Reflexive and hyper-reflexive operators of class C_0

H. BERCOVICI, C. FOIAŞ, B. SZ.-NAGY

Dedicated to P. R. Halmos on his 65th birthday

The Jordan model of a finite matrix was used for the first time in the study of reflexive operators (on finite dimensional spaces) by DEDDENS and FILLMORE [5]. Their result was extended in [1] to the class of algebraic operators on Hilbert space, using the quasi-similar Jordan model (in fact in [1] the notion of para-reflexivity is studied, but one can easily see that reflexivity and para-reflexivity are equivalent for algebraic operators). The possibility of extending these results to the entire class C_0 was then indicated in [6] for the separable case and [2] (where a sketch of proof is done) for the nonseparable case. It appeared that the reflexivity of an operator of class C_0 is equivalent to the reflexivity of a single "Jordan block" S(m) (cf. § 1 below for the precise statement).

In this note we give a simplified version of the proofs of [6] and [2]. We further study the related notion of hyper-reflexivity (stronger than reflexivity for the class C_0) and prove an analogous characterization of hyper-reflexive operators of class C_0 .

1. Notations and results

We shall denote by \mathfrak{H} a complex Hilbert space and by $\mathscr{B}(\mathfrak{H})$ the algebra of linear and bounded operators acting on \mathfrak{H} . For an algebra $\mathscr{A} \subset \mathscr{B}(\mathfrak{H})$, Lat \mathscr{A} will stand for the set of closed linear subspaces $\mathfrak{M} \subset \mathfrak{H}$ invariant with respect to all elements of \mathscr{A} : $X\mathfrak{M} \subset \mathfrak{M}$, $X \in \mathscr{A}$. For a family \mathscr{L} of closed linear subspaces of \mathfrak{H} , Alg \mathscr{L} will denote the algebra of operators $X \in \mathscr{B}(\mathfrak{H})$ for which $X\mathfrak{M} \subset \mathfrak{M}$ whenever $\mathfrak{M} \in \mathscr{L}$. The algebra $\mathscr{A} \subset \mathscr{B}(\mathfrak{H})$ is called reflexive if $\mathscr{A} = \mathrm{Alg} \ \mathrm{Lat} \mathscr{A}$. An operator $T \in \mathscr{B}(\mathfrak{H})$ is reflexive if the weakly closed algebra \mathscr{A}_T generated by T and $T_{\mathfrak{H}}$ is a reflexive algebra. An operator $T \in \mathscr{B}(\mathfrak{H})$ will be called hyper-reflexive if its commutant $T \in \mathscr{B}(\mathfrak{H})$ is a reflexive algebra.

Received September 26, 1980.

Recall that a completely nonunitary contraction $T \in \mathcal{B}(\mathfrak{H})$ is an operator of class C_0 if u(T) = 0 for some $u \in H^{\infty}$, $u \neq 0$ (cf. [10], ch. V). The simplest operators of class C_0 are the "Jordan blocks" S(m), with $m \in H^{\infty}$ an inner function, defined by

$$(1.1) S(m)u = P_{\mathfrak{H}(m)}(z u(z)), u \in \mathfrak{H}(m) = H^2 \ominus mH^2.$$

By the results of [11], [4] and [3], every operator T of class C_0 is quasi-similar to a unique Jordan operator, that is to an operator of the form

$$S = \bigoplus_{\alpha} S(m_{\alpha})$$

where the values of α are ordinal numbers and the inner functions m_{α} are subject to the conditions

(1.3)
$$m_z = 1$$
 for some $\alpha \ge 0$;

(1.4)
$$m_{\alpha}$$
 divides m_{β} whenever $\alpha \geq \beta$;

(1.5)
$$m_{\alpha} = m_{\beta}$$
 whenever card $(\alpha) = \text{card}(\beta)$.

Let us note that m_0 coincides with the minimal function m_T of T. The operators quasi-similar to some S(m) are precisely the cyclic operators of class C_0 (multiplicity-free operators). For multiplicity-free T it follows from [12] that Lat T=Lat $\{T\}'$ and $\mathscr{A}_T = (\mathscr{A}_T)'$ so for such operators reflexivity and hyper-reflexivity are equivalent.

We are now able to state the main results of this note.

Theorem A. An operator T of class C_0 with Jordan model $S = \bigoplus_{\alpha} S(m_{\alpha})$ is reflexive if and only if $S(m_0/m_1)$ is reflexive.

Theorem B. Let T and S be as in Theorem A. Then T is hyper-reflexive if and only if $S(m_0)$ is reflexive.

Recently P. Y. Wu [15] published a proof of Theorem A for the particular case of operators of class C_0 with finite defect indices.

2. Preliminary results

The following theorem plays an important role in the study of reflexive operators of class C_0 (cf. [13] and [14] for the proof).

