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Reflexive and hyper-reflexive operators of class C0 

H. BERCOVICI, C. FOIA§, B. SZ.-NAGY 

Dedicated to P. R. Ha I mo s on his 65 th birthday 

The Jordan model of a finite matrix was used for the first time in the study of 
reflexive operators (on finite dimensional spaces) by DEDDENS and FILLMORE [5]. 
Their result was extended in [1] to the class of algebraic operators on Hilbert space, 
using the quasi-similar Jordan model (in fact in [1] the notion of para-reflexivity is 
studied, but one can easily see that reflexivity and para-reflexivity are equivalent for 
algebraic operators). The possibility of extending these results to the entire class 
C0 was then indicated in [6] for the separable case and [2] (where a sketch of proof 
is done) for the nonseparable case. It appeared that the reflexivity of an operator 
of class C0 is equivalent, to the reflexivity of a single "Jordan block" S(m) (cf. § 1 
below for the precise statement). 

In this note we give a simplified version of the proofs of [6] and [2]. We further 
study the related notion of hyper-reflexivity (stronger than reflexivity for the class 
C„) and prove an analogous characterization of hyper-reflexive operators of class C„. 

1. Notations and results 

We shall denote by § a complex Hilbert space and by the algebra of linear 
and bounded operators acting on For an algebra ¿/cz &(§>), Lat s i will stand 
for the set of closed linear subspaces 9Jlc:£j invariant with respect to all elements 
of st\ XaJlcaR, X^stf. For a family i f of closed linear subspaces of §>, Alg £f 
will denote the algebra of operators Xd & (§) for which X9Jlc9ft whenever 9Jl£ ¿¡P. 
The algebra is called reflexive if j s /=AlgLat stf. An operator 36 ($) 
is reflexiveii the weakly closed algebra s>2T generated by Tand / g is a reflexive algebra. 
An operator T£ id (§) will be called hyper-reflexive if its commutant {T}'=(stfT)' 
is a reflexive algebra. 
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Recall that a completely nonunitary contraction T(i3S(Sj) is an operator of 
class C0 if u(T) = 0 for some u£Hm, u^O (cf. [10], ch. V). The simplest operators 
of class C0 are the "Jordan blocks" S(m), with m£H°° an inner function, defined by 

(1.1) S(m)u = P^m)(zu(z)),u^(m) = H2QmH2. 

By the results of [11], [4] and [3], every operator T of class C0 is quasi-similar 
to a unique Jordan operator, that is to an operator of the form 

(1.2) S = ® S ( 0 
a 

where the values of a are ordinal numbers and the inner functions ma are subject 
to the conditions 

(1.3) mx = 1 for some a ^ 0; 

(1.4) m3 divides i n w h e n e v e r a = 

(1.5) ma = mp whenever card (a) = card (/?). 

Let us note that m0 coincides with the minimal function mT of T. The operators 
quasi-similar to some S(m) are precisely the cyclic operators of class C0 (multiplicity-
free operators). For multiplicity-free T it follows from [12] that Lat r = L a t {T}' 
and so for such operators reflexivity and hyper-reflexivity are equiv-
alent. 

We are now able to state the main results of this note. 

T h e o r e m A. An operator T of class C0 with Jordan model 5 = ® S(ma) is 
a 

reflexive if and only if S(mQ/m^) is reflexive. 

T h e o r e m B. Let T and S be as in Theorem A.. Then T is hyper-reflexive if 
and only if S(m0) is reflexive. 

Recently P. Y. Wu [15] published a proof of Theorem A for the particular case 
of operators of class C0 with finite defect indices. 

2. Preliminary results 

The following theorem plays an important role in the study of reflexive opera-
tors of class C0 (cf. [13] and [14] for the proof). 

T h e o r e m 2.1. For every operator T of class C0 we have 

(2.1) = {T}" = {T}' n Alg Lat T. 
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C o r o l l a r y 2.2. An operator T of class C0 is reflexive if and only if Alg Lat Tcz 
c {J}'. — Obvious from relation (2.1). 

C o r o l l a r y 2.3. Let be an operator of class C0 and let Sit, £ Lat T 
(j£J) be such that rlSOl.- is reflexive for each j. If §= V then T is reflexive. 

