in A$ iff Σ has a solution at $\varphi_x(y)$ for each $x \in A$, because again $\varphi \varphi_x(y) = y$. (For $y \in A: y \in [x] \Rightarrow \varphi \varphi_x(y) = y$, and $y \notin [x] \Rightarrow \varphi \varphi_x(y) = y$.) This means that $D \subset \operatorname{Spt} \Sigma$ iff $\varphi(D) \subset \operatorname{Spt} \Sigma$. In fact for $a \in A$, $a \in \operatorname{Spt} \Sigma$ iff $\forall x \in A, a \notin [x], a_x \in \operatorname{Spt} \Sigma$, thus $\bigcup_{x \in A} \varphi_x(A \cap \operatorname{Spt} \Sigma) = \operatorname{Spt} \Sigma$. Hence

$$\mathscr{C}(D,\mathscr{F}(A), S \cup L) = \bigcap_{D \subset \operatorname{Spt} \Sigma} \operatorname{Spt} \Sigma = \bigcap_{\varphi(D) \subset \operatorname{Spt} \Sigma} \operatorname{Spt} \Sigma = \\ = \bigcap_{\varphi(D) \subset \operatorname{Spt} \Sigma} \left(\bigcup_{x \in A} \varphi_x(A \cap \operatorname{Spt} \Sigma) \right) \supset \bigcup_{x \in A} \left(\bigcap_{\varphi(D) \subset \operatorname{Spt} \Sigma} \varphi_x(A \cap \operatorname{Spt} \Sigma) \right) \supset \\ \supset \bigcup_{x \in A} \varphi_x \left(\bigcap_{\varphi(D) \subset \operatorname{Spt} \Sigma} (A \cap \operatorname{Spt} \Sigma) \right) = \bigcup_{x \in A} \varphi_x \left(\bigcap_{\varphi(D) \subset \operatorname{Spt} \Sigma} \operatorname{Spt}^* \Sigma \right) = \\ = \bigcup_{x \in A} \varphi_x (\mathscr{C}(\varphi(D), A, S \cup L))$$

(cf. Lemma 6), where Spt^{*} Σ is the support in the original representation $\Re = \langle A; f \rangle$. On the other hand, because $\varphi_x = \varepsilon_x v_x$ is one-to-one on A, we get

$$\varphi_{x}(\mathscr{C}(\varphi(D); A, S \cup L)) = \varphi_{x}(\bigcap_{\varphi(D) \subset \operatorname{Spt}^{*}\Sigma} \operatorname{Spt}^{*}\Sigma) = \bigcap_{\varphi(D) \subset \operatorname{Spt}^{*}\Sigma} \varphi_{x}(\operatorname{Spt}^{*}\Sigma) = \bigcap_{\varphi(D) \subset \operatorname{Spt}\Sigma} \varphi_{x}(A \cap \operatorname{Spt}\Sigma) \subset \bigcap_{D \subset \operatorname{Spt}\Sigma} \operatorname{Spt}\Sigma = \mathscr{C}(D; \mathscr{F}(A), S \cup L).$$

Lemma 13. $\bigcup_{x \in A} \varphi_x (\mathscr{G}(\varphi(B); A, S \cup L)) = \mathscr{G}(B; \mathscr{F}(A), S \cup L).$

Proof. Observe that $\varphi(D) \subset_f \varphi(B) \Rightarrow \exists E \subset_f B$ such that $\varphi(E) = \varphi(D)$ hence

$$\bigcup_{x \in A} \varphi_x \Big(\varphi(\varphi(B); A, S \cup L) \Big) = \bigcup_{x \in A} \varphi_x \Big(\bigcup_{\varphi(D) \subset_f \varphi(B)} \mathscr{C}(\varphi(D); A, S \cup L) \Big) =$$

