Reflexive and hyper-reflexive operators of class C_{0}

H. BERCOVICI, C. FOIAS, B. SZ.-NAGY
Dedicated to P. R. Halmos on his 65th birthday

The Jordan model of a finite matrix was used for the first time in the study of reflexive operators (on finite dimensional spaces) by Deddens and Fillmore [5]. Their result was extended in [1] to the class of algebraic operators on Hilbert space, using the quasi-similar Jordan model (in fact in [1] the notion of para-reflexivity is studied, but one can easily see that reflexivity and para-reflexivity are equivalent for algebraic operators). The possibility of extending these results to the entire class C_{0} was then indicated in [6] for the separable case and [2] (where a sketch of proof is done) for the nonseparable case. It appeared that the reflexivity of an operator of class C_{0} is equivalent to the reflexivity of a single "Jordan block" $S(m)$ (cf. § 1 below for the precise statement).

In this note we give a simplified version of the proofs of [6] and [2]. We further study the related notion of hyper-reflexivity (stronger than reflexivity for the class C_{0}) and prove an analogous characterization of hyper-reflexive operators of class C_{0}.

1. Notations and results

We shall denote by $\mathfrak{5}$ a complex Hilbert space and by $\mathscr{B}(\mathfrak{H})$ the algebra of linear and bounded operators acting on \mathfrak{G}. For an algebra $\mathscr{A} \subset \mathscr{B}(\mathfrak{H})$, Lat \mathscr{A} will stand for the set of closed linear subspaces $\mathfrak{M} \subset \mathfrak{G}$ invariant with respect to all elements of $\mathscr{A}: X \mathfrak{M} \subset \mathfrak{M}, X \in \mathscr{A}$. For a family \mathscr{L} of closed linear subspaces of $\mathfrak{H}, \operatorname{Alg} \mathscr{L}$ will denote the algebra of operators $X \in \mathscr{B}(\mathfrak{H})$ for which $X \mathfrak{P} \subset \mathfrak{M}$ whenever $\mathfrak{M} \in \mathscr{L}$. The algebra $\mathscr{A} \subset \mathscr{B}(\mathfrak{H})$ is called reflexive if $\mathscr{A}=$ Alg Lat \mathscr{A}. An operator $T \in \mathscr{B}(\mathfrak{H})$ is reflexive. if the weakly closed algebra \mathscr{A}_{T} generated by T and I_{5} is a reflexive algebra. An operator $T \in \mathscr{B}(\mathfrak{G})$ will be called hyper-reflexive if its commutant $\{T\}^{\prime}=\left(\mathscr{A}_{T}\right)^{\prime}$ is a reflexive algebra.

[^0]Recall that a completely nonunitary contraction $T \in \mathscr{B}(\mathfrak{F})$ is an operator of class C_{0} if $u(T)=0$ for some $u \in H^{\infty}, u \neq 0$ (cf. [10], ch. V). The simplest operators of class C_{0} are the "Jordan blocks" $S(m)$, with $m \in H^{\infty}$ an inner function, defined by

$$
\begin{equation*}
S(m) u=P_{5(m)}(z u(z)), u \in \mathfrak{G}(m)=H^{2} \Theta m H^{2} . \tag{1.1}
\end{equation*}
$$

By the results of [11], [4] and [3], every operator T of class C_{0} is quasi-similar to a unique Jordan operator, that is to an operator of the form

$$
\begin{equation*}
S=\bigoplus_{a} S\left(m_{\alpha}\right) \tag{1.2}
\end{equation*}
$$

where the values of α are ordinal numbers and the inner functions m_{α} are subject to the conditions

$$
\begin{gather*}
m_{x}=1 \text { for some } \alpha \geqq 0 ; \tag{1.3}\\
m_{z} \text { divides } m_{\beta} \text { whenever } \alpha \geqq \beta ; \tag{1.4}\\
m_{\alpha}=m_{\beta} \text { whenever } \operatorname{card}(\alpha)=\operatorname{card}(\beta) . \tag{1.5}
\end{gather*}
$$

Let us note that m_{0} coincides with the minimal function m_{T} of T. The operators quasi-similar to some $S(m)$ are precisely the cyclic operators of class C_{0} (multiplicityfree operators). For multiplicity-free T it follows from [12] that Lat $T=$ Lat $\{T\}^{\prime}$ and $\mathscr{A}_{T}=\left(\mathscr{A}_{T}\right)^{\prime}$ so for such operators reflexivity and hyper-reflexivity are equivalent.

We are now able to state the main results of this note.
Theorem A. An operator T of class C_{0} with Jordan model $S=\underset{\alpha}{\oplus} S\left(m_{\alpha}\right)$ is reflexive if and only if $S\left(m_{0} / m_{1}\right)$ is reflexive.

Theorem B. Let T and S be as in Theorem A. Then T is hyper-reflexive if and only if $S\left(m_{0}\right)$ is reflexive.