Theorem 2.1. For every operator T of class C_0 we have

$$\mathscr{A}_T = \{T\}'' = \{T\}' \cap \text{Alg Lat } T.$$

Corollary 2.2. An operator T of class C_0 is reflexive if and only if Alg Lat $T \subset \{T\}'$. — Obvious from relation (2.1).

Corollary 2.3. Let $T \in \mathcal{B}(\mathfrak{H})$ be an operator of class C_0 and let $\mathfrak{M}_j \in \text{Lat } T$ $(j \in J)$ be such that $T \mid \mathfrak{M}_j$ is reflexive for each j. If $\mathfrak{H} = \bigvee_{i \in J} \mathfrak{M}_j$ then T is reflexive.

Proof. It follows from Corollary 2.2 that it is enough to show that every $X \in \text{Alg Lat } T$ commutes with T. But it is obvious that for $X \in \text{Alg Lat } T$ we have $X \mid \mathfrak{M}_i \in \text{Alg Lat } (T \mid \mathfrak{M}_i)$ so that $X \mid \mathfrak{M}_i \in \{T \mid \mathfrak{M}_i\}'$ by the hypothesis. Therefore,

$$\ker(XT - TX) \supset \bigvee_{j \in J} \mathfrak{M}_j = \mathfrak{H}, \text{ that is } X \in \{T\}'.$$

Corollary 2.4. Let $T \in \mathcal{B}(\mathfrak{H})$ be a reflexive operator of class C_0 . For every $X \in \mathcal{A}_T$ the operator $T|(X\mathfrak{H})^-$ is reflexive.

Proof. Let us take $Y \in \text{Alg Lat } (T|(X\mathfrak{H})^-)$. Since $X \in \text{Alg Lat } T$ we infer $YX \in \text{Alg Lat } T$ and therefore $YX \in \{T\}'$, by the reflexivity of T and Corollary 2.2. As X and T commute, we have $YT \cdot X = YX \cdot T = TY \cdot X$ such that $Y \in \{T|(X\mathfrak{H})^-\}'$ and the conclusion follows again by Corollary 2.2.

We shall introduce now an auxiliary property.

Definition 2.5. A completely nonunitary contraction T has property (*) if for any quasi-affinity $X \in \{T\}'$ there exists a quasi-affinity $Y \in \{T\}'$ such that

(2.3)
$$XY = YX = u(T) \text{ for some } u \in H^{\infty}$$
 for some $u \in H^{\infty}$.

Lemma 2.6. Let T and T' be two quasi-similar completely nonunitary contractions. If T has property (*) then T' does also. Moreover, if T has property (*) then there exist quasi-affinities A, B such that T'B=BT, TA=AT' and

(2.4)
$$AB = u(T), BA = u(T') \text{ for some } u \in H^{\infty}.$$

Proof. Let us assume that T has property (*) and A, B' are two quasi-affinities such that T'B'=B'T and TA=AT'. For any quasi-affinity $X \in \{T'\}'$ we have $AXB' \in \{T\}'$ so that, by the assumption, we have $AXB' \cdot Y' = Y' \cdot AXB' = u(T)$ for some quasi-affinity $Y' \in \{T\}'$ and $u \in H^{\infty}$. We obviously have

$$A(X \cdot B' Y' A - u(T')) = AXB' Y' \cdot A - Au(T') = u(T)A - Au(T') = 0,$$

$$(B'Y'A \cdot X - u(T'))B' = B' \cdot Y'AXB' - u(T')B' = B'u(T) - u(T')B' = 0$$

so that $X \cdot B' Y' A = u(T')$ by the injectivity of A, and $B' Y' A \cdot X = u(T')$ by the quasi-surjectivity of B'. So we have XY = YX = u(T') for Y = B' Y' A and therefore T' has property (*). For the last assertion of the Lemma it is enough to set B = B' Y' where Y' is obtained from the preceding proof for X = I. The Lemma follows.

Lemma 2.7. Every Jordan operator of the form $S = S(m_0) \oplus S(m_1)$ has property (*).

Proof. Let $X \in \{S\}'$ be a quasi-affinity. By the Lifting Theorem ([10], sec. II. 2.3) there exists a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with entries in H^{∞} , such that