=
$$\bigcup_{x \in A} \varphi_x \Big(\bigcup_{E \subset_f B} \mathscr{C}(\varphi(E); A, S \cup L) \Big) = \bigcup_{D \subset_f B} \Big(\bigcup_{x \in A} \varphi_x \big(\mathscr{C}(\varphi(D); A, S \cup L) \big) \Big) =$$

=
$$\bigcup_{D \subset_f B} \mathscr{C}(D; \mathscr{F}(A), S \cup L) = \mathscr{P}(B; \mathscr{F}(A), S \cup L).$$

Now by intersecting A with each of the expressions in Lemma 13 we have: Corollary 2. $\mathscr{G}(\varphi(B); A, S \cup L) = \mathscr{G}(B; \mathscr{F}(A), S \cup L) \cap A$.

.

Definition 8. If $\Re = \langle A; f \rangle$ is a representation of S and L, then we write St₂ \Re or St₂ $\langle A; f \rangle$ to mean St₂ holds for the corresponding triple (see Definition 2): St₂(A, {f; f \in S}, {f(A); f \in L}).

Lemma 14. If $\Re = \langle A; f \rangle$ is a representation of S and L with $\operatorname{St}_2 \Re$, and $\mathscr{F}(\Re) = \langle \mathscr{F}(A), f \rangle$ is the foliation of \Re , then $\operatorname{St}_2 \mathscr{F}(\Re)$.

Proof. Let $\mathscr{S}(B; \mathscr{F}(A), S \cup L) = B$; then $\mathscr{S}(\varphi(B); A, S \cup L) = \varphi(B)$ (otherwise $A \cap B \subset \varphi(B) \subsetneqq \mathscr{S}(\varphi(B); A, S \cup L) \subset \mathscr{S}(B; \mathscr{F}(A), S \cup L) \cap A = B \cap A)$. Hence there is $p \in L$ with $\varphi(B) = \text{range } p$ in A. Then:

$$B = \mathscr{G}(B; \mathscr{F}(A), S \cup L) = \bigcup_{x \in A} \varphi_x (\mathscr{G}(\varphi(B); A, S \cup L)) = \bigcup_{x \in A} \varphi_x \varphi(B) =$$

$$= \bigcup_{x \in A} \varepsilon_x v_x \varphi(B) = \bigcup_{x \in A} \varepsilon_x \varphi(B) = \bigcup_{x \in A} \varepsilon_x (\text{range } p \text{ in } A) = \text{range } p \text{ in } \mathscr{F}(A).$$

Thus $\operatorname{St}_2 \mathscr{F}(\mathscr{R})$ holds.

Lemma 15. If $h \in \overline{S \cup L}^{\mathcal{F}(A)}$, then $m = h \mid A \in \overline{S \cup L}^{A}$, and for all $a_x \in \mathcal{F}(A)$, $h(a_x) = (ma)_x$ if $m(a) \notin [x]$ and $h(a_x) = m(a)$ otherwise.

Proof. By Lemma 7 and Lemma 11 $h=m\cup(\bigcup_{x\in A}h_x)$ with $m\in\overline{S\cup L}^A$, and $h\models a_x=h_x\in\overline{S\cup L}^{A_x}$. Now to each $a_x\in\mathscr{F}(A)$ there is a system Σ , such that h is the unique solution to Σ on $\{a, a_x\}$. Thus m is the unique solution to Σ at a and h_x is the unique solution to Σ at a_x . Note m is a solution to Σ at a and φ_x is a homomorphism, thus by Lemma 6, $\varphi_x m$ is a solution to Σ at $a_x=\varphi_x(a)$. But h is the unique solution to Σ at a_x , thus $h(a_x)=\varphi_x(ma)=\varepsilon_xv_x(ma)=\varepsilon_x(ma)$. Hence if $ma\in[x]$, $h(a_x)=(ma)_x$ and if $ma\in[x]$, $h(a_x)=ma$.