Recently P. Y. WU [15] published a proof of Theorem A for the particular case of operators of class C_{0} with finite defect indices.

2. Preliminary results

The following theorem plays an important role in the study of reflexive operators of class C_{0} (cf. [13] and [14] for the proof).

Theorem 2.1. For every operator T of class C_{0} we have

$$
\begin{equation*}
\mathscr{A}_{T}=\{T\}^{\prime \prime}=\{T\}^{\prime} \cap \text { Alg Lat } T . \tag{2.1}
\end{equation*}
$$

Corollary 2.2. An operator T of class C_{0} is reflexive if and only if $\operatorname{Alg} \operatorname{Lat} T \subset$ $\subset\{T\}^{\prime}$. - Obvious from relation (2.1).

Corollary 2.3. Let $T \in \mathscr{B}(\mathfrak{H})$ be an operator of class C_{0} and let $\mathfrak{M}_{j} \in$ Lat T ($j \in J$) be such that $T \mid \mathfrak{M}_{j}$ is reflexive for each j. If $\mathfrak{G}=\bigvee_{j \in J} \mathfrak{M}_{\boldsymbol{j}}$ then T is reflexive.

Proof. It follows from Corollary 2.2 that it is enough to show that every $X \in \mathrm{Alg}$ Lat T commutes with T. But it is obvious that for $X \in \operatorname{Alg}$ Lat T we have $X \mid \mathfrak{M}_{j} \in \operatorname{Alg} \operatorname{Lat}\left(T \mid \mathfrak{M}_{j}\right)$ so that $X \mid \mathfrak{M}_{j} \in\left\{T \mid \mathfrak{M}_{j}\right\}^{\prime}$ by the hypothesis. Therefore,

$$
\operatorname{ker}(X T-T X) \supset \bigvee_{j \in J} \mathfrak{M}_{j}=\mathfrak{F}, \quad \text { that is } \quad X \in\{T\}^{\prime}
$$

Corollary 2.4. Let $T \in \mathscr{B}(\mathfrak{G})$ be a reflexive operator of class C_{0}. For every $X \in \mathscr{A}_{T}$ the operator $T \mid(X \mathfrak{S})^{-}$is reflexive.

Proof. Let us take $Y \in \operatorname{Alg} \operatorname{Lat}\left(T \mid(X \mathfrak{S})^{-}\right)$. Since $X \in \operatorname{Alg}$ Lat T we infer $Y X \in$ Alg Lat T and therefore $Y X \in\{T\}^{\prime}$, by the reflexivity of T and Corollary 2.2. As X and T commute, we have $Y T \cdot X=Y X \cdot T=T Y \cdot X$ such that $Y \in\left\{T \mid(X \mathfrak{S})^{-}\right\}^{\prime}$ and the conclusion follows again by Corollary 2.2.

We shall introduce now an auxiliary property.
Definition 2.5. A completely nonunitary contraction T has property (*) if for any quasi-affinity $X \in\{T\}^{\prime}$ there exists a quasi-affinity $Y \in\{T\}^{\prime}$ such that

$$
\begin{equation*}
X Y=Y X=u(T) \text { for some } u \in H^{\infty} \tag{2.3}
\end{equation*}
$$

for some $u \in H^{\infty}$.
Lemma 2.6. Let T and T^{\prime} be two quasi-similar completely nonunitary contractions. If T has property (*) then T^{\prime} does also. Moreover, if T has property (*) then there exist quasi-affinities A, B such that $T^{\prime} B=B T, T A=A T^{\prime}$ and

$$
\begin{equation*}
A B=u(T), \quad B A=u\left(T^{\prime}\right) \text { for some } u \in H^{\infty} . \tag{2.4}
\end{equation*}
$$

Proof. Let us assume that T has property (*) and A, B^{\prime} are two quasi-affinities such that $T^{\prime} B^{\prime}=B^{\prime} T$ and $T A=A T^{\prime}$. For any quasi-affinity $X \in\left\{T^{\prime}\right\}^{\prime}$ we have $A X B^{\prime} \in\{T\}^{\prime}$ so that, by the assumption, we have $A X B^{\prime} \cdot Y^{\prime}=Y^{\prime} \cdot A X B^{\prime}=u(T)$ for some quasi-affinity $Y^{\prime} \in\{T\}^{\prime}$ and $u \in H^{\infty}$. We obviously have

$$
\begin{aligned}
A\left(X \cdot B^{\prime} Y^{\prime} A-u\left(T^{\prime}\right)\right)=A X B^{\prime} Y^{\prime} \cdot A-A u\left(T^{\prime}\right) & =u(T) A-A u\left(T^{\prime}\right)=0 \\
\left(B^{\prime} Y^{\prime} A \cdot X-u\left(T^{\prime}\right)\right) B^{\prime}=B^{\prime} \cdot Y^{\prime} A X B^{\prime}-u\left(T^{\prime}\right) B^{\prime} & =B^{\prime} u(T)-u\left(T^{\prime}\right) B^{\prime}=0
\end{aligned}
$$