(2.5) $P_5A(I-P_5)=0$ on $H^2\oplus H^2$, and $X=P_5A$ on $\mathfrak{H}=\mathfrak{H}(m_0)\oplus \mathfrak{H}(m_1)$. Let us remark that

$$(2.6) a \wedge b \wedge m_0 = 1.$$

Indeed, if $q=a \wedge b \wedge m_0 \neq 1$ it follows that $\hat{q} = (1-q(0)q) \oplus 0$ is a non-zero vector in \mathfrak{H} such that for every vector of the form Xh $(h=h_0 \oplus h_1 \in \mathfrak{H})$ we have

$$(Xh, \hat{q}) = (P_5Ah, \hat{q}) = (Ah, \hat{q}) = \int ((a/q)h_0 + (b/q)h_1)(q - q(0)) = 0,$$

and this is impossible since X has dense range. Moreover, we have

$$(2.7) det A \wedge m_1 = 1.$$

Indeed, let us set $p = \det A \wedge m_1$ and denote $h = -b(m_1/p) \oplus a(m_1/p)$. Then we have, by (2.5),

$$XP_{\mathfrak{H}}h = P_{\mathfrak{H}}AP_{\mathfrak{H}}h = P_{\mathfrak{H}}Ah = P_{\mathfrak{H}}(0 \oplus m_1 \cdot (\det A)/p) = 0$$

and therefore $P_5h=0$ by the injectivity of X. Hence, $h \in m_0H^2 \oplus m_1H^2$, which implies that p divides b and a; taking account of the definition of p we infer that p divides $a \land b \land m_1 \land \det A$ also. Then (2.6) forces p to equal 1, concluding the proof of (2.7). From (2.6—7) it obviously follows that

$$\det A \wedge m_1 a \wedge m_1 b \wedge m_0 = 1$$

so that [7] (cf. also [9]) implies the existence of c', d', $e' \in H^{\infty}$ (even constans) such that $(\det A + m_1(ad' - be') + m_0e') \land m_0 = 1$ or, equivalently,

(2.8)
$$(\det A + m_1(ad' - bc')) \wedge m_0 = 1.$$

Let us remark now that the matrix $A' = \begin{bmatrix} a & b \\ c + m_1c' & d + m_1d' \end{bmatrix}$ satisfies the relations analogous to (2.5) and moreover det $A' \wedge m_0 = 1$ by (2.8). Let us define $Yh = P_{\mathfrak{S}}Bh$ for $h \in \mathfrak{H} = \mathfrak{H}(m_0) \oplus \mathfrak{H}(m_1)$, where $B = \begin{bmatrix} d + m_1d' & -b \\ -c - m_1c' & a \end{bmatrix}$. It follows by direct computation that $Y \in \{S\}'$ and XY = YX = u(S) with $u = \det A'$. Now u(S) is a quasi-affinity because $u \wedge m_0 = 1$ (cf. [10], Prop. III. 4.7b) and therefore Y is also a quasi-affinity. The Lemma follows.

Remark 2.8. Lemma 2.7 also applies to operators of the form S=S(m) (take $m_1=1$). By the celebrated theorem of Sarason [8] we have then, in fact, X=u(S) with some $u \in H^{\infty}$, for every $X \in \{S\}'$.

3. Reflexive operators

The role of property (*) in the study of reflexive operators is underlined by the following result.

Lemma 3.1. Let T and T' be two quasi-similar operators of class C_0 having property (*). Then T is reflexive if and only if T' is reflexive.

Proof. By Lemma 2.6 there exist quasi-affinities A, B such that T'B=BT, TA=AT' and AB=u(T), BA=u(T') for some $u\in H^{\infty}$. Assume T is reflexive. For any $X\in Alg\ Lat\ T'$ and $\mathfrak{M}\in Lat\ T$ we have $AXB\mathfrak{M}\subset A(B\mathfrak{M})^-\subset (AB\mathfrak{M})^-==(u(T)\mathfrak{M})^-\subset \mathfrak{M}$ because $(B\mathfrak{M})^-\in Lat\ T'$ and $u(T)\in Alg\ Lat\ T$. By the reflexivity of T we have $AXB\in \{T\}'$ and from the relations

$$A \cdot XT' \cdot B = AXB \cdot T = T \cdot AXB = A \cdot T'X \cdot B$$

it follows that $X \in \{T'\}'$. The reflexivity of T' follows then by Corollary 2.2, and Lemma 3.1 is proved.

For easier reference, let us formulate the following:

Lemma 3.2. For two ('comparable') inner functions, say p and q, the operator V_{pq} : $\mathfrak{H}(p) \to \mathfrak{H}(q)$, defined by

(3.1)
$$V_{pq}h = \begin{cases} P_{\mathfrak{S}(q)}h & \text{if } q \text{ divides } p \\ (q/p)h & \text{if } p \text{ divides } q \end{cases} (h \in \mathfrak{S}(p)),$$

intertwines S(p) and S(q).

Proof. If q divides p, we have for $h \in \mathfrak{H}(p)$, using (1.1) and (3.1),

$$(S(q)V_{pq}-V_{pq}S(p))h = P_{\mathfrak{H}(q)}\{zP_{\mathfrak{H}(q)}h-P_{\mathfrak{H}(p)}zh\}=0$$

because $zP_{5(q)}h=z(h+qw)=zh+qw'$, $P_{5(p)}zh=zh+pw'=zh+qw''$ with some $w, w', w'' \in H^2$, and hence $\{...\} \in qH^2$.

If, conversely, