The algebraic representation of semigroups and lattices; representing subsemigroups

N. W. SAUER and M. G. STONE

A monoid S and a lattice L are jointly algebraic, if there is a universal algebra $\mathfrak{A}=\langle A, \mathscr{P}\rangle$ such that $S \cong$ End \mathfrak{A} and $L \cong S u \mathfrak{Q}$. The major result of this paper is that if either S or L are finite and if they are jointly algebraic, then every submonoid T of S is jointly algebraic with L. We prove a slightly stronger theorem.

§ 1. Introduction

We adopt the notation of [1] and [2]. If M is a set of partial functions on the set A then we will write sometimes M^{\sim} for \tilde{M} and we will use the following additional notation: Γ, Σ denote systems of equations with coefficients from M. For $D \subset A, \bar{D}=\mathscr{C}(D ; A, M)=\bigcap_{D \subset \mathrm{Spt} \Sigma}$ (Spt Σ is the set of all points on which Σ has a solution). We write simply \bar{D} if A and M are understood. For $B \subset A, \mathscr{S} B=\mathscr{S}(B ; A$, $M)=\underset{D \text { finte, } D \subset B}{\bigcup} \bar{D}$. We write $\mathscr{S} B$ if A and M are understood. If $D \subset B$ and D is finite we will henceforth write $D \subset_{f} B$.

§ 2. Concrete Results

Lemma 1. If $\mathfrak{A l}$ is any algebra on A whose operations are all substitutive with M and Σ is a system of equations over M, then $\operatorname{Spt} \Sigma$ is a subalgebra of \mathfrak{H}.

Proof. It is enough to prove that $\operatorname{Spt} \Sigma$ is a subalgebra of \mathfrak{M}_{M}, the algebra of all the operations substitutive over M. According to [1] Theorem 1 we have to show that $\operatorname{Spt} \Sigma=\mathscr{S}(\operatorname{Spt} \Sigma ; A, M)$. Now if $D \subset \operatorname{Spt} \Sigma$, then $\bar{D}=\bigcap_{D \subset \operatorname{Spt} \Gamma} \operatorname{Spt} \Gamma \subset \operatorname{Spt} \Sigma$ and

[^0]therefore $\mathscr{P}(\operatorname{Spt} \Sigma ; A, M)=\underset{D \subset f \mathrm{Spt} \Sigma}{ } \subset \cup \operatorname{Spt} \Sigma=\operatorname{Spt} \Sigma$. By [1] Lemma $5, \mathscr{S}$ is a closure operator and hence $\operatorname{Spt} \Sigma \subset \mathscr{S}(\operatorname{Spt} \Sigma ; A, M)$.

Lemma 2. If $D \subset_{\boldsymbol{f}} A$ then \bar{D} is the subalgebra of \mathfrak{A}_{M} generated by D and $\bar{D}=\operatorname{dom} g$ for some partial identity function $g \in \widetilde{M}$.

Proof. Let B be the subalgebra of \mathfrak{A}_{M} generated by D. Then by Theorem 1 of [1] $B=\bigcup_{C \subset, B} \bar{C}$, thus $\bar{D} \subset B$. But also $\bar{D}=\bigcap_{D \leqq S p t \Sigma} \operatorname{Spt} \Sigma=\operatorname{Spt} \Gamma$ for some system Γ by Lemma 2 of [1], and hence $\bar{D} \in \operatorname{Su} \mathfrak{A}_{M}$ by Lemma 1 above. Thus $\bar{D}=B$. Clearly $\bar{D}=\operatorname{dom} g$ for $g=\operatorname{idiSpt} \Gamma^{*}$, and since $\operatorname{Spt} \Gamma \in \operatorname{Su} \mathfrak{M}_{M}$ we have $g \in \tilde{M}$ because every identity on a subalgebra of \mathfrak{U}_{M} is a partial endomorphism.

Lemma 3. If D is finite, then $\mathscr{C}(D ; A, M)=\mathscr{C}(D ; A, \tilde{M})$.
Proof. Note $\mathfrak{A}_{M}=\mathfrak{A}_{\tilde{\mathcal{H}}}$, hence the subalgebra generated by D is the same in both algebras and the result follows from Lemma 2 above.

Corollary 1. $\mathscr{S}(B ; A, M)=\bigcup_{D \subset \mathcal{S}^{B}} \mathscr{C}(D ; A, M)=\bigcup_{D \subset f} \mathscr{C}(D ; A, \tilde{M})=\mathscr{S}(B ; A, \tilde{M})$.
Definition 1. We will write the ordered triple $(A ; S, L)$ for a representation of S as a transformation monoid on A and L as an algebraic intersection structure on A (i.e. L is a set of subsets of A, which forms by intersection an algebraic lattice). Then $\mathrm{St}_{1}(A ; S, L)$ and $\mathrm{St}_{2}(A ; S, L)$ are abbreviations for the following statements:

$$
\mathrm{St}_{1}(A ; S, L): S \Rightarrow \overline{S \cup L}
$$

(where if M is a set of partial functions on A, \bar{M} is the set of total functions in (\tilde{M}) and

$$
\mathrm{St}_{2}(A ; S, L): B=\mathscr{P}(B ; A, S \cup L) \Rightarrow B \in L
$$

If $(A ; S, L)$ and $S=$ End \mathfrak{A} and $L=S u \mathfrak{A}$ for some algebra $\mathfrak{A}=\langle A, \mathscr{P}\rangle$ then we will say that $(A ; S, L)$ is algebraic.

Remark. Then Theorem 3 of [1] reads (using also Theorem 4 of [2]): ($A ; S, L$) is algebraic if and only if $\mathrm{St}_{1}(A ; S, L)$ and $\mathrm{St}_{2}(A ; S, L)$.