J€J 
P r o o f . It follows from Corollary 2.2 that it is enough to show that every 

X£ Alg Lat T commutes with T. But it is obvious that for XgAlg Lat T we have 
Alg Lat (r|9Jl7) so that { r p , } ' by the hypothesis. Therefore, 

ktr(XT-TX) 3 V = that is Xe{T}'. 
jiJ 

C o r o l l a r y 2.4. Let be a reflexive operator of class C0. For every 
X£siT the operator r|(Al?j)- is reflexive. 

P r o o f . Let us take T^Alg L a t ( r | ( Z § ) - ) . Since Z ^ A l g L a t T we infer 
YXe Alg Lat T and therefore YX£{T}', by the reflexivity of T and Corollary 2.2. 
As X and T commute, we have YT• X=YX• T=TY• X such that Y£{T!(*$)-}' 
and the conclusion follows again by Corollary 2.2. 

We shall introduce now an auxiliary property. 

D e f i n i t i o n 2.5. A completely nonunitary contraction T has property (*) 
if for any quasi-affinity X£ {T}' there exists a quasi-affinity Y£ {T}' such that 

(2.3) XY = YX= u(T) for some K€ H°° 
for some u£H°°. 

L e m m a 2.6. Let T and T' be two quasi-similar completely nonunitary contrac-
tions. If T has property (*) then T' does also. Moreover, if T has property (*) then 
there exist quasi-affinities A, B such that T'B=BT, TA = AT' and 

(2.4) AB = u{T), BA = u(T") for some u£H°°. 

P r o o f . Let us assume that 7"has property ( * ) and A, B' are two quasi-affinities 
such that T'B'=B'T and TA=AT'. For any quasi-affinity X£ {T'}' we have 
AXB'e{T}' so that, by the assumption, we have AXB' • Y' — Y' • AXB'=u(T) for 
some quasi-affinity Y'£ {T}' and u£H°°. We obviously have 

A(X-B'Y'A-u(T')) = AXB' Y' - A—Au(T') = u(T)A-Au(T') = 0, 

{B'Y'A-X-u{T'))B' = B' • Y'AXB' — u(T')B' = B'u{T)-u{T')B' = 0 

so that X-B'Y'A=u(T') by the injectivity of A, and B'Y'A-X=u(T') by the 
quasi-surjectivity of B'. So we have XY=YX=u(T') for Y=B' Y'A and therefore 
T' has property (*) . For the last assertion of the Lemma it is enough to set B=B' Y' 
where Y' is obtained from the preceding proof for X—I. The Lemma follows. 
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L e m m a 2.7. Every Jordan operator of the form S=S(jn0)©S(/n1) has prop-
erty ( *). 

P r o o f . Let X£ {5}' be a quasi-affinity. By the Lifting Theorem ([10], sec. II. 2.3) 

there exists a 2 x 2 matrix = ^J with entries in such that 

(2.5) P6A(I-Pf)) = 0 on H2®H\ and X = PbA on § = §(»io)®S(™i)-

Let us remark that 

(2.6) aAbAm0 = 1. 

Indeed, if q=aAbAm0^l it follows that q — (1 — g(0)#)©0 is a non-zero vector 
in § such that for every vector of the form Xh (h = h0®h1£9y) we have 

(XII, q) = (PftAh, q) = (Ah, q) = J ((ajq)h0 +(b/q)h,) (q-q(0)) = 0, 

and this is impossible since X has dense range. Moreover, we have 

(2.7) . detAAm1 = 1. 

Indeed, let us set />=det At\ml and denote h— -b(m1/p)(Qa(m1/p). Then we have, 
by (2.5), 

X P ^ h = P s A P s h = P f j A h = P 6 ( 0 ® m i - ( & t X A ) l p ) = 0 

and therefore P6h — 0 by the injectivity of X. Hence, h£m0H2@m1H2, which 
implies that p divides b and a; taking account of the definition ot p we infer that 
p divides aA^AwjAdet A also. Then (2.6) forces p to equal 1, concluding the proof 
of (2.7). From (2.6—7) it obviously follows that 

detAAm1aAm1bAm0 — 1 

so that [7] (cf. also [9]) implies the existence of c', d ' , ( e v e n constans) such 
that (det A + m1(ad' — be') + ntge')Amo ~ 1 or, equivalently, 

(2.8) (det A+ m1(ad/-be')) A m0 = 1. 