Corollary 3. If $h \in \overline{S \cup L}^{\mathcal{F}(A)}$ and if $(h \upharpoonright A) \in S$ on \mathcal{R} then $h \in S$ on $\mathcal{F}(\mathcal{R})$.

Definition 9. If $\mathscr{R} = \langle A; f \rangle$ is a representation of S and L and $h \in A^A$, then we write h is in the one closure of S in \mathscr{R} (or shortly $h \in \text{oc}(S)_{\mathscr{R}}$ or $h \in \text{oc}(S)$) if for each $a \in A$ there exists $f \in S$ with h(a) = f(a). Local closure of S is denoted by l.c.(S).

Lemma 16. If $h \in \overline{S \cup L}^{\mathscr{F}(A)}$, then $m = (h \in A)$ is in the one closure of S in \mathscr{R} .

Proof. Assume there is $a \in A$ such that for all $f \in S$ $f(a) \neq m(a) = h(a)$. Then there exists a system Σ of equations, whose unique solution at a is $m(a) \notin [a]$. The unique solution of Σ at $\varphi_a(a) = a$ is $\varphi_a(m(a)) = (m(a))_a \neq m(a)$ which is a contradiction.

Definition 10. The representation $\Re = \langle A, f \rangle$ of S and L on A is algebraic, if the corresponding triple (A; S, L) is algebraic.

Definition 11. or $\mathscr{F}(\mathscr{R}) = \langle \mathscr{F}(A); f \rangle_{f \in \infty(S) \cup L}$ where $\mathscr{R} = \langle A; f \rangle_{f \in S \cup L}$ a representation of S and L on A and the action of the operations in oc $(S) \cup L$ are as determined in $\overline{S \cup L}^{\mathscr{F}(A)}$.

Lemma 17. If the representation (A; S, L) has each compact $t \in L$ singleton generated, then $(\mathcal{F}(A); S, L)$ also has each compact $t \in L$ singleton generated.

Proof. Observe that for all $a \in A$, we have for each $p \in L \exists x [a_x \in p \text{ in } (\mathscr{F}(A); S, L)]$ iff $[a \in p \text{ on } (\mathscr{F}(A); S, L)]$ iff $\forall x [a_x \in p \text{ in } (\mathscr{F}(A); S, L)]$.

Lemma 18. Let (B; S, L) satisfy St_2 . Suppose $a, b \in B$ are such that for every $p \in L$ [$a \in p \Rightarrow b \in p$]. Then each system of equations Σ over $S \cup L$ which has a solution at a also has a solution at b.

Proof. Let Σ be a system of equations over $S \cup L$ which has a solution at *a*. Spt Σ denotes the set of all points in *B* on which Σ has a solution. Clearly Spt $\Sigma = \bigcup_{D \subset f} \bigcap_{Spt \Sigma D \subseteq Spt \Gamma} O \cap_{Spt \Sigma \in L} Spt \Sigma; B, S \cup L$ hence by St₂ (*B*; *S*, *L*), Spt $\Sigma \in L$.

Hence $b \in \operatorname{Spt} \Sigma$ as required.

Lemma 19. Given (B; S, L) which satisfies St_2 and for which each compact $t \in L$ is singleton generated, if $h \in \overline{S \cup L}^B$ and $h \in oc(S)$ on (B; S, L) then $h \in 1.c.(S)$ on (B; S, L).