Lemma 5. If $\mathrm{St}_{2}(A ; S, L)$, then $(A ; \overline{S \cup L}, L)$ is algebraic.
Proof. a) $\mathrm{St}_{1}(A, \overline{S \cup L}, L)$. Note that $\overline{S \cup L} \subset \overline{\overline{S \cup L} \cup L}$. Put on the other hand $\overline{\overline{S \cup L} \cup L}=A^{A} \cap\left[\left(A^{A} \cap(S \cup L)^{\sim}\right) \cup L\right]^{\sim} \subset A^{A} \cap\left[(S \cup L)^{\sim} \cup L\right]^{\sim}=A^{A} \cap(S \cup L)^{\sim}=$ $=\overline{S \cup L}$. This proves $\mathrm{St}_{1}(A ; \overline{S \cup L}, L)$ which says: $\overline{S \cup L}=\overline{\overline{S \cup V} \cup L}$.

[^1]b) $\mathrm{St}_{2}(A, \overline{S \cup L}, L)$. We have $(S \cup L)^{\sim}=(\overline{S \cup L} \cup L)^{\sim} \quad$ because obviously $(S \cup L)^{\sim} \subset(\overline{S \cup L} \cup L)^{\sim}$ and $(\overline{S \cup L} \cup L)^{\sim}=\left[\left(A^{A} \cap(S \cup L)^{\sim}\right) \cup L\right]^{\sim} \subset\left((S \cup L)^{\sim} \cup L\right)^{\sim}=$ $=(S \cup L)^{\sim}$. Therefore, by Corollary 1, $\mathscr{P}(B ; A, \overline{S \cup L} \cup L)=\mathscr{S}\left(B ; A\left(\overline{\left.S \cup L \cup L)^{\sim}\right)}=\right.\right.$ $=\mathscr{S}\left(B ; A,(S \cup L)^{\sim}\right)=\mathscr{P}(B ; A, S \cup L)$. So, if $B=\mathscr{S}(B ; A, \overline{S \cup L \cup L})$, then $B=$ $=\mathscr{S}(B ; A, S \cup L)$ and hence $B \in L$ because $\mathrm{St}_{2}(A ; S, L)$ holds.

§ 3. Representations

Definition 2. If S is a monoid and L an algebraic lattice, then the partial universal algebra $\langle A ; f\rangle_{f \in S \cup L}$ is a representation of S and L, if all of the operations in S form a transformation monoid of A, with $(f g)(a)=f(g(a))$, id $(a)=a$ and if all of the operations in L are partial identities with range $p \cap$ range $q=\operatorname{range}(p \wedge q)$ and the 1 of the lattice is the identity transformation of A. Furthermore we require that a representation be faithful: for any two $f, g \in S, f \neq g$ there exists an $a \in A$ with $f(a) \neq g(a)$ and if for any two $p, q \in L, p \neq q$, range $p \neq$ range q. We write simply $\langle A, f\rangle$ for $\left\langle A, f_{\rangle_{f \in S \cup L}}\right.$ when $S \cup L$ is understood. Note $(A,\{f ; f \in S\}$, $\{f(A) ; f \in L\})$ iff $\langle A, f\rangle_{f \in S \cup_{L}}$ is a representation.

We will adopt the notions of [3] for homomorphism, subalgebra, embedding of partial algebras and will also say that \mathfrak{B} is an extension of \mathfrak{H} if \mathfrak{A} is a subalgebra of \mathfrak{B}.

Definition 3. If $\langle A ; f\rangle_{f \in S U L}$ is a representation of S and L then we will write $\overline{S \cup L}^{A}$ to emphasize the function closure cited in St_{1} taken with respect to that representation of S and L on A.

Lemma 6. Let $\psi: A \rightarrow B$ be a homomorphism from the representation $\langle A ; f\rangle_{f \in S \cup L}$ into the representation $\langle B ; f\rangle_{f \in S \cup L}$. If the system Σ of equations with coefficients in $S \cup L$ has a solution h at some $a \in A$, then Σ has also a solution ψh at $\psi(a) \in B$.

Proof. If α is an assignment which satisfies Σ at a, then clearly $\psi \alpha$ is an assignment which satisfies Σ at $\psi(a)$.

Definition 4. Let $\langle A ; f\rangle_{f \in S \cup_{L}}$ be a representation of S and L and let ($A_{i}: i \in I$) be a family of subalgebras of A with $\bigcup_{i \in I} A_{i}=A$ and ($\varphi_{i}: i \in I$) homomorphisms from A onto A_{i} which leave A_{i} elementwise fixed. $\left(\left(A_{i}, \varphi_{i}\right): i \in I\right)$ is called a cover of $\langle A ; f\rangle_{f \in S \cup L}$.

Lemma 7. If $\left(\left(A_{i}, \varphi_{i}\right): i \in I\right)$ is a cover of $\langle A ; f\rangle_{f \in S \cup L}$ and $h \in \overrightarrow{S \cup L}^{A}$, then $h=\bigcup_{i \in I} h_{i}$ with each $h_{i} \in \overline{S \cup L}{ }^{A_{i}}$.

Proof. We prove that $h \vdash A_{i} \in \overline{S \cup L}{ }^{A_{i}}$. For each $a \in A_{i}$ there exists a system Σ whose unique solution at a is h. If $h(a) \notin A_{i}$, then by applying φ_{i} and Lemma 6
we observe that Σ has a solution at $\varphi_{i}(a)=a$ which is equal to $\varphi_{i}(h(a)) \in A_{i}$. But then Σ has two different solutions at a, a contradiction. So $h \uparrow A_{i} \in A_{i}^{A_{i}}$. Because $h \in \overline{S \cup L}{ }^{A}$ there exists for every finite subset D of A_{i} a system Σ whose unique solution at D is h. We will have proven that $h \mid A_{i} \in \overline{S \cup L}^{A_{i}}$ if there exists an assignment α of Σ at D for $D \subset_{f} A_{i}$ with $\alpha(x) \in A_{i}$ for all the variables $x \in \Sigma$. If β is any assignment of Σ at D, then clearly $\varphi_{i} \beta=\alpha$ has the desired property. Thus $h=\bigcup_{i \in I} h_{i}$ for $h_{i}=h \mid A_{i}$.