so that $X \cdot B^{\prime} Y^{\prime} A=u\left(T^{\prime}\right)$ by the injectivity of A, and $B^{\prime} Y^{\prime} A \cdot X=u\left(T^{\prime}\right)$ by the quasi-surjectivity of B^{\prime}. So we have $X Y=Y X=u\left(T^{\prime}\right)$ for $Y=B^{\prime} Y^{\prime} A$ and therefore T^{\prime} has property (*). For the last assertion of the Lemma it is enough to set $B=B^{\prime} Y^{\prime}$ where Y^{\prime} is obtained from the preceding proof for $X=I$. The Lemma follows.

Lemma 2.7. Every Jordan operator of the form $S=S\left(m_{0}\right) \oplus S\left(m_{1}\right)$ has property (*).

Proof. Let $X \in\{S\}^{\prime}$ be a quasi-affinity. By the Lifting Theorem ([10], sec. II. 2.3) there exists a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with entries in H^{∞}, such that

$$
\begin{equation*}
P_{\mathfrak{5}} A\left(I-P_{\mathfrak{5}}\right)=0 \quad \text { on } H^{2} \oplus H^{2}, \quad \text { and } \quad X=P_{\mathfrak{5}} A \quad \text { on } \quad \mathfrak{H}=\mathfrak{G}\left(m_{0}\right) \oplus \mathfrak{G}\left(m_{1}\right) \tag{2.5}
\end{equation*}
$$

Let us remark that

$$
\begin{equation*}
a \wedge b \wedge m_{0}=1 \tag{2.6}
\end{equation*}
$$

Indeed, if $q=a \wedge b \wedge m_{0} \neq 1$ it follows that $\hat{q}=(1-\overline{q(0)} q) \oplus 0$ is a non-zero vector in 5 such that for every vector of the form $X h\left(h=h_{0} \oplus h_{1} \in \mathfrak{H}\right)$ we have

$$
(X h, \hat{q})=\left(P_{5} A h, \hat{q}\right)=(A h, \hat{q})=\int\left((a / q) h_{0}+(b / q) h_{1}\right)(q-q(0))=0
$$

and this is impossible since X has dense range. Moreover, we have

$$
\begin{equation*}
\operatorname{det} A \wedge m_{1}=1 \tag{2.7}
\end{equation*}
$$

Indeed, let us set $p=\operatorname{det} A \wedge m_{1}$ and denote $h=-b\left(m_{1} / p\right) \oplus a\left(m_{1} / p\right)$. Then we have, by (2.5),

$$
X P_{5} h=P_{5} A P_{5} h=P_{55} A h=P_{5}\left(0 \oplus m_{1} \cdot(\operatorname{det} A) / p\right)=0
$$

and therefore $P_{5} h=0$ by the injectivity of X. Hence, $h \in m_{0} H^{2} \oplus m_{1} H^{2}$, which implies that p divides b and a; taking account of the definition of p we infer that p divides $a \wedge b \wedge m_{1} \wedge \operatorname{det} A$ also. Then (2.6) forces p to equal 1 , concluding the proof of (2.7). From (2.6-7) it obviously follows that

$$
\operatorname{det} A \wedge m_{1} a \wedge m_{1} b \wedge m_{\mathrm{G}}=1
$$

so that [7] (cf. also [9]) implies the existence of $c^{\prime}, d^{\prime}, e^{\prime} \in H^{\infty}$ (even constans) such that $\left(\operatorname{det} A+m_{1}\left(a d^{\prime}-b e^{\prime}\right)+m_{0} e^{\prime}\right) \wedge m_{0}=1$ or, equivalently,

$$
\begin{equation*}
\left(\operatorname{det} A+m_{1}\left(a d^{\prime}-b c^{\prime}\right)\right) \wedge m_{0}=1 \tag{2.8}
\end{equation*}
$$

Let us remark now that the matrix $A^{\prime}=\left[\begin{array}{cc}a & b \\ c+m_{1} c^{\prime} & d+m_{1} d^{\prime}\end{array}\right]$ satisfies the relations analogous to (2.5) and moreover $\operatorname{det} A^{\prime} \wedge m_{0}=1$ by (2.8). Let us define $Y h=P_{\mathfrak{j}} B h$ for $h \in \mathfrak{H}=\mathfrak{G}\left(m_{0}\right) \oplus \mathfrak{G}\left(m_{1}\right)$, where $B=\left[\begin{array}{rr}d+m_{1} d^{\prime} & -b \\ -c-m_{1} c^{\prime} & a\end{array}\right]$. It follows by direct computation that $Y \in\{S\}^{\prime}$ and $X Y=Y X=u(S)$ with $u=\operatorname{det} A^{\prime}$. Now $u(S)$ is a quasi-affinity because $u \wedge m_{0}=1$ (cf. [10], Prop. III. 4.7b) and therefore Y is also a quasi-affinity. The Lemma follows.