Proof. Fix $\{b_1, ..., b_n\} \subset {}_{\Gamma}B$. Let $p \in L$ be generated by $\{b_1, ..., b_n\}$; thus *p* is compact, and there exists $b \in B$ which generates *p* as well. Let Σ be a system of equations with coefficients from $S \cup L$ such that *h* is the unique solution on $\{b, b_1, b_2, ..., b_n\}$. Since $h \in oc(S)$ there is some $f \in S$ with f(b) = h(b). Hence *h* is also the unique solution on $\{b\}$ to the system $\Gamma = \Sigma \cup \{fx_0 = x_1\}$. By Lemma 18 Γ has also a solution on each b_i , i=1, ..., n. But $\Gamma \supseteq \Sigma$ so the solution to Γ on $\{b_1, ..., b_n\}$ is *h*. On the other hand $(fx_0 = x_1) \in \Gamma$ hence the solution to Γ on $\{b_1, ..., b_n\}$ is *f*. Thus $f(b_i) = h(b_i)$ for i=1, ..., n, so $h \in l.c.(S)$ as required. \Box

Lemma 20. Let N be a monoid and L an algebraic lattice such that (A; N, L) with $St_2(A; N, L)$, then if S is a submonoid of N we have $St_2(A; S, L)$.

Proof. Clearly $\mathscr{C}(D; A, N \cup L) \subset \mathscr{C}(D; A, S \cup L)$ and hence for each $B \subset A$, $B \subset \mathscr{S}(B; A, N \cup L) \subset \mathscr{S}(B; A, S \cup L)$. So if $B = \mathscr{S}(B; A, S \cup L)$ we get $B = = \mathscr{S}(B; A, N \cup L)$ and then $B \in L$ in (A; N, L).

Theorem 1. If (A; N, L) is algebraic and each compact $t \in L$ is singleton generated in that representation then for each submonoid $S \subseteq N$ we have $(\mathscr{F}(A); l.c.(S), L)$ is algebraic, where l.c.(S) is the local closure of S in the representation $(\mathscr{F}(A); S, L)$.

Proof. Let (A; N, L) satisfy the hypothesis of the theorem and let S be a submonoid of N. By Lemma 20 (A; S, L) satisfies St₂, and clearly each compact $t \in L$ is singleton generated in (A; S, L) as well. By Lemmas 14 and 17 ($\mathscr{F}(A); S, L$) also satisfies St_2 and each compact $t \in L$ is singleton generated in that representation. Furthermore by Lemma 5 $(\mathcal{F}(A); \overline{S \cup L}^{\mathcal{F}(A)}, L)$ is algebraic, and here again each compact $t \in L$ is singleton generated. We claim that $\overline{S \cup L}^{\mathcal{F}(A)} = 1.c.(S)$, the local closure of S in $(\mathcal{F}(A); S, L)$; this will establish the result of the Theorem. Evidently $\overline{S \cup L}^{\mathscr{F}(A)} \supseteq l.c.(S)$ so really only the other containment need be argued. Let $h \in \overline{S \cup L}^{\mathcal{F}(A)}$. Note $h \mid A \in oc(S)$ in $(\mathcal{F}(A); S, L)$, since by Lemma 16 we have $m=h \upharpoonright A \in oc(S)$ in (A; S, L). In fact $h \in oc(S)$ in $(\mathscr{F}(A); S, L)$. To see that we need only check $h(a_x)$ for $a_x \in \mathcal{F}(A)$. If $h(a) \notin [x]$ we get $h(a_x) =$ $=(h(a))_x=(f(a))_x$ for some $f \in S$ and if $h(a) \in [x]$ we get $h(a_x)=ha=fa=f(a_x)$ for some $f \in S$ by use of Lemma 15 and the definition of action by S in $\mathcal{F}(A)$ (see Defn. 6). Now apply Lemma 19 with $(B; S, L) = (\mathscr{F}(A); S, L)$ to get $h \in \overline{S \cup L}^{\mathscr{F}(A)} \cap \mathrm{oc}(S) \Rightarrow h \in \mathrm{l.c.}(S) \text{ on } (\mathscr{F}(A); S, L) \text{ as required.}$

Lemma 21. The local closure of any finite monoid S is equal to S.