Lemma 8. If $\left(\left(A_{i}, \varphi_{i}\right): i \in I\right)$ is a cover of $\langle A ; f\rangle$ and $\dot{h \in} \overline{S \cup L}{ }^{A}$ and $x \in A_{i} \cap A_{j}$, then $h(x) \in A_{i} \cap A_{j}$.

Proof. According to Lemma 7, $h \upharpoonleft A_{i} \in A_{i}^{A_{i}}$ and $h \upharpoonleft A_{j} \in A_{j}^{A_{j}}$ which implies the assertion.

§ 4. The Foliation of a Representation

Definition 5. If $\mathscr{R}=\langle A ; f\rangle$ is a representation of S and L, and $a \in A$, then $[a]$ is the subalgebra of \mathscr{R} generated by $\{a\}$.

Definition 6. If $\mathscr{R}=\langle A ; f\rangle$ is a representation of S and L, then $\mathscr{F}(\mathscr{R})=$ $=\langle\mathscr{F}(A), f\rangle_{f \in S \cup L}$, the foliation of \mathscr{R}, is an extension of \mathscr{R} which is constructed as follows: for each $x \in A, A_{x}^{-}=\left\{a_{x} ; a \in A-[x]\right\}$ and $A_{x}=A_{x}^{-} \cup[x]$,

$$
\mathscr{F}(A)=\bigcup_{x \in A} A_{x}
$$

with $y \in \mathscr{F}(A)$ and $f \in S$,

$$
f(y)=\left\{\begin{array}{lll}
f(y) & \text { if } & y \in A \\
(f(a))_{x} & \text { if } & y=a_{x} \text { and } f(a) \in A-[x] \\
f(a) & \text { if } & y=a_{x} \text { and } f(a) \in[x]
\end{array}\right.
$$

with $y \in \mathscr{F}(A)$ and $p \in L$,

$$
p(y)=\left\{\begin{array}{lll}
p(y) & \text { if } & y \in A \\
(p(a))_{x} & \text { if } & y=a_{x}
\end{array}\right.
$$

($p(y)$ is either y or is undefined).
Lemma 9. $\mathscr{H}(\mathscr{R})$ is a representation of S and L.
Proof. Let $f, g, h \in S$ with $(f g)=h$. We want to prove that for all $y \in \mathscr{F}(A)$, $f(g(y))=h(y)$. This is clearly true for $y \in A$, so let $y=a_{x}$ and assume first that $g(a) \notin[x]$ and $f(g(a)) \notin[x]$, so $h(a) \notin[x]$ and then: $f(g(y))=f\left(g\left(a_{x}\right)\right)=f\left((g(a))_{x}\right)=$ $=((f g)(a))_{x}=(h(a))_{x}=h\left(a_{x}\right)=h(y)$. If $g(a) \notin[x]$ but $f(g(a)) \in[x]$, then $h(a) \in[x]$
and then: $f(g(y))=f\left((g(a))_{x}\right)=f(g(a))=(f g)(a)=h(a)=h\left(a_{x}\right)=h(y)$. If $g(a) \in[x]$. then $f(g(a)) \in[x]$ and $h(a) \in[x]$ and then: $f(g(y))=f\left(g\left(a_{x}\right)\right)=f(g(a))=(f g)(a)=$ $=h(a)=h\left(a_{x}\right)=h(y)$.

If id is the unit element in S and $y \in \mathscr{F}(A)$, then if $y \in A$ clearly id $(y)=y$ and if $y=a_{x}$ then $a \notin[x]$ and $\operatorname{id}(a)=a \notin[x]$ and hence $\operatorname{id}\left(a_{x}\right)=(\mathrm{id}(a))_{x}=a_{x}$.

Let p, q be two elements in L, then $p\left(a_{x}\right)$ is defined and equal to a_{x} if and only if $p(a)$ is defined. But (on A), range $p \cap$ range $q=$ range ($p \wedge q$) is equivalent to the condition: $(\forall a \in A)[p(a)$ and $q(a)$ are defined iff $(p \wedge q)(a)$ is defined]. Therefore $p\left(a_{x}\right)$ and $q\left(a_{x}\right)$ are defined iff $(p \wedge q)\left(a_{x}\right)$ is defined. Furthermore we have shown that the identity map on A extends to the identity map on $\mathscr{F}(A)$. Observe that $\mathscr{F}(\mathscr{R})$ is faithful iff \mathscr{R} is faithful.

Definition 7. If $\quad{ }^{-}(\mathscr{R})=\langle\mathscr{F}(A) ; f\rangle_{f \in S \cup L}$ is the foliation of $\mathscr{R}=\langle A ; f\rangle_{f \in S \cup L}$, then the maps $\varphi,\left(\varphi_{x} ; x \in A\right),\left(\varepsilon_{x} ; x \in A\right),\left(v_{x} ; x \in A\right)$ are defined as follows:

$$
\begin{aligned}
& v_{x}: \mathscr{F}(A) \rightarrow A \cup A_{x} \text { with } v_{x}(y)=\left\{\begin{array}{lll}
y & \text { if } & y \in A \cup A_{x}, \\
a & \text { if } & y=a_{z}, z \neq x ;
\end{array}\right. \\
& \varepsilon_{x}: A \cup A_{x} \rightarrow A_{x} \text { with } \varepsilon_{x}(y)=\left\{\begin{array}{lll}
y & \text { if } & y \in A_{x}, \\
y_{x} & \text { if } & y \in A-[x] ;
\end{array}\right. \\
& \varphi: \mathscr{F}(A) \rightarrow A \text { with } \varphi(y)=\left\{\begin{array}{lll}
y & \text { if } & y \in A, \\
a & \text { if } & y=a_{x} ;
\end{array}\right. \\
& \varphi_{x}: \mathscr{F}(A) \rightarrow A_{x} \text { with } \varphi_{x}=\varepsilon_{x} v_{x} .
\end{aligned}
$$

Lemma 10. Each of the maps above is a homomorphism onto the indicated subalgebra of $\mathscr{F}(\mathscr{R})$.