Remark 2.8. Lemma 2.7 also applies to operators of the form $S=S(m)$ (take $m_{1}=1$). By the celebrated theorem of Sarason [8] we have then, in fact, $X=u(S)$ with some $u \in H^{\infty}$, for every $X \in\{S\}^{\prime}$.

3. Reflexive operators

The role of property (*) in the study of reflexive operators is underlined by the following result.

Lemma 3.1. Let T and T^{\prime} be two quasi-similar operators of class C_{0} having property (*). Then T is reflexive if and only if T^{\prime} is reflexive.

Proof. By Lemma 2.6 there exist quasi-affinities A, B such that $T^{\prime} B=B T$, $T A=A T^{\prime}$ and $A B=u(T), B A=u\left(T^{\prime}\right)$ for some $u \in H^{\infty}$. Assume T is reflexive. For any $X \in \mathrm{Alg}$ Lat T^{\prime} and $\mathfrak{P} \in \operatorname{Lat} T$ we have $A X B \mathfrak{P} \subset A(B \mathfrak{M})^{-} \subset(A B \mathfrak{P})^{-}=$ $=(u(T) \mathfrak{M})-\subset \mathfrak{M}$ because $(B \mathfrak{M})-\in$ Lat T^{\prime} and $u(T) \in \operatorname{Alg}$ Lat T. By the reflexivity of T we have $A X B \in\{T\}^{\prime}$ and from the relations

$$
A \cdot X T^{\prime} \cdot B=A X B \cdot T=T \cdot A X B=A \cdot T^{\prime} X \cdot B
$$

it follows that $X \in\left\{T^{\prime}\right\}^{\prime}$. The reflexivity of T^{\prime} follows then by Corollary 2.2, and Lemma 3.1 is proved.

For easier reference, let us formulate the following:
Lemma 3.2. For two ('comparable') inner functions, say p and q, the operator $V_{p q}: \mathfrak{S}(p) \rightarrow \mathfrak{S}(q)$, defined by

$$
V_{p q} h=\left\{\begin{array}{lll}
P_{\mathfrak{5}(q)} h & \text { if } \quad q \text { divides } p \tag{3.1}\\
(q / p) h & \text { if } \quad p \text { divides } q
\end{array}(h \in \mathfrak{S}(p))\right.
$$

intertwines $S(p)$ and $S(q)$.
Proof. If q divides p, we have for $h \in \mathfrak{Y}(p)$, using (1.1) and (3.1),

$$
\left(S(q) V_{p q}-V_{p q} S(p)\right) h=P_{\mathfrak{F}(q)}\left\{z P_{\mathfrak{S}(q)} h-P_{\mathfrak{S}(p)} z h\right\}=0
$$

because $\quad z P_{5(q)} h=z(h+q w)=z h+q w^{\prime}, \quad P_{\mathfrak{5}(p)} z h=z h+p w^{\prime}=z h+q w^{\prime \prime} \quad$ with some $w, w^{\prime}, w^{\prime \prime} \in H^{2}$, and hence $\{\ldots\} \in q H^{2}$.

If, conversely, p divides q, then we use the relation $P_{5(m)} u=u-m[\bar{m} u]_{+}$, valid for any inner m and for any $u \in H^{2},[\ldots]_{+}$denoting here the natural projection $L^{2} \rightarrow H^{2}$. We get by (1.1) and (3.2)

$$
\begin{aligned}
& \left(S(q) V_{p, q}-V_{p, q} S(p)\right) h=P_{5(q)} z \frac{q}{p} h-\frac{q}{p} P_{5(p)}(z h)= \\
& \quad=\left(z \frac{q}{p} h-q\left[\bar{q} z \frac{q}{p} h\right]_{+}\right)-\frac{q}{p}\left(z h-p[\bar{p} z h]_{+}\right)=0
\end{aligned}
$$

because $\bar{q} q=1, \frac{1}{p}=\bar{p}$ on the circle $\{z:|z|=1\}$.

Lemma 3.3. Let $S=S\left(m_{0}\right) \oplus S\left(m_{1}\right)$ be a Jordan operator. Then for every $X \in \mathrm{Alg}$ Lat S there exists $Y \in \mathscr{A}_{S}$ such that $X-Y=Z \oplus 0$ with some operator Z on $\mathfrak{5}\left(m_{0}\right)$ and the zero operator on $\mathfrak{5}\left(m_{1}\right)$.