Let us remark now that the matrix A' = f , a , , , ^ ,,] satisfies the [c-t-mjc a + m ^ J 
relations analogous to (2.5) and moreover det A'AmQ~ 1 by (2.8). Let us define 

Yh=Pf)Bh for A€§ = S(ro0)®S(»»i), where B=\_d+mid', ~ A ] . It follows by I C ^ ^ J 
direct computation that {5}' and XY= YX=u(S) with w=det A'. Now u(S) is 
a quasi-afBnity because uAm0= 1 (cf. [10], Prop. III. 4.7b) and therefore Y is also 
a quasi-afiBnity. The Lemma follows. 

R e m a r k 2.8. Lemma 2.7 also applies to operators of the form S=S(m) (take 
i«1=-l). By the celebrated theorem of SARASON [8] we have then, in fact, X=u(S) 
with some u£H°°, for every 
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3. Reflexive operators 

The role of property ( * ) in the study of reflexive operators is underlined by 
the following result. 

L e m m a 3.1. Let T and T' be two quasi-similar operators of class C0 having 
property (*). Then T is reflexive if and only if T' is reflexive. 

P r o o f . By Lemma 2.6 there exist quasi-affinities A, B such that T'B=BT, 
TA=AT' and AB=u(T), BA=u(T') for some u£H°°. Assume T is reflexive. 
For any X e A l g L a t r and 9Jl£Lat T we have A X B № ^ A { B m ) - a { A B № ) - = 
=(u( r )2R)-c2rc because (MR)"6Lat T' and w(F)£Alg Lat T. By the reflexivity 
of T we have AXBe {T}' and from the relations 

A-XT'-B = AXB-T =T -AXB = A-T'X-B 

it follows that X£{T'}'. The reflexivity of T' follows then by Corollary 2.2, and 
Lemma 3.1 is proved. 

For easier reference, let us formulate the following: 

L e m m a 3.2. For two ('comparable') inner functions, say p and q, the operator 
Vpq: S O ) d e f i n e d by 

(3.1) JPS ( 9 )fc if q divides p 
(3.2) Vpqh=[(q/P)h if p divides q 

intertwines S(p) and S(q). 

P r o o f . If q divides p, we have for h£$>(p), using (1.1) and (3.1), 

(S(q)Vpq-VpqS(p))h = P ^ z P ^ h - P ^ z h ) = 0 

because zPí¡(q)h=z(h + qw)=zh + qw', P6^zh=zh+pw'=zh + qw" with some 
w,w',w"£H\ and hence {...}iqH2. 

If, conversely,/? divides q, then we use the relation P&(m)u^=u—m[mu]+, valid 
for any inner m and for any u£H2, [...]+ denoting here the natural projection 

We get by (1.1) and (3.2) 

(S(q)Vp,q-Vp,qS(p))h = p5(9)zjh-jps(p)(zh) = 

= [zjh-q[qzjh]+)-j(zh-plpzh]+) = 0 

because qq=l,—=p on the circle {z: |z| = l}. 
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L e m m a 3.3. Let S=5(/?70)©5(»I1) be a Jordan operator. Then for every 
X^Wg Lat S there exists such that X—Y=Z® 0 with some operator Z 
on 5(m0) and the zero operator on 

P r o o f . The subspaces §(w0)@ {0} and {0} ©§(/??!) are invariant for S so 
the assumption Alg Lat S implies 

X = X0®X1, *,-eAlg Lat S(m}) (J = 1, 2). 

Consider the (obviously isometric) operator V=V„o mi defined by (3.2), and the 
subspaces 

{VhQh: A€${mi)> and {VS(mi)h@h: /le^rnO}. 

By Lemma 3.2, both are invariant for S, and hence for X also. So we infer 

X0Vh = VX1h and X0VS(m,)h = VSOnJX^ for 
Apply the first equation for S(m^)h in place of h and compare the results to obtain 
VX1S(m1)h=VS(mjX1h for all h£f>(md. Hence, X1S(m1)^S(m^X1. By a 
well-known theorem of SARASON [8] this implies that X1=u(S(m1)) for some u£H°°. 
Hence, Y=u(S)=u(S(m0))®u(S(m1)) has the property we needed. 