Proof. a) v_{x}. Because $A \cup A_{x}$ is a subalgebra, the restriction of v_{x} to $A \cup A_{x}$ is a homomorphism. First let $a_{z} \in A_{z}$ and $f \in S$ with $f(a) \notin[z]$. Then $v_{x}\left(f\left(a_{z}\right)\right)=$ $\left.=v_{x}(f(a))_{z}\right)=f(a)=f\left(v_{x}\left(a_{z}\right)\right)$. If $f(a) \in[z]$, then $v_{x}\left(f\left(a_{z}\right)\right)=v_{x}(f(a))=f(a)=f\left(v_{x}\left(a_{z}\right)\right)$. For $p \in L, p$ is defined at a_{z} iff p is defined at a and $p\left(a_{z}\right)=a_{z}$ and $p(a)=a$, hence $p\left(v_{x}\left(a_{z}\right)\right)=p(a)=a=v_{x}\left(a_{z}\right)=v_{x}\left(p\left(a_{z}\right)\right)$.
b) φ. This proof is almost identical to the one for v_{x}.
c) ε_{x}. Because A_{x} is a subalgebra of the representation $\left\langle A \cup A_{x}, f\right\rangle$ of S and L, the restriction of ε_{x} to A_{x} is a homomorphism. So if $y \in A-[x]$ and $f \in S$, with $f(y) \notin[x]$, then $\varepsilon_{x} f(y)=f(y)_{x}=f\left(y_{x}\right)=f\left(\varepsilon_{x}(y)\right)$; further if $f(y) \in[x]$, then $\varepsilon_{x} f(y)=f(y)=f\left(y_{x}\right)=f\left(\varepsilon_{x}(y)\right)$. If $p \in L$ and p is defined at $y \in A_{x}^{-}$, then p is defined at y_{x} and $p(y)=y, p\left(y_{x}\right)=y_{x}$ hence $p\left(\varepsilon_{x}(y)\right)=p\left(y_{x}\right)=y_{x}=\varepsilon_{x}(y)=\varepsilon_{x}(p(y))$.
d) $\varphi_{x} . \varphi_{x}$ is a homomorphism as a product of two homomorphisms.

Lemma 11. The sets $\left(A_{x}: x \in A\right)$ together with A and the maps $\left(\varphi_{x}: x \in A\right)$ and φ form a cover of $\mathscr{F}(\mathscr{R})=\langle\mathscr{F}(A) ; f\rangle_{f \in S \cup L}$.

Proof. Clearly $\left(\bigcup_{x \in A} A_{x}\right) \cup A=\mathscr{F}(A)$ and furthermore A and each of the sets A_{x} are subalgebras of $\mathscr{F}(\mathscr{R})$. By Lemma 10 the maps φ, and ($\varphi_{x}: x \in A$) are homomorphisms which leave A and $\left(A_{x}: x \in A\right)$ pointwise fixed as required.

Lemma 12. $\bigcup_{x \in A} \varphi_{x}(\mathscr{C}(\varphi(D) ; A, S \cup L))=\mathscr{C}(D: \mathscr{F}(A), S \cup L)$, for $D \subseteq \mathscr{F}(A)$.
Proof. If $y \in A$ then $\varphi(y)=y$ and if $y=a_{x}$, then $\varphi_{x} \varphi(y)=\varphi_{x} \varphi\left(a_{x}\right)=$ $=\varepsilon_{x} v_{x} \varphi\left(a_{x}\right)=a_{x}^{\prime}=y$ and hence we see by Lemma 6 that a system Σ of equations has a solution at y iff Σ has a solution at $\varphi(y)$. Furthermore Σ has a solution at $y \in A$ iff Σ has a solution at $\varphi_{x}(y)$ for each $x \in A$, because again $\varphi \varphi_{x}(y)=y$. (For $y \in A: y \in[x] \Rightarrow \varphi \varphi_{x}(y)=y$, and $y \notin[x] \Rightarrow \varphi \varphi_{x}(y)=y$.) This means that $D \subset \operatorname{Spt} \Sigma$ iff $\varphi(D) \subset \operatorname{Spt} \Sigma$. In fact for $a \in A$, $a \in \operatorname{Spt} \Sigma$ iff $\forall x \in A, a \notin[x], a_{x} \in \operatorname{Spt} \Sigma$, thus $\bigcup_{x \in A} \varphi_{x}(A \cap \operatorname{Spt} \Sigma)=\operatorname{Spt} \Sigma$. Hence

$$
\begin{gathered}
\mathscr{C}(D, \mathscr{F}(A), S \cup L)=\bigcap_{D \subset \mathrm{Spt} \mathrm{\Sigma}} \operatorname{Spt} \Sigma=\bigcap_{\varphi(D) \subset \mathrm{Spt} \Sigma} \operatorname{Spt} \Sigma= \\
=\bigcap_{\varphi(D) \subset \mathrm{Spt} \Sigma}\left(\bigcup_{x \in A} \varphi_{x}(A \cap \operatorname{Spt} \Sigma)\right) \supset \bigcup_{x \in A}\left(\bigcap_{\varphi(D) \subset \operatorname{Spt} \Sigma} \varphi_{x}(A \cap \operatorname{Spt} \Sigma)\right) \supset \\
\supset \bigcup_{x \in A} \varphi_{x}\left(\bigcap_{\varphi(D) \subset S p t \Sigma}(A \cap \operatorname{Spt} \Sigma)\right)=\bigcup_{x \in A} \varphi_{x}\left(\bigcap_{\varphi(D) \subset \mathrm{Spt}^{*} \Sigma} \operatorname{Spt}^{*} \Sigma\right)= \\
=\bigcup_{x \in A} \varphi_{x}(\mathscr{C}(\varphi(D), A, S \cup L))
\end{gathered}
$$