Proof. The subspaces $\mathfrak{S}\left(m_{0}\right) \oplus\{0\}$ and $\{0\} \oplus \mathfrak{G}\left(m_{1}\right)$ are invariant for S so the assumption $X \in \operatorname{Alg}$ Lat S implies

$$
X=X_{0} \oplus X_{1}, \quad X_{j} \in \mathrm{Alg} \text { Lat } S\left(m_{j}\right) \quad(j=1,2)
$$

Consider the (obviously isometric) operator $V=V_{m_{0}, m_{1}}$ defined by (3.2), and the subspaces

$$
\left\{V h \oplus h: h \in \mathfrak{S}\left\{m_{1}\right)\right\} \quad \text { and } \quad\left\{V S\left(m_{1}\right) h \oplus h: h \in \mathfrak{S}\left(m_{1}\right)\right\} .
$$

By Lemma 3.2, both are invariant for S, and hence for X also. So we infer

$$
X_{0} V h=V X_{1} h \quad \text { and } \quad X_{0} V S\left(m_{1}\right) h=V S\left(m_{1}\right) X_{1} h \quad \text { for } \quad h \in \mathfrak{S}\left\{m_{1}\right) .
$$

Apply the first equation for $S\left(m_{1}\right) h$ in place of h and compare the results to obtain $V X_{1} S\left(m_{1}\right) h=V S\left(m_{1}\right) X_{1} h$ for all $h \in \mathfrak{S}\left(m_{1}\right)$. Hence, $X_{1} S\left(m_{1}\right)=S\left(m_{1}\right) X_{1}$. By a well-known theorem of SARASON [8] this implies that $X_{1}=u\left(S\left(m_{1}\right)\right)$ for some $u \in H^{\infty}$. Hence, $Y=u(S)=u\left(S\left(m_{0}\right)\right) \oplus u\left(S\left(m_{1}\right)\right)$ has the property we needed.

Lemma 3.4. Let $S=S\left(m_{0}\right) \oplus S\left(m_{1}\right)$ be a Jordan operator and let Z be an operator on $\mathfrak{G}\left(m_{0}\right)$ such that $Z \oplus 0 \in \operatorname{Alg}$ Lat S. Then

$$
\begin{equation*}
Z\left(q H^{2} \ominus m_{0} H^{2}\right) \subset q m_{1} H^{2} \ominus m_{0} H^{2} \tag{3.3}
\end{equation*}
$$

for every inner divisor q of m_{0} / m_{1}.
Proof. As m_{1} is a divisor of m_{0} / q, which, in turn, is a divisor of m_{0}, we can consider the operators $V_{0}=V_{m_{0} / q, m_{0}}$ and $V_{1}=V_{m_{0} / q, m_{1}}$ defined by (3.2) and (3.1), respectively, and observe that $\left\{V_{0} h \oplus V_{1} h: h \in \mathfrak{S}\left(m_{0} / q\right)\right\}$ is a subspace invariant for S (closure follows from the fact that V_{0} is an isometry, namely multiplication by the inner function q). Then it is invariant for $Z \oplus 0$ also. Hence we infer that for every $h \in \mathfrak{S}\left(m_{0} / q\right)$ there exists $h^{\prime} \in \mathscr{S}\left(m_{0} / q\right)$ such that $Z V_{0} h=V_{0} h^{\prime}$ and $0=V_{1} h^{\prime}$. As $V_{1} h^{\prime}=P_{\mathfrak{j}\left(m_{1}\right)} h^{\prime}$ by (3.1), we must have $h^{\prime} \in\left(H^{2} \ominus \frac{m_{0}}{q} H^{2}\right) \ominus\left(H^{2} \ominus m_{1} H^{2}\right)$ i.e. $h^{\prime} \in m_{1} H^{2} \Theta \frac{m_{0}}{q} H^{2}$. We conclude that $Z q \mathfrak{H}\left(\frac{m_{0}}{q}\right) \subset q\left(m_{1} H^{2} \ominus \frac{m_{0}}{q} H^{2}\right)$, and this obviously implies (3.3).

Remark. In the particular cases $q=1$ and $q=\frac{m_{0}}{m_{1}}$ (3.3) implies

$$
\begin{equation*}
\operatorname{ran} Z \subset m_{1} H^{2} \Theta m_{0} H^{2} \quad \text { and } \quad \operatorname{ker} Z \supset\left(m_{0} / m_{1}\right) H^{2} \ominus m_{0} H^{2} \tag{3.4}
\end{equation*}
$$

In the proof of the following result we shall use the unitary operator

$$
\begin{equation*}
R: m_{1} H^{2} \ominus m_{0} H^{2} \rightarrow \mathfrak{G}\left(m_{0} / m_{1}\right) \quad \text { defined by } \quad R h=h / m_{1} \tag{3.5}
\end{equation*}
$$

which satisfies the relation

$$
\begin{equation*}
R S\left(m_{0}\right) \mid\left(m_{1} H^{2} \Theta m_{0} H^{2}\right)=S\left(m_{0} / m_{1}\right) R=P_{5\left(m_{0} / m_{1}\right)} S\left(m_{0}\right) R . \tag{3.6}
\end{equation*}
$$

Proposition 3.5. The Jordan operator $S=S\left(m_{0}\right) \oplus S\left(m_{1}\right)$ is reflexive whenever $S\left(m_{0} / m_{1}\right)$ is reflexive.

