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Reflexive and hyper-reflexive operators of class C,
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The Jordan model of a finite matrix was used for the first time in the study of
reflexive operators (on finite dimensional spaces) by DEDDENS and FILLMORE [5].
Their result was extended in [1] to the class of algebraic operators on Hilbert space,
using the quasi-similar Jordan model (in fact in [1] the notion of para-reflexivity is
studied, but one can easily see that reflexivity and para-reflexivity are equivalent for
algebraic operators). The possibility of extending these results to the entire class
C, was then indicated in [6] for the separable case and [2] (where a sketch of proof
is done) for the nonseparable case. It appeared that the reflexivity of an operator
of class C, is equivalent. to the reflexivity of a single “Jordan block™ S(m) (cf. § 1
below for the precise statement).

In this note we give a simplified version of the proofs of [6] and [2]. We further
study the related notion of hyper-reflexivity (stronger than reflexivity for the class
C,) and prove an analogous characterization of hyper-reflexive operators of class C,.

1. Notations and results

We shall denote by $ a complex Hilbert space and by £ ($) the algebra of linear
and bounded operators acting on §. For an algebra &/ Z($), Lat ¢ will stand
for the set of closed linear subspaces Mc H invariant with respect to all elements
of o: XMcM, Xc /. For a family & of closed linear subspaces of H, Alg ¥

- will denote the algebra of operators X€ #(9) for which XM I whenever Me %,
The algebra L/ Z(9) is called reflexive if o/=AlgLat /. An operator T€Z(9)
is reflexive if the weakly closed algebra o/, generated by T"and / is a reflexive algebra.
An operator T€¢ ZB($) will be called hyper-reflexive if its commutant {T} =(s#,)
is a reflexive algebra.
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Recall that a completely nonunitary contraction T€Z($) is an operator of
class C, if u(T)=0 for some ucH*, us#0 (cf. [10], ch. V). The simplest operators
of class C, are the “Jordan blocks” S(m), with mc H* an inner function, defined by

(.0 S(m)u = Pgmy(zu(2), u€H(m) = H*OmH?™

By the results of [11], [4] and [3], every operator T of class C, is quasi-similar
to a unique Jordan operator, that is to an operator of the form

(1.2) S=@@Sm,)

where the values of o are ordinal numbers and the inner functions m, are subject
to the conditions

(1.3) m,=1 for some a=0;
(1.4) m, divides m, whenever a = f;
(1.5) m, = mg, whenever card (x) = card (f).

Let us note that m, coincides with the minimal function m,. of T. The operators
quasi-similar to some S(m) are precisely the cyclic operators of class Cy (multiplicity-
free operators). For multiplicity-free T it follows from [12] that Lat T=Lat {T}
and «Z=(&) so for such operators reflexivity and hyper-reflexivity are equiv-
alent.

We are now able to state the main results of this note.

Theorem A. An operator T of class C, with Jordan model S= S(m,) is
reflexive if and only if S(my/m,) is reflexive.

Theorem B. Let T and S be as in Theorem A. Then T is hyper-reflexive if
and only if S(my) is reflexive.

Recently P. Y. Wu [15] published a proof of Theorem A for the particular case
of operators of class C, with finite defect indices.

2. Preliminary results

The following theorem plays an important role in the study of reflexive opera-
tors of class C, (cf. [13] and [14] for the proof).

Theorem 2.1. For every operator T of class Cy we have

.1 A ={T} ={TYNAIlgLatT.
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Corollary 2.2. An operator T of class C, is reflexive if and only if Alg Lat TC
c {T}. — Obvious from relation (2.1).

Corollary 2.3. Let Tc#(9) be an operator of class Cy and let M;cLat T
(j€J) be such that T\M; is reflexive for each j. If H=\/ M; then T is reflexive.
jeJ

Proof. It follows from Corollary 2.2 that it is enough to show that every
X¢eAlg Lat T commutes with 7. But it is obvious that for X¢Alg Lat T we have
X|M;€Alg Lat (T|IR;) so that X|IM;€{T|IM;}" by the hypothesis. Therefore,

ker(XT'-TX) D> V M; =9, thatis Xc{T}.
jed

Corollary 2.4. Let TEZ(D) be a reflexive operator of class C,. For every
Xe o, the operator T|(X9)~ is reflexive.

Proof. Let us take Y€AlgLat(T|(X$)~). Since XcAlgLatT we infer
YX¢ Alg Lat T and therefore YX¢€{T}’, by the reflexivity of T and Corollary 2.2.
As X and T commute, we have YT .X=YX.T=TY X such that Yc{T|(X9)~}
and the conclusion follows again by Corollary 2.2.

We shall introduce now an auxiliary property.

Definition 2.5. A completely nonunitary contraction T has property (%)
if for any quasi-affinity X€{T} there exists a quasi-affinity Y¢{T} such that

2.3) XY =YX =u(T) forsome uc H=
for some ucH™>.