(cf. Lemma 6), where $\mathrm{Spt}^{*} \Sigma$ is the support in the original representation $\mathscr{R}=\langle A ; f\rangle$.
On the other hand, because $\varphi_{x}=\varepsilon_{x} v_{x}$ is one-to-one on A, we get

$$
\begin{aligned}
& \varphi_{x}(\mathscr{C}(\varphi(D) ; A, S \cup L))=\varphi_{x}\left(\bigcap_{\varphi(D) \subset \mathrm{Spt}^{*} \Sigma} \operatorname{Spt}^{*} \Sigma\right)=\bigcap_{\varphi(D) \subset \mathrm{Spt}^{*} \Sigma} \varphi_{x}\left(\operatorname{Spt}^{*} \Sigma\right)= \\
& =\bigcap_{\varphi(D) \subset \mathrm{Spt} \Sigma} \varphi_{x}(A \cap \operatorname{Spt} \Sigma) \subset \bigcap_{D \subset \mathrm{Spt} \Sigma} \operatorname{Spt} \Sigma=\mathscr{C}(D ; \mathscr{F}(A), S \cup L)
\end{aligned}
$$

Lemma 13. $\bigcup_{x \in A} \varphi_{x}(\mathscr{P}(\varphi(B) ; A, S \cup L))=\mathscr{S}(B ; \mathscr{F}(A), S \cup L)$.
Proof. Observe that $\varphi(D) \subset{ }_{f} \varphi(B) \Rightarrow \exists E \subset_{f} B$ such that $\varphi(E)=\varphi(D)$ hence

$$
\begin{gathered}
\bigcup_{x \in A} \varphi_{x}(\mathscr{C}(\varphi(B) ; A, S \cup L))=\bigcup_{x \in A} \varphi_{x}\left(\bigcup_{\varphi(D) \subset, \varphi(B)} \mathscr{C}(\varphi(D) ; A, S \cup L)\right)= \\
=\bigcup_{x \in A} \varphi_{x}\left(\bigcup_{E \subset f} \mathscr{C}(\varphi(E) ; A, S \cup L)\right)=\bigcup_{D \subset, B}\left(\bigcup_{x \in A} \varphi_{x}(\mathscr{C}(\varphi(D) ; A, S \cup L))=\right. \\
=\bigcup_{D \subset f B} \mathscr{C}(D ; \mathscr{F}(A), S \cup L)=\mathscr{S}(B ; \mathscr{F}(A), S \cup L) .
\end{gathered}
$$

Now by intersecting A with each of the expressions in Lemma 13 we have:
Corollary 2. $\mathscr{S}(\varphi(B) ; A, S \cup L)=\mathscr{S}(B ; \mathscr{F}(A), S \cup L) \cap A$.

Definition 8. If $\mathscr{R}=\langle A ; f\rangle$ is a representation of S and L, then we write $\mathrm{St}_{2} \mathscr{R}$ or $\mathrm{St}_{2}\langle A ; f\rangle$ to mean St_{2} holds for the corresponding triple (see Definition 2): $\mathrm{St}_{2}(A,\{f ; f \in S\},\{f(A) ; f \in L\})$.

Lemma 14. If $\mathscr{R}=\langle A ; f\rangle$ is a representation of S and L with $\mathrm{St}_{2} \mathscr{R}$, and $\mathscr{F}(\mathscr{R})=\langle\mathscr{F}(A), f\rangle$ is the foliation of \mathscr{R}, then $\mathrm{St}_{2} \mathscr{F}(\mathscr{R})$.

Proof. Let $\mathscr{S}(B ; \mathscr{F}(A), S \cup L)=B$; then $\mathscr{S}(\varphi(B) ; A, S \cup L)=\varphi(B)$ (otherwise $A \cap B \subset \varphi(B) \varsubsetneqq \mathscr{P}(\varphi(B) ; A, S \cup L) \subset \mathscr{S}(B ; \mathscr{F}(A), S \cup L) \cap A=B \cap A)$. Hence there is $p \in L$ with $\varphi(B)=$ range p in A. Then:

$$
\begin{gathered}
B=\mathscr{P}(B ; \mathscr{F}(A), S \cup L)=\bigcup_{x \in A} \varphi_{x}(\mathscr{S}(\varphi(B) ; A, S \cup L))=\bigcup_{x \in A} \varphi_{x} \varphi(B)= \\
=\bigcup_{x \in A} \varepsilon_{x} v_{x} \varphi(B)=\bigcup_{x \in A} \varepsilon_{x} \varphi(B)=\bigcup_{x \in A} \varepsilon_{x}(\text { range } p \text { in } A)=\text { range } p \text { in } \mathscr{F}(A) .
\end{gathered}
$$

Thus $\mathrm{St}_{2} \mathscr{F}(\mathscr{R})$ holds.
Lemma 15. If $h \in \overline{S \cup L}^{\mathscr{F}(A)}$, then $m=h ; A \in \overline{S \cup L}{ }^{A}$, and for all $a_{x} \in \mathscr{F}(A)$, $h\left(a_{x}\right)=(m a)_{x}$ if $m(a) \oplus[x]$ and $h\left(a_{x}\right)=m(a)$ otherwise.

Proof. By Lemma 7 and Lemma $11 h=m \cup\left(\bigcup_{x \in A} h_{x}\right)$ with $m \in \overline{S \cup L}{ }^{A}$, and $h \vdash a_{x}=h_{x} \in \overline{S \cup L}^{A_{x}}$. Now to each $a_{x} \in \mathscr{F}(A)$ there is a system Σ, such that h is the unique solution to Σ on $\left\{a, a_{x}\right\}$. Thus m is the unique solution to Σ at a and h_{x} is the unique solution to Σ at a_{x}. Note m is a solution to Σ at a and φ_{x} is a homomorphism, thus by Lemma 6, $\varphi_{x} m$ is a solution to Σ at $a_{x}=\varphi_{x}(a)$. But h is the unique solution to Σ at a_{x}, thus $h\left(a_{x}\right)=\varphi_{x}(m a)=\varepsilon_{x} v_{x}(m a)=\varepsilon_{x}(m a)$. Hence if $m a \notin[x], h\left(a_{x}\right)=(m a)_{x}$ and if $m a \in[x], h\left(a_{x}\right)=m a$.