Proof. By Lemmas 3.3, 3.4, and Corollary 2.2 it suffices to show that every operator $Z \in \operatorname{Alg}$ Lat $S\left(m_{0}\right)$ satisfying (3.3) commutes with $S\left(m_{0}\right)$. We claim that for such a Z we have $R Z \mid \mathfrak{Y}\left(m_{0} / m_{1}\right) \in \operatorname{Alg}$ Lat $S\left(m_{0} / m_{1}\right)$. Indeed, the general form of the subspaces in Lat $S\left(m_{0} / m_{1}\right)$ is $q H^{2} \Theta\left(m_{0} / m_{1}\right) H^{2}$ for q a divisor of m_{0} / m_{1}. By (3.3-4) we have $R Z\left(q H^{2} \ominus\left(m_{0} / m_{1}\right) H^{2}\right) \subset R Z\left(q H^{2} \ominus m_{0} H^{2}\right) \subset R\left(q m_{1} H^{2} \ominus m_{0} H^{2}\right)=$ $=q H^{2} \ominus\left(m_{0} / m_{1}\right) H^{2}$. The reflexivity of $S\left(m_{0} / m_{1}\right)$ implies $R Z \mid \mathfrak{H}\left(m_{0} / m_{1}\right) \in\left\{S\left(m_{0} / m_{1}\right)\right\}^{\prime}$. Therefore,

$$
\begin{gathered}
R\left(Z S\left(m_{0}\right)-S\left(m_{0}\right) Z\right)\left|\mathfrak{H}\left(m_{0} / m_{1}\right)=\left((R Z) S\left(m_{0}\right)-R S\left(m_{0}\right) Z\right)\right| \mathfrak{H}\left(m_{0} / m_{1}\right)= \\
=\left((R Z) P_{\mathfrak{S}\left(m_{0} / m_{1}\right)} S\left(m_{0}\right)-S\left(m_{0} / m_{1}\right) R Z\right) \mid \mathfrak{S}\left(m_{0} / m_{1}\right)=0
\end{gathered}
$$

so that Z commutes with $S\left(m_{0}\right)$ on $\mathfrak{H}\left(m_{0} / m_{1}\right)$. Because by (3.4) we have $Z S\left(m_{0}\right)=$ $=S\left(m_{0}\right) Z=0$ on $\left(m_{0} / m_{1}\right) H^{2} \ominus m_{0} H^{2}$ it follows that $Z \in\left\{S\left(m_{0}\right)\right\}^{\prime}$. The Proposition is proved.

Proof of Theorem A. Let $T \in \mathscr{B}(\mathfrak{H})$ be of class C_{0}, with Jordan model $S=\underset{\alpha}{\oplus} S\left(m_{\alpha}\right)$ on $\mathfrak{G}=\underset{\alpha}{\oplus} \mathfrak{G}\left(m_{\alpha}\right)$. If T is reflexive we infer by Corollary 2.4 that $T \mid\left(m_{1}(T) \mathfrak{S}\right)^{-}$is reflexive. But $T \mid\left(m_{1}(T) \mathfrak{H}\right)^{-}$is quasi-similar to $S\left(m_{0} / m_{1}\right)$ and the reflexivity of $S\left(m_{0} / m_{1}\right)$ follows by Lemma 3.1 and Remark 2.8.

Conversely, let us assume that $S\left(m_{0} / m_{1}\right)$ is reflexive. Let X be any quasi-affinity such that $T X=X S$. Let us consider the spaces $\mathfrak{H}_{\alpha}=\left(X \mathfrak{H}\left(m_{\alpha}\right)\right)^{-}$and $\mathfrak{R}_{\alpha}=$ $=\left(X\right.$ ker $\left.m_{a}\left(S \mid \mathfrak{G}\left(m_{0}\right)\right)\right)$ - for every ordinal number α. Then the restriction $T \mid \mathfrak{S}_{0} \vee \mathfrak{S}_{1}$ is quasi-similar to $S\left(m_{0}\right) \oplus S\left(m_{1}\right)$ and $T \mid \mathfrak{\Re}_{\alpha} \vee \mathfrak{H}_{\alpha}(\alpha \geqq 1)$ is quasi-similar to $S\left(m_{\alpha}\right) \oplus S\left(m_{\alpha}\right)$. All these restrictions are reflexive by Lemmas 2.7, 3.1 and Proposition 3.5 so that the reflexivity of T follows by Corollary 2.3 because $\left(\mathfrak{S}_{0} \vee \mathfrak{S}_{1}\right) \vee$ $V\left(\bigvee_{\alpha \geqq 1}\left(\mathfrak{H}_{\alpha} \vee \boldsymbol{R}_{\alpha}\right)\right)=V_{\alpha \geq 0} \mathfrak{H}_{\alpha}=\mathfrak{H}$.