Proof. Let the monoid S be represented on some set A and assume that $h \in local closure S$ and $h \notin S$. For each $f \in S$ let $a_f \in A$ be such that $h(a_f) \neq f(a_f)$ then $D = \{a_f; f \in S\}$ is finite and clearly $h \mid D \neq f \mid D$ for any $f \in S$, contrary to the selection of h in the local closure of S. Hence each h in local closure S also belongs to S.

Theorem 2. For each universal algebra \mathfrak{A} there is a universal algebra \mathfrak{B} satisfying End $\mathfrak{A} \cong$ End \mathfrak{B} and Su $\mathfrak{A} =$ Su \mathfrak{B} ; moreover every finitely generated subalgebra of \mathfrak{B} is generated by a single element.

Proof. Let $\mathfrak{A} = \langle A, F \rangle$, $S = \operatorname{End} \mathfrak{A}$ and $L = \operatorname{Su} \mathfrak{A}$. For any $C \subseteq A$ we set $C^* = \bigcup_{n=1}^{\infty} C^n$. (Remark that we do not distinguish between C and C^1 and thus $C \subseteq C^*$.) With any $\varphi \in S$ we associate a transformation $\varphi^* \colon A^* \to A^*$ defined by $\varphi^*((x_1, ..., x_k)) = (\varphi(x_1), ..., \varphi(x_k))$, $(x_1, ..., x_k) \in A^*$. Let $S^* = \{\varphi^* | \varphi \in S\}$ and $L^* = \{C^* | C \in L\}$. Then $S^* \cong S$ and $L^* \cong L$. We shall construct an algebra $\mathfrak{B} = \langle A^*, G \rangle$ such that $S^* = \operatorname{End} \mathfrak{B}$, $L^* = \operatorname{Su} \mathfrak{B}$ and every finitely generated subalgebra of \mathfrak{B} is generated by a single element.

Let g_1, g_2 be unary operations and h a binary operation on A^* defined by the rules:

$$g_1((x_1, ..., x_k)) = x_1, g_2((x_1, ..., x_k)) = (x_k, x_1, ..., x_{k-1})$$

and

$$h((x_1, ..., x_k), (y_1, ..., y_l)) = (x_1, ..., x_k, y_1, ..., y_l)$$

for every $(x_1, ..., x_k)$, $(y_1, ..., y_l) \in A^*$. Furthermore, with each operation $f \in F$ we associate an operation $f_{\mathfrak{B}}$ on A^* as follows. The arity of $f_{\mathfrak{B}}$ equals the one of f and $f_{\mathfrak{B}}$ is defined by

$$f_{\mathfrak{B}}((x_1^1,\ldots,x_{k_1}^1),\ldots,(x_1^n,\ldots,x_{k_n}^n))=f(x_1^1,\ldots,x_1^n),\ (x_1^i,\ldots,x_{k_i}^i)\in A^*,\ i=1,\ldots,n.$$

Now set $G = \{f_{\mathfrak{B}} | f \in F\} \cup \{g_1, g_2, h\}.$

First consider End \mathfrak{B} . It is clear that $S^* \subseteq \operatorname{End} \mathfrak{B}$. Let $\Phi \in \operatorname{End} \mathfrak{B}$. If $x \in A$ then $\Phi(x) = \Phi(g_1(x)) = g_1(\Phi(x)) \in A$ showing that $\Phi \models A = \varphi \in A^A$. Furthermore, if $f \in F$ is *n*-ary and $x_1, \ldots, x_n \in A$, then $\varphi(f(x_1, \ldots, x_n)) = \Phi(f_{\mathfrak{B}}(x_1, \ldots, x_n)) =$ $= f_{\mathfrak{B}} \cdot (\Phi(x_1), \ldots, \Phi(x_n)) = f(\varphi(x_1), \ldots, \varphi(x_n))$, i.e. $\Phi \models A = \varphi \in \operatorname{End} \mathfrak{A} = S$. Now we show by induction on k that (1) $\Phi((x_1, \ldots, x_k)) = (\varphi(x_1), \ldots, \varphi(x_k))$, $(x_1, \ldots, x_k) \in A^*$. If k = 1 then (1) holds. Suppose (1) holds for k - 1. Then $\Phi((x_1, \ldots, x_k)) =$ $= \Phi(h((x_1, \ldots, x_{k-1}), x_k)) = h(\Phi((x_1, \ldots, x_{k-1}), \Phi(x_k)) = h((\varphi(x_1), \ldots, \varphi(x_{k-1})), \varphi(x_k)) =$ $= (\varphi(x_1), \ldots, \varphi(x_k))$. Hence $\Phi = \varphi^* \in S^*$.