Corollary 3. If $h \in \overline{S \cup L}^{\mathscr{F}(A)}$ and if $(h \upharpoonright A) \in S$ on \mathscr{R} then $h \in S$ on $\mathscr{F}(\mathscr{R})$.
Definition 9. If $\mathscr{R}=\langle A ; f\rangle$ is a representation of S and L and $h \in A^{A}$, then we write h is in the one closure of S in \mathscr{R} (or shortly $h \in \operatorname{oc}(S)_{\mathscr{R}}$ or $h \in \operatorname{oc}(S)$) if for each $a \in A$ there exists $f \in S$ with $h(a)=f(a)$. Local closure of S is denoted by l.c.(S).

Lemma 16. If $h \in \overline{S \cup L^{\mathscr{F}}(A)}$, then $m=(h \upharpoonright A)$ is in the one closure of S in \mathscr{R}.
Proof. Assume there is $a \in A$ such that for all $f \in S f(a) \neq m(a)=h(a)$. Then there exists a system Σ of equations, whose unique solution at a is $m(a) \nsubseteq[a]$. The unique solution of Σ at $\varphi_{a}(a)=a$ is $\varphi_{a}(m(a))=(m(a))_{a} \neq m(a)$ which is a contradiction.

Definition 10. The representation $\mathscr{R}=\langle A, f\rangle$ of S and L on A is algebraic, if the corresponding triple $(A ; S, L)$ is algebraic.

Definition 11. oc $\mathscr{F}(\mathscr{R})=\langle\mathscr{F}(A) ; f\rangle_{f \in \mathscr{O C}(S) \cup L}$ where $\mathscr{R}=\langle A ; f\rangle_{f \in S \cup L}$ a representation of S and L on A and the action of the operations in oc $(S) \cup L$ are as determined in $\overline{S \cup L}^{\mathscr{F}(A)}$.

Lemma 17. If the representation $(A ; S, L)$ has each compact $t \in L$ singleton generated, then $(\mathscr{F}(A) ; S, L)$ also has each compact $t \in L$ singleton generated.

Proof. Observe that for all $a \in A$, we have for each $p \in L \exists x\left[a_{x} \in p\right.$ in $(\mathscr{F}(A) ; S, L)]$ iff $[a \in p$ on $(\mathscr{F}(A) ; S, L)]$ iff $\forall x\left[a_{x} \in p\right.$ in $\left.(\mathscr{F}(A) ; S, L)\right]$.

Lemma 18. Let $(B ; S, L)$ satisfy St_{2}. Suppose $a, b \in B$ are such that for every $p \in L[a \in p \Rightarrow b \in p]$. Then each system of equations Σ over $S \cup L$ which has a solution at a also has a solution at b.

Proof. Let Σ be a system of equations over $S \cup L$ which has a solution at \dot{a}. Spt Σ denotes the set of all points in B on which Σ has a solution. Clearly $\operatorname{Spt} \Sigma=\bigcup_{D \subset \subset_{f} \operatorname{Spt} \Sigma} \bigcap_{D \leqq \operatorname{Spt} \Gamma} \operatorname{Spt} \Gamma=\mathscr{P}(\operatorname{Spt} \Sigma ; B, S \cup L)$ hence by $\mathrm{St}_{2}(B ; S, L), \operatorname{Spt} \Sigma \in L$. Hence $b \in \operatorname{Spt} \Sigma$ as required.

Lemma 19. Given ($B ; S, L$) which satisfies St_{2} and for which each compact $t \in L$ is singleton generated, if $h \in \overline{S \cup L}^{B}$ and $h \in \mathrm{oc}(S)$ on $(B ; S, L)$ then $h \in 1 . c .(S)$ on ($B ; S, L$).

Proof. Fix $\left\{b_{1}, \ldots, b_{n}\right\} \subset{ }_{f} B$. Let $p \in L$ be generated by $\left\{b_{1}, \ldots, b_{n}\right\}$; thus p is compact, and there exists $b \in B$ which generates p as well. Let Σ be a system of equations with coefficients from $S \cup L$ such that h is the unique solution on $\left\{b, b_{1}, b_{2}, \ldots, b_{n}\right\}$. Since $h \in \operatorname{oc}(S)$ there is some $f \in S$ with $f(b)=h(b)$. Hence h is also the unique solution on $\{b\}$ to the system $\Gamma=\Sigma \cup\left\{f x_{0}=x_{1}\right\}$. By Lemma 18 Γ has also a solution on each $b_{i}, i=1, \ldots, n$. But $\Gamma \supseteqq \Sigma$ so the solution to Γ on $\left\{b_{1}, \ldots, b_{n}\right\}$ is h. On the other hand $\left(f x_{0}=x_{1}\right) \in \Gamma$ hence the solution to Γ on $\left\{b_{1}, \ldots, b_{n}\right\}$ is f. Thus $f\left(b_{i}\right)=h\left(b_{i}\right)$ for $i=1, \ldots, n$, so $h \in$ l.c. (S) as required.

Lemma 20. Let N be a monoid and L an algebraic lattice such that $(A ; N, L)$ with $\mathrm{St}_{2}(A ; N, L)$, then if S is a submonoid of N we have $\mathrm{St}_{2}(A ; S, L)$.