Corollary 3.6. Let T and T^{\prime} be two quasi-similar operators of class C_{0}. Then T is reflexive if and only if T^{\prime} is reflexive.

Proof. Two operators of class C_{0} are quasi-similar if and only if they have he same Jordan model. Corollary obviously follows from Theorem A.

4. Hyper-reflexive operators

Proposition 4.1. If the operators T and T^{\prime} are quasi-similar and one of them is hyper-reflexive then so is the other.

Proof. Let X and Y be two quasi-affinities such that $T^{\prime} X=X T$ and $T Y=Y T^{\prime}$ and let $A \in \mathrm{Alg}$ Lat $\{T\}^{\prime}$. Then $X A Y \in \operatorname{Alg}$ Lat $\left\{T^{\prime}\right\}^{\prime} ;$ indeed, for each $\mathfrak{M} \in$ Lat $\left\{T^{\prime}\right\}^{\prime}$ we have

$$
\begin{equation*}
\mathfrak{N}=\bigvee_{\mathrm{z} \in\{T\}} Z Y \mathfrak{M} \in \text { Lat }\{T\}^{\prime} \tag{4.1}
\end{equation*}
$$

and $X \mathfrak{N} \subset \underset{Z \in\{T\}^{\prime}}{\bigvee} X Z Y \mathfrak{M} \subset \underset{Z^{\prime} \in\left\{T^{\prime}\right\}^{\prime}}{\bigvee} Z^{\prime} \mathfrak{M}=\mathfrak{M}$. In particular, $X A Y \mathfrak{M} \subset X A \mathfrak{M} \subset X \mathfrak{M} \subset \mathfrak{M}$ and $X A Y \in \operatorname{Alg}$ Lat $\left\{T^{\prime}\right\}^{\prime}$ because $\mathfrak{M} \in \operatorname{Lat}\left\{T^{\prime}\right\}^{\prime}$ is arbitrary.

If T^{\prime} is hyper-reflexive it follows that $X A Y \in\left\{T^{\prime}\right\}^{\prime}$ so that $X \cdot A T \cdot Y=X A Y \cdot T^{\prime}=$ $=T^{\prime} \cdot X A Y=X \cdot T A \cdot Y$ and $A \in\{T\}^{\prime}$ because X and Y are quasi-affinities. It follows that T is hyper-reflexive. The Proposition is proved.

Proof of Theorem B. By the preceding proposition it is enough to consider the case $T=S$. Let us assume that S is hyper-reflexive and take $A \in \operatorname{Alg}$ Lat $S\left(m_{0}\right)$. Then the operator $B=\bigoplus_{\alpha} A_{\alpha}$, where $A_{0}=A$ and $A_{\alpha}=0$ for $\alpha \geqq 1$, belongs to Alg Lat $\{S\}^{\prime}$. Indeed, since each $\mathcal{f} \in \operatorname{Lat}\{S\}^{\prime}$ has the form $\underset{\alpha}{\oplus} \boldsymbol{\Re}_{\alpha}$ where $\mathcal{R}_{\alpha} \in$ Lat $S\left(m_{a}\right)$, we have $B \mathcal{A} \subset \mathcal{G}$. It follows that $B \in\{S\}^{\prime}$ and this implies $A \in\left\{S\left(m_{0}\right)\right\}^{\prime}$. The reflexivity of $S\left(m_{0}\right)$ follows by Corollary 2.2.

Conversely, let us assume that $S\left(m_{0}\right)$ is reflexive. Because $S\left(m_{\alpha}\right)$ is unitarily equivalent to $S\left(m_{0}\right) \mid\left(\operatorname{ran} u_{\alpha}\left(S\left(m_{0}\right)\right)^{-}\left(u_{\alpha}=m_{0} / m_{\alpha}\right)\right.$ it follows by Corollary 2.4 that $S\left(m_{\alpha}\right)$ is reflexive for every α. We consider the operators $R_{\alpha \beta} \in\{S\}^{\prime}$ defined by $R_{\alpha \beta}\left(\oplus{ }_{\gamma} h_{\gamma}\right)=$ $=\underset{\gamma}{\oplus} k_{\gamma}$ where $k_{\gamma}=0$ for $\gamma \neq \alpha$ and

$$
k_{\alpha}=V_{m_{\beta}, m_{\alpha}} h_{\beta}=\left\{\begin{array}{lll}
P_{\mathfrak{5}\left(m_{\alpha}\right)} h_{\beta} & \text { whenever } & \alpha>\beta \tag{4.2}\\
\left(m_{\alpha} / m_{\beta}\right) h_{\beta} & \text { whenever } & \alpha \leqq \beta
\end{array}\right.
$$

Cf. (3.1-2). Obviously, $P_{\alpha}=R_{\alpha a}$ coincides with the orthogonal projection of $\underset{\gamma}{\oplus} \mathfrak{F}\left(m_{\nu}\right)$ α-component space.