Lemma 2.6. Let T and T’ be two quasi-similar completely nonunitary contrac-
tions. If T has property () then T’ does also. Moreover, if T has property (%) then
there exist quasi-affinities A, B such that T' B=BT, TA=AT’" and

2.9 AB=u(T), BA=u(T’) for some ucH®>.

Proof. Let us assume that T has property (%) and 4, B’ are two quasi-affinities
such that 7"B’=B’T and TA=AT’. For any quasi-affinity X¢{7T"} we have
AXB’€{TY} so that, by the assumption, we have AXB’-Y' =Y’ AXB'=u(T) for
some quasi-affinity Y’€{T} and u€ H=. We obviously have

A(X-B'Y A—u(T')) = AXB' Y’ A— Au(T") = u(T) A—Au(T") = 0,
(B'Y'A-X—u(T"))B’ = B’ -Y'AXB'—u(T')B’ = B'u(T) —u(T")B’ = 0

so that X.-B’Y’A=u(T’) by the injectivity of 4, and B’Y’A-X=u(T") by the
quasi-surjectivity of B’. So we have XY=YX=u(T") for Y=B"Y’A and therefore
T’ has property (*). For the last assertion of the Lemma it is enough to set B=B’Y"’
where Y’ is obtained from the preceding proof for X=1I. The Lemma follows,
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Lemma 2.7. Every Jordan operator of the form S=S(my)® S(my) has prop-
erty ().

Proof. Let X¢ {S} be a quasi-affinity. By the Lifting Theorem ([10], sec. 1I. 2.3)
there exists a 2X2 matrix A=[g 3] with entries in H=, such that

(2.5) PsA(I—Pg) =0 on H*®H? and X = Pgd on $ = H(mg)dH(m,).
Let us remark that
(2.6) aANbAmg = 1.

Indeed, if g=aAbAmy=1 it follows that tj:(l—q_(B)q)EBO is a non-zero vector
in $ such that for every vector of the form Xh (h=hy®h, € H) we have

(Xh, §) = (PsAh, §) = (4h, §) = [ ((a/g)ho+(b/)h)) (—q(0)) = O,
and this is impossible since X has dense range. Moreover, we have
Q7 . det AAm, = 1.

Indeed, let us set p=det AAm, and denote h= — b(m,/p)@a(m,/p). Then we have,
by (2.5),
XPgh = PgAPgh = PgAh = Pg(0@m, - (det A)/p) = 0

and therefore Pgh=0 by the injectivity of X. Hence, h€m,H2®m,H?, which
implies that p divides 4 and a; taking account of the definition ot p we infer that
p divides aAbAm Adet A also. Then (2.6) forces p to equal 1, concluding the proof
of (2.7). From (2.6—7) it obviously follows that

det AANmyaAmybAmg = 1

so that [7] (cf. also [9]) implies the existence of ¢’, d’,e’€ H™ (even constans) such
that (det A+ m,(ad’ — be’) + me’)Amy= 1 or, equivalently,

(2.8) (det A+my(ad’—bc"))Amy = 1.

a b
c+mc d+m
relations analogous to (2.5) and moreover det A’Amy=1 by (2.8). Let us define

Yh=PgBh for h¢$H=9H(m))dH(m,), where B=[ d+m1d,, -b].lt follows by
—c—myc a

direct computation that Y€ {S}’ and XY=YX=u(S) with u=det 4’. Now u(S) is
a quasi-affinity because uAm,=1 (cf. [10], Prop. II1. 4.7b) and therefore Y is also
a quasi-affinity. The Lemma follows.

Let us remark now that the matrix A’=[ d’] satisfies the
1

Remark 2.8. Lemma 2.7 also applies to operators of the form S=S(m) (take
m,=1). By the celebrated theorem of SARASON [8] we have then, in fact, X=u(S)
with some u€¢ H=, for every Xc{S}. .
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3. Reflexive operators

The role of property (#) in the study of reflexive operators is underlined by
the following result.

Lemma 3.1. Let T and T’ be two quasi-similar operators of class C, having
property (). Then T is reflexive if and only if T’ is reflexive.

Proof. By Lemma 2.6 there exist quasi-affinities 4, B such that 7’ B=BT,
TA=AT’ and AB=u(T), BA=u(T") for some ucH™. Assume T is reflexive.
For any XcAlglat7’ and McLat T we have AXBMCA(BIM)~ c(ABM) =
=(u(T)WM)~ M because (BM)~€Lat 7" and u(T)€AlgLat T. By the reflexivity
of T we have AXBc{T} and from the relations

A<XT'-B=AXB-T =T-AXB=A-T'X-B

it follows that X¢{T”}. The reflexivity of T’ follows then by Corollary 2.2, and
Lemma 3.1 is proved.
For easier reference, let us formulate the following:

Lemma 3.2. For two (‘comparable’) inner functions, say p and q, the operator

Vot 9(P)>9H(q), defined by

3.1 {Ps(q)h if ¢ divides p

(.2) Veah =\(aih it p divides g €SP
intertwines S(p) and S(q).