Proof. Clearly $\mathscr{C}(D ; A, N \cup L) \subset \mathscr{C}(D ; A, S \cup L)$ and hence for each $B \subset A$, $B \subset \mathscr{S}(B ; A, N \cup L) \subset \mathscr{S}(B ; A, S \cup L)$. So if $B=\mathscr{S}(B ; A, S \cup L)$ we get $B=$ $=\mathscr{S}(B ; A, N \cup L)$ and then $B \in L$ in $(A ; N, L)$.

Theorem 1. If $(A ; N, L)$ is algebraic and each compact $t \in L$ is singleton generated in that representation then for each submonoid $S \subseteq N$ we have $(\mathscr{F}(A)$; l.c. $(S), L)$ is algebraic, where 1.c. (S) is the local closure of S in the representation $(\mathscr{F}(A) ; S, L)$.

Proof. Let $(A ; N, L)$ satisfy the hypothesis of the theorem and let S be a submonoid of N. By Lemma $20(A ; S, L)$ satisfies St_{2}, and clearly each compact $t \in L$ is singleton generated in $(A ; S, L)$ as well. By Lemmas 14 and $17(\mathscr{F}(A) ; S, L)$ also satisfies $\mathrm{St}_{\mathbf{2}}$ and each compact $t \in L$ is singleton generated in that representation. Furthermore by Lemma $5\left(\mathscr{F}(A) ; \overline{S \cup L}{ }^{\mathscr{F}(A)}, L\right)$ is algebraic, and here again each compact $t \in L$ is singleton generated. We claim that $\overline{S U L}^{\mathscr{F}(A)}=1$.c. (S), the local closure of S in $(\mathscr{F}(A) ; S, L)$; this will establish the result of the Theorem. Evidently $\overline{S \cup L}^{\mathscr{F}(A)} \supseteq$ l.c. (S) so really only the other containment need be argued. Let $h \in \overline{S \cup L}^{\mathscr{F}(A)}$. Note $h \upharpoonright A \in \mathrm{oc}(S)$ in $(\mathscr{F}(A) ; S, L)$, since by Lemma 16 we have $m=h \upharpoonleft A \in \operatorname{oc}(S)$ in $(A ; S, L)$. In fact $h \in \operatorname{oc}(S)$ in $(\mathscr{F}(A) ; S, L)$. To see that we need only check $h\left(a_{x}\right)$ for $a_{x} \in \mathscr{F}(A)$. If $h(a) \notin[x]$ we get $h\left(a_{x}\right)=$ $=(h(a))_{x}=(f(a))_{x}$ for some $f \in S$ and if $h(a) \in[x]$ we get $h\left(a_{x}\right)=h a=f a=f\left(a_{x}\right)$ for some $f \in S$ by use of Lemma 15 and the definition of action by S in $\mathscr{F}(A)$ (see Defn. 6). Now apply Lemma 19 with $(B ; S, L)=(\mathscr{F}(A) ; S, L)$ to get $h \in \overline{S \cup L}^{\mathscr{F}(A)} \cap \operatorname{Oc}(S) \Rightarrow h \in$ 1.c. (S) on $(\mathscr{F}(A) ; S, L)$ as required.

Lemma 21. The local closure of any finite monoid S is equal to S.
Proof. Let the monoid S be represented on some set A and assume that $h \in$ local closure S and $h \notin S$. For each $f \in S$ let $a_{f} \in A$ be such that $h\left(a_{f}\right) \neq f\left(a_{f}\right)$ then $D=\left\{a_{f} ; f \in S\right\}$ is finite and clearly $h \upharpoonleft D \neq f \upharpoonleft D$ for any $f \in S$, contrary to the selection of h in the local closure of S. Hence each h in local closure S also belongs to S.

Theorem 2. For each universal algebra \mathfrak{A} there is a universal algebra \mathfrak{B} satisfying End $\mathfrak{A} \cong$ End \mathfrak{B} and $\mathrm{Su} \mathfrak{\mathfrak { A }}=\mathrm{Su} \mathfrak{B}$; moreover every finitely generated subalgebra of \mathfrak{B} is generated by a single element.

Proof. Let $\mathfrak{U}=\langle A, F\rangle, S=$ End \mathfrak{A} and $L=S u \mathfrak{A}$. For any $C \subseteq A$ we set $C^{*}=\bigcup_{n=1}^{\infty} C^{n}$. (Remark that we do not distinguish between C and C^{1} and thus $C \subseteq C^{*}$.) With any $\varphi \in S$ we associate a transformation $\varphi^{*}: A^{*} \rightarrow A^{*}$ defined by $\varphi^{*}\left(\left(x_{1}, \ldots, x_{k}\right)\right)=\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{k}\right)\right), \quad\left(x_{1}, \ldots, x_{k}\right) \in A^{*}$. Let $S^{*}=\left\{\varphi^{*} \mid \varphi \in S\right\} \quad$ and $L^{*}=\left\{C^{*} \mid C \in L\right\}$. Then $S^{*} \cong S$ and $L^{*} \cong L$. We shall construct an algebra $\mathfrak{B}=\left\langle A^{*}, G\right\rangle$ such that $S^{*}=$ End $\mathfrak{B}, L^{*}=\operatorname{Su} \mathfrak{B}$ and every finitely generated subalgebra of \mathfrak{B} is generated by a single element.