Let $A \in \mathrm{Alg}$ Lat $\{S\}^{\prime}$; we have $P_{\alpha} A P_{\beta} \in \operatorname{Alg}$ Lat $\{S\}^{\prime}$ and $A=\sum_{\alpha, \beta} P_{\alpha} A P_{\beta}$ in the strong operator topology. To conclude the proof it is enough to show that $P_{\alpha} A P_{\beta} \in\{S\}^{\prime}$. Let us note that the operators $R_{\beta \alpha} P_{\alpha} A P_{\beta}$ and $P_{\alpha} A P_{\beta} R_{\beta \alpha}$ belong to Alg Lat $\{S\}^{\prime}$ and are of the form $\underset{\gamma}{\oplus} T_{\gamma}$ with $T_{\gamma}=0$ for $\gamma \neq \beta$ and $\gamma \neq \alpha$, respectively. Considering the spaces of the form $\operatorname{ker} m(S) \in L a t\{S\}^{\prime}$ for m a divisor of m_{0}, it is easily seen that necessarily $T_{\gamma} \in \operatorname{Alg}$ Lat $S\left(m_{\gamma}\right)$ so that $T_{\gamma} \in\left\{S\left(m_{\gamma}\right)\right\}^{\prime}$ by
the reflexivity of $S\left(m_{\gamma}\right)$. It follows that $R_{\beta \alpha} P_{\alpha} A P_{\beta}$ and $P_{\alpha} A P_{\beta} R_{\beta \alpha}$ commute with S and therefore

$$
R_{\beta \alpha}\left(P_{\alpha} A P_{\beta} S-S P_{\alpha} A P_{\beta}\right)=\left(P_{\alpha} A P_{\beta} S-S P_{\alpha} A P_{\beta}\right) R_{\beta \alpha}=0
$$

If the range of $R_{\beta \alpha}$ does not contain ran P_{β} it follows that $\beta<\alpha$ and therefore $R_{\beta \alpha}$ is one-to-one on ran P_{α}; therefore in both cases we infer $P_{\alpha} A P_{\beta} \in\{S\}^{\prime}$. The Theorem is proved.

Remark 4.2. It follows from Theorems A and B that each hyper-reflexive operator of class C_{0} is also reflexive. This fact can be proved directly also, by using Theorem 2.1.

References

[1] C. Apostol, R. G. Douglas, C. Foias, Quasi-similar models for nilpotent operators, Trans. Amer. Math. Soc., 224 (1976), 407-415.
[2] H. Bercovici, Teoria operatorilor de clasa C_{0}, Stud. Cerc. Mat., 31 (1979), 657-704.
[3] H. Bercovici, On the Jordan model of C_{0} operators. II, Acta Sci. Math., 42 (1980), 43-56.
[4] H. Bercovici, C. Foiaş, B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe C_{0}. III, Acta Sci. Math., 37 (1975), 313-322.
[5] J. A. Deddens, P. A. Fillmore, Reflexive linear transformations, Linear Algebra and Appl., 10 (1975), 89-93.
[6] C. Foias, Reflexive operators (lecture), Conference of Operator Theory (Timişoara, June 1976).
[7] E. A. Nordgren, On the quasi-equivalence of matrices over H^{∞}, Acta Sci. Math., 34 (1973), 301-310.
[8] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc., 127 (1967), 179-203.
[9] B. Sz.-NAGy, Diagonalization of matrices over H^{∞}, Acta Sci. Math., 38 (1976), 223-238.
[10] B.Sz.-Nagy, C. Foraş, Harmonic Analysis of Operators on Hilbert Space, North Holland-Akadémiai Kiadó (Amsterdam-Budapest, 1970).
[11] B. Sz.-Nagy, C. Foiaş, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91-115.
[12] B. Sz.-Nagy, C. Foiaş, Compléments à l'étude des opérateurs de classe Co. (I), Acta Sci. Math., (1970), 287-296.
[13] B. Sz.-Nagy, C. FoIas, Commutants and bicommutants of operators of class C_{0}, Acta Sci. Math., 38 (1976), 311-315.
[14] P. Y. Wu, Commutants of $C_{0}(N)$ contractions, Acta Sci. Math., 38 (1976), 193-202.
[15] P. Y. Wu, On the reflexivity of $C_{0}(N)$ contractions, Proc. Amer. Math. Soc., 79 (1980), 405-409.

(H. B.)	(C. F.)	(B. SZ.-N.)
DEPARTMENT OF MATH.	DEPARTMENT OF MATH.	BOLYAI INSTITUTE
UNIVERSITY OF MICHIGAN	INDIANA UNIVERSITY	
ANN ARBOR, MI 48109	BLOOMINGTON, IN 47405	GNIVERSITY SZEGED
A.S.A.	U.S.A.	HUNGEGED

[^0]: Received September 26, 1980.