Proof. If ¢ divides p, we have for h€$H(p), using (1.1) and (3.1),

(S(q)qu—quS(p))h = P&'v(q) {ZPS(q)h_Pé(p) Zh} =0

because zPg h=z(h+qw)=zh+qw’, Pg  zh=zh4pw'=zh+qw” with some
w, w’, wEH?, and hence {...}eqH?2

If, conversely, p divides g, then we use the relation Pg, u=u—m[mu],, valid
for any inner m and for any u€H?3, [...], denoting here the natural projection
L2*~H? We get by (1.1) and (3.2)

(SO p,q= V5, SR = P-ﬁ(q)z%h'—%Ps(m(Zh) =

= (+Zh-q[az L], )L eah-spipziy = 0

because l?q=1,-;—=13 on the circle {z: |z]=1}.
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Lemma 3.3. Let S=S(ny)® S(m,) be a Jordan operator. Then for every
XeAlg Lat S there exists Yesds such that X—Y=Z@0 with some operator Z
on $(my) and the zero operator on H(m,).

Proof. The subspaces $H(my) e {0} and {0} H(m,) are invariant for S so
the assumption X€AlgLat S implies

X=X,0X,, XcAlglatS(m) (j=1,2).

Consider the (obviously isometric) operator V=V, . defined by (3.2), and the
subspaces :
{(Vheoh: heH{m))} and {V'S(m)hdh: heH(m)}.

By Lemma 3.2, both are invariant for S, and hence for X also. So we infer
XVh=VX;h and X,VS(mp)h=VS(mp)X,h for heH{m,).

Apply the first equation for S(my)h in place of & and compare the results to obtain
VX; S(m)h=VS(m)X,h for all heH(m,). Hence, X;S(m)=Sm)X,. By a
well-known theorem of SARASON (8] this implies that X, =u(S(m,)) for some uc H=.
Hence, Y=u(S)=u(S(my))®u(S(m,)) has the property we needed.

Lemma 34. Let S=S(my)® S(m,) be a Jordan operator and let Z be an
operator on H{mg) such that Z@®0cAlgLat S. Then

3.3) Z(gH*6myH?* C gm,H*6m,H?

for every inner divisor q of my/m,.

Proof. As m, is a divisor of my/q, which, in turn, is a divisor of m,, we can
consider the operators Vo=V, ;4m, and Vi=V, , ., defined by (3.2) and (3.1),
respectively, and observe that {V he Vi h: h€ H(my/q)} is a subspace invariant
for S (closure follows from the fact that V; is an isometry, namely multiplication
by the inner function g). Then it is invariant for Z@®O0 also. Hence we infer that
for every h€$H(mp/q) there exists h'€ H(my/q) such that ZV,h=V k' and 0=V, k.

As VI =Py k" by (3.1), we must have h’e(HzeﬁqﬂHz)e(H2em1H2) ie.

em H20 % H? We conclude that Zg$ [%) <q (ml Hg % Hz) , and this
obviously implies (3.3).

Remark. In the particular cases g=1 and q=%’- (3.3) implies
1

3.4 ranZc mH2OmygH? and kerZ D (mg/m)H*SOm H?2.
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In the proof of the following result we shall use the wnitary operator
3.5) R: m H?©OmyH? — H(my/m,) defined by Rh = h/m,,
which satisfies the relation
3.6) RS (mg)|(my H2O myH?) = S(my/m;) R=Pg (o 1mpyS(Me)R.

. Proposition 3.5. The Jordan operator S=S(mg)® S(m,) is reflexive when-
ever S(myfm,) is reflexive.

Proof. By Lemmas 3.3, 3.4, and Corollary 2.2 it suffices to show that every
operator Z€Alg Lat S(m,) satisfying (3.3) commutes with S(m,). We claim that
for such a Z we have RZ|$H(my/m,)€ Alg Lat S(my/m,). Indeed, the general form of
the subspaces in Lat S(mg/my) is gH?*S(me/my) H* for g a divisor of my/m,. By
(3.3—4) we have RZ(qH®©(m/m) H))C RZ(qH*©myH*C R(gm; H*©QmyH?) =
=qH?*© (me/m,) H?. The reflexivity of S(my/m,) implies RZ |$ (mofm)E {S(mo/my)Y .
Therefore,

R(ZS(my) = S(mp)Z)|H(mof/m,y) = (RZ)S(mg) — RS(m) Z)|H(me/my) =
= ((RZ) P (mo/m1) S(mg)—S(mq/m,) RZ) [9@ng/my) =0

so that Z commutes with S(m,) on $(my/m;). Because by (3.4) we have ZS(my)=
=8(mg)Z=0 on (my/m)H2SmyH? it follows that Z¢ {S(m,)}. The Proposition
is proved.