Let g_{1}, g_{2} be unary operations and h a binary operation on A^{*} defined by the rules:

$$
g_{1}\left(\left(x_{1}, \ldots, x_{k}\right)\right)=x_{1}, \quad g_{2}\left(\left(x_{1}, \ldots, x_{k}\right)\right)=\left(x_{k}, x_{1}, \ldots, x_{k-1}\right)
$$

and

$$
h\left(\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{l}\right)\right)=\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{i}\right)
$$

for every $\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{i}\right) \in A^{*}$. Furthermore, with each operation $f \in F$ we associate an operation $f_{\mathfrak{B}}$ on A^{*} as follows. The arity of $f_{\mathfrak{B}}$ equals the one of f and $f_{\mathfrak{B}}$ is defined by

$$
f_{\mathfrak{B}}\left(\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots,\left(x_{1}^{n}, \ldots, x_{k_{n}}^{n}\right)\right)=f\left(x_{1}^{1}, \ldots, x_{1}^{n}\right),\left(x_{1}^{i}, \ldots, x_{k_{i}}^{i}\right) \in A^{*}, \quad i=1, \ldots, n .
$$

Now set $G=\left\{f_{\mathfrak{B}} \mid f \in F\right\} \cup\left\{g_{1}, g_{2}, h\right\}$.
First consider End \mathfrak{B}. It is clear that $S^{*} \subseteq$ End \mathfrak{B}. Let $\Phi \in$ End \mathfrak{B}. If $x \in A$ then $\Phi(x)=\Phi\left(g_{1}(x)\right)=g_{1}(\Phi(x)) \in A$ showing that $\Phi \mid A=\varphi \in A^{A}$. Furthermore, if $f \in F$ is n-ary and $x_{1}, \ldots, x_{n} \in A$, then $\varphi\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=\Phi\left(f_{\mathfrak{B}}\left(x_{1}, \ldots, x_{n}\right)\right)=$ $=f_{\mathfrak{B}} \cdot\left(\Phi\left(x_{1}\right), \ldots, \Phi\left(x_{n}\right)\right)=f\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{n}\right)\right)$, i.e. $\Phi \upharpoonright A=\varphi \in$ End $\mathfrak{G}=S$. Now we show by induction on k that (1) $\Phi\left(\left(x_{1}, \ldots, x_{k}\right)\right)=\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{k}\right)\right),\left(x_{1}, \ldots, x_{k}\right) \in A^{*}$. If $k=1$ then (1) holds. Supppose (1) holds for $k-1$. Then $\Phi\left(\left(x_{1}, \ldots, x_{k}\right)\right)=$ $=\Phi\left(h\left(\left(x_{1}, \ldots, x_{k-1}\right), x_{k}\right)\right)=h\left(\Phi\left(\left(x_{1}, \ldots, x_{k-1}\right), \Phi\left(x_{k}\right)\right)=h\left(\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{k-1}\right)\right), \varphi\left(x_{k}\right)\right)=\right.$ $=\left(\varphi\left(x_{1}\right), \ldots, \varphi\left(x_{k}\right)\right)$. Hence $\Phi=\varphi^{*} \in S^{*}$.

Now consider $\mathrm{Su} \mathfrak{B}$. It is clear that $L^{*} \subseteq \mathrm{Su} \mathfrak{B}$. Let $B \in \mathrm{Su} \mathfrak{B}$. Taking into account that g_{n}, g_{2} and h are operations of \mathfrak{B}, one can show that $B=(B \cap A)^{*}$. Furthermore, $B \cap A \in \operatorname{Su} \mathfrak{Y}=L . B=(B \cap A)^{*} \in L^{*}$. Finally, if a subalgebra B of \mathfrak{B} is generated by the elements $\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots,\left(x_{1}^{s}, \ldots, x_{k_{s}}^{s}\right) \in A^{*}$ then B is also generated by $\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}, \ldots, x_{1}^{s}, \ldots, x_{k_{s}}^{s}\right) \in A^{*}$ which completes the proof.

Corollary 4. If the monoid N and the algebraic lattice L are jointly algebraic and S is a finite submonoid of N, then S and L are jointly algebraic.

Proof. Let $(A ; N, L)$ be algebraic, with each compact $t \in L$ singleton generated in that representation. By Theorem $1(\mathscr{F}(A) ;$ l.c. $(S), L)$ is algebraic. By Lemma 21 l.c. $(S)=S$ since S is finite, hence $(\mathscr{F}(A) ; S, L)$ is algebraic and S and L are (abstractly) jointly algebraic.

Corollary 5. If $S \subset T$ are two monoids and if L is an algebraic lattice for which the highest element 1 is compact and if T and L are jointly algebraic, then S and L are jointly algebraic.

Proof. Let $\mathfrak{H}=\langle A ; \mathscr{P}\rangle$ be such that $L=\mathrm{Su} \mathfrak{H}$ and $T=$ End \mathfrak{H}. We may assume each compact $t \in L$ is singleton generated in \mathfrak{A}. For the triple $(A ; T, L)$ given by \mathfrak{A} we have $(\mathscr{F}(A) ;$ l.c. (S)., L) algebraic. In fact by Lemma 17 each compact $t \in L$ is singleton generated in this representation. In particular $1 \in L$ which is compact by hypothesis is singleton generated. It follows that 1.c. $(S)=S$ in that representation, hence $(\mathscr{F}(A) ; S, L)$ is algebraic and S, L are (abstractly) jointly algebraic.

Corollary 6. If the monoid T and the algebraic lattice L are jointly algebraic but not both infinite then every submonoid of T is jointly algebraic with L.

Proof. Follows now immediately from Corollaries 4 and 5.
Acknowledgement. The authors are grateful to Dr. L. Szabó for providing the short proof given above for Theorem 2. The original proof that a single generator representation could be obtained on the set of all finite sequences of a given representation made use of [1], and required some tedious verification.

Bibliography

[1] N. Sauer and M. G. Stone, Endomorphism and Subalgebra Structure; a Concrete Characterization; Acta Sci. Math., 39 (1977), 311-315.
[2] N. Sauer and M. G. Stone, The Algebraic Closure of a Semigroup of Functions, Algebra Universalis, 7 (1977), 219-233.
[3] G. Grätzer, Universal Algebra, D. Van Nostrand (Princeton, 1968).

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF CALGARY
292024 AVE. N. W.
CALGARY, CANADA, T2N 1N4

[^0]: Received April 19, 1978; in revised form January 31, 1979.
 This research was supported in part by the National Research Council of Canada Operating Grants A7213 and A8094.

[^1]: * For a function f and $A \subseteq \operatorname{dom} f, f \mid A$ denotes the restriction of f to A.