L e m m a 3.4. Let S= S(m0)© S(mj) be a Jordan operator and let Z be an 
operator on §>(m0) such that ZffiOgAlg Lat S. Then 

(3.3) Z(qH2Qm0H2) c qm^Qm^H2 

for every inner divisor q of w0//Mi-

P r o o f . As m1 is a divisor of m j q , which, in turn, is a divisor of m0 , we can 
consider the operators V0=Vmo/q,mo and Vi = Vmo/q>mi defined by (3.2) and (3.1), 
respectively, and observe that {V0h®V1h: h£$j>(mjq)} is a subspace invariant 
for S (closure follows from the fact that V0 is an isometry, namely multiplication 
by the inner function q). Then it is invariant for Z ® 0 also. Hence we infer that 
for every h£&(m0/q) there exists h'£f>(m0/q) such that ZV0h=V0h' and 0 = V1h'. 

As V1W = P l l m ^ by (3.1), we must have h ' ^ H 2 Q ^ • H ^ Q { H t Q m 1 H t ) i.e. 

h ' e m ^ ^ Q ^ - H 2 . We conclude that Zq% 772 j , and this 

obviously implies (3.3). 

R e m a r k . In the particular cases q= 1 and q—— (3.3) implies mi 

(3.4) raaZczm^QmoH2 and k e r Z 3 (m0lmJH2Qm0H2. 
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In the proof of the following result we shall use the unitary operator 

(3.5) R: m1H2Qm0H2 §(m 0 / ' n i ) defined by Rh = h/m1, 

which satisfies the relation 

(3.6) RS{m0)\(miH2Qm0H2) = S(mJm1)R = P^mo/mi)S(m0)R. 

P r o p o s i t i o n 3.5. The Jordan operator S=S(m0)® S(mj) is reflexive when-
ever SÇmJntj) is reflexive. 

P r o o f . By Lemmas 3.3, 3.4, and Corollary 2.2 it suffices to show that every 
operator ZÇAlg Lat S(m0) satisfying (3.3) commutes with S(m0). We claim that 
for such a Z we have RZ\$j (mjm,) £ Al g Lat S(m0/mx). Indeed, the general form of 
the subspaces in Lat Simjm^) is qH2 Q (mjm^ H2 for q a divisor of mjm1. By 
(3.3—4) we have RZ(qH2Q(mQ[m1)H2)czRZ(qH2Qm0H2)c:R(qm1H2Qm0H2) = 
=qH2Q(m0/m1)H2. The reflexivity of Simjm^ implies RZ\9){mJm^(: {Sfmjm^y. 
Therefore, 

R(ZS(mJ-S(mJZ)\$>(mJmj) = (( JRZ)5(m0)- /?S(m0)Z) |§(m0 /m1) = 

= {(RZ) P s ( m o / m i ) S(m0) - S(mjmi) RZ) | § (mjm,) = 0 

so that Z commutes with S(m0) on $>(m0/mj). Because by (3.4) we have ZS(m0) = 
= S(m0)Z=0 on ( m 0 l m ^ H 2 Q m 0 H 2 it follows that Z€{S(m0)}'. The Proposition 
is proved. 

P r o o f of T h e o r e m A. Let T£âS(Ç>) be of class C„, with Jordan model 
5 = © S ( w J on § = © io(mx). If T is reflexive we infer by Corollary 2.4 that 

a a 

T^m^T)?))- is reflexive. But r | ( /n 1 (T)§) _ is quasi-similar to S(m0/mx) and 
the reflexivity of S(m0/m1) follows by Lemma 3.1 and Remark 2.8. 