Proof of Theorem A. Let T€4%(H) be of class C,, with Jordan model
S=@ S(m,) on H=B H(m,). If T is reflexive we infer by Corollary 2.4 that

T|(my (7))~ is reflexive. But T|(m, (T)$)~ is quasi-similar to S(m/m;) and
the reflexivity of S(my/m,) follows by Lemma 3.1 and Remark 2.8.

Conversely, let us assume that S(my/m,) is reflexive. Let X be any quasi-affinity
such that 7X=XS. Let us consider the spaces 5(,,=(X$3(m‘,‘))~ and K,=
=(X ker m,(S|$5(mo)))— for every ordinal number «. Then the restriction T|H,V H,
is quasi-similar to S(my)@®S(@m) and T|K,VH,(e=1) is quasi-similar to
S(my)® S(m,). All these restrictions are reflexive by Lemmas 2.7, 3.1 and Proposi-
tion 3.5 so that the reflexivity of T follows by Corollary 2.3 because (,V H,)V
V(V 8.V R)=V 5.=9.

Corollary 3.6. Let T and T’ be two quasi-similar operators of class Cy. Then T
is reflexive if and only if T’ is reflexive.

Proof. Two operators of class C, are quasi-similar if and only if they have
he same Jordan model. Corollary obviously follows from Theorem A.
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4. Hyper-reflexive operators

Proposition 4.1. If the operators T and T’ are quasi-similar and one of them
is hyper-reflexive then so is the other.

Proof. Let X and Y be two quasi-affinities such that 7 X=XT and TY=YT’
and let A€AlgLat {T}". Then XAYcAlgLat {T’}; indeed, for each MeLat {T*}
we have

“.1) N= V ZY?.RELat{T}’
Ze(Ty

and Xﬂlc V XZY‘).RC V  Z'M=M. In particular, YAYMC XANC X NCM

and XA YeAlg Lat {r'y becalisc MeLat {T"} is arbitrary.

If T is hyper-reflexive it follows that XAY€ {T"} so that X - AT - Y=XAY-T" =
=T"-XAY=X-TA-Y and Ac{T} because X and Y are quasi-affinities. It fol-
lows that T is hyper-reflexive. The Proposition is proved.

Proof of Theorem B. By the preceding proposition it is enough to consider
the case T=S. Let us assume that .S is hyper-reflexive and take A€Alg Lat S(m,).
Then the operator B=@A4,, where A;=4 and A,=0 for a=1, belongs to

AlgLat {S}. Indeed, since each SK¢Lat{S} has the form @ K, where

K.€Lat S(m,), we have BRC K. It follows that B¢ {S}" and this implies A€ {S(m,)} .
The reflexivity of S(m,) follows by Corollary 2.2.

Conversely, let us assume that S(m,) is reflexive. Because S(m,) is unitarily
equivalent to S(mo)|(ran u,(S(m,))~ (4, =my/m,) it follows by Corollary 2.4 that S(m,)
is reflexive for every «. We consider the operators R,;¢ {S}" defined by R,;(Ph,)=

?

=@ k, where k,=0 for y#a and
¥

Pgimnh whenever o=f,
4.2) ka=Vm,.,..hﬁ—{ 5 (ma) 18 B
’ (m,/mg)h, whenever a=§p.

Cf. (3.1—2). Obviously, P,= R, coincides with the orthogonal projection of H$H(m,)

a-component space. ’
Let AcAlgLat {S}; we have P,AP,cAlglat{S} and A= Z' P,AP; in

the strong operator topology. To conclude the proof it is enough to show that
P,APy{SY. Let us note that the operators Ry, P,AP; and P,AP;R;, belong to
Alg Lat {S} and are of the form @ T, with T,=0 for y=p and y=«a, respec-

?
tively. Considering the spaces of the form ker m(S)éLat {S} for m a divisor of
my, it is easily seen that necessarily T,€AlgLat S(m,) so that T,€{S(m,} by
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the reflexivity of S(m,). It follows that Rz, P,AP; and P, AP; Ry, commute with S
and therefore
R (P, APy S—SP,AP;) = (P,AP,S—SP,AP)R,, = 0.

If the range of R,, does not contain ran P, it follows that B<a and therefore
R;, is one-to-one on ran P,; therefore in both cases we infer P,AP,c{S}. The
Theorem is proved.

Remark 4.2. It follows from Theorems A and B that each hyper-reflexive
operator of class C, is also reflexive. This fact can be proved directly also, by using
Theorem 2.1.
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