Now consider Su \mathfrak{B} . It is clear that $L^* \subseteq Su \mathfrak{B}$. Let $B \in Su \mathfrak{B}$. Taking into account that $g_{\mathfrak{A}}, g_2$ and h are operations of \mathfrak{B} , one can show that $B = (B \cap A)^*$. Furthermore, $B \cap A \in Su \mathfrak{A} = L$. $B = (B \cap A)^* \in L^*$. Finally, if a subalgebra B of \mathfrak{B} is generated by the elements $(x_1^1, ..., x_{k_1}^1), ..., (x_1^s, ..., x_{k_s}^s) \in A^*$ then B is also generated by $(x_1^1, ..., x_{k_s}^1, ..., x_{k_s}^s) \in A^*$ which completes the proof. \Box

Corollary 4. If the monoid N and the algebraic lattice L are jointly algebraic and S is a finite submonoid of N, then S and L are jointly algebraic.

Proof. Let (A; N, L) be algebraic, with each compact $t \in L$ singleton generated in that representation. By Theorem 1 $(\mathscr{F}(A); l.c.(S), L)$ is algebraic. By Lemma 21 l.c.(S) = S since S is finite, hence $(\mathscr{F}(A); S, L)$ is algebraic and S and L are (abstractly) jointly algebraic.

Corollary 5. If $S \subset T$ are two monoids and if L is an algebraic lattice for which the highest element 1 is compact and if T and L are jointly algebraic, then S and L are jointly algebraic.

Proof. Let $\mathfrak{A} = \langle A; \mathscr{P} \rangle$ be such that $L = \operatorname{Su} \mathfrak{A}$ and $T = \operatorname{End} \mathfrak{A}$. We may assume each compact $t \in L$ is singleton generated in \mathfrak{A} . For the triple (A; T, L)given by \mathfrak{A} we have $(\mathscr{F}(A); \operatorname{l.c.}(S), L)$ algebraic. In fact by Lemma 17 each compact $t \in L$ is singleton generated in this representation. In particular $1 \in L$ which is compact by hypothesis is singleton generated. It follows that $\operatorname{l.c.}(S) = S$ in that representation, hence $(\mathscr{F}(A); S, L)$ is algebraic and S, L are (abstractly) jointly algebraic.

Corollary 6. If the monoid T and the algebraic lattice L are jointly algebraic but not both infinite then every submonoid of T is jointly algebraic with L.

Algebraic representation of semigroups and lattices

Proof. Follows now immediately from Corollaries 4 and 5.

Acknowledgement. The authors are grateful to Dr. L. Szabó for providing the short proof given above for Theorem 2. The original proof that a single generator representation could be obtained on the set of all finite sequences of a given representation made use of [1], and required some tedious verification.

Bibliography

 N. SAUER and M. G. STONE, Endomorphism and Subalgebra Structure; a Concrete Characterization; Acta Sci. Math., 39 (1977), 311-315.

[2] N. SAUER and M. G. STONE, The Algebraic Closure of a Semigroup of Functions, Algebra Universalis, 7 (1977), 219-233.

[3] G. GRÄTZER, Universal Algebra, D. Van Nostrand (Princeton, 1968).

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF CALGARY 2920 24 AVE. N. W. CALGARY, CANADA, T2N 1N4 323