Conversely, let us assume that S(mjm^) is reflexive. Let X be any quasi-affinity 
such that TX—XS. Let us consider the spaces § a=(A r5(w a))~ and Rx= 
=(XkeTmx(S\§)(m0)))- for every ordinal number a. Then the restriction r | § 0 V § i 
is quasi-similar to S(m0)©Sim^ and T \ S l x \ / 1 ) is quasi-similar to 
S(mx)@S(mlx). All these restrictions are reflexive by Lemmas 2.7, 3.1 and Proposi-
tion 3.5 so that the reflexivity of T follows by Corollary 2.3 because (§0V£>i)V 
V ( v (Ô«va«))= V otBl IËO 

C o r o l l a r y 3.6. Let T and T' be two quasi-similar operators of class C0. Then T 
is reflexive if and only if T' is reflexive. 

P r o o f . Two operators of class C„ are quasi-similar if and only if they have 
he same Jordan model. Corollary obviously follows from Theorem A. 
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4. Hyper-reflexive operators 

P r o p o s i t i o n 4.1. Jf the operators T and T' are quasi-similar and one of them 
is hyper-reflexive then so is the other. 

Proo f . Let X and Y be two quasi-affinities such that T'X=XT and TY=YT' 
and let viÇAlgLat {T}'. Then XA Alg Lat {T'}'; indeed, for each 93? € Lat {T'Y 
we have 
(4.1) 9Î = V ZY9JÏ£Lat {T}' 

Z£{r}' 

and V XZYWa V Z'93i=2TC. In particular, XAYWlczXAyicXyiczm 
zi{ry z-e{T'}' 

and XAYÇAlg Lat {7"}' because 9Jl£Lat {T'Y is arbitrary. 
If r is hyper-reflexive it follows that XAYÇ {T'Y so that X-AT- Y=XAY• T' = 

= T'-XAY=X-TA-Y and A£{TY because Z a n d F a r e quasi-affinities. It fol-
lows that T is hyper-reflexive. The Proposition is proved. 

P r o o f of T h e o r e m B. By the preceding proposition it is enough to consider 
the case T= S. Let us assume that S is hyper-reflexive and take AÇ Alg Lat S(m0). 
Then the operator B=@Aa, where A0=A and Ax=0 for a s l , belongs to 

a 
Alg Lat {S}'. Indeed, since each ft 6 Lat {5}' has the form © ft,, where 

ftaeLat S(mJ, we have 5 f t e f t . It follows that Be {S}' and this implies AÇ {S(m0)}'. 
The reflexivity of S(m0) follows by Corollary 2.2. 

Conversely, let us assume that S(m0) is reflexive. Because S(mJ is unitarily 
equivalent to 5(/?70)|(ran ux(S(m0))~ (ua=m0fm^ it follows by Corollary 2.4 that S(mJ 
is reflexive for every a. We consider the operators R^Ç {5}' defined by hy) = 

y 
— @ky where ky=0 for y ^ a and y 

[Pfxmjhe whenever 
ka - - \ ( m j m j h f w h e n ever a^p. 

Cf. (3.1—2). Obviously, Pa=Raa coincides with the orthogonal projection of ©§(m y ) 
y 

a-component space. 
Let ^ € A l g L a t { 5 } ' ; we have P ^ P ^ A l g Lat {S}' and A= 2 p*APfs in 

the strong operator topology. To conclude the proof it is enough to show that 
PaAPpe {5}'. Let us note that the operators R^P^APp and PaAPeRPx belong to 
Alg Lat {5} 'and are of the form © J1, with Ty=0 for y^fi and y^a, respec-

y 
tively. Considering the spaces of the form ker m(S)€Lat {5}' for m a divisor of 
m0, it is easily seen that necessarily T^Alg Lat S(my) so that Ty£ {S(my)Y by 
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the reflexivity of S(my). I t fol lows t h a t R^P^APp a n d PaAPpRPx commute with S 
and therefore 

R t ^ P . A P f S - S P ^ P , ) = ( P a A P p S - S P a A P p ) R ^ = 0. 

If the range of Rfx does n o t contain ran Pfi it follows t h a t / ¡ < a and therefore 
Rpx is one-to-one on ran Px, therefore in b o t h cases we infer PaAPf€{S}'. The 
Theorem is proved. 

R e m a r k 4.2. I t fol lows f r o m Theorems A a n d B tha t each hyper-reflexive 
opera tor of class C0 is also reflexive. This fact can be proved directly also, by using 
Theorem 2.1. 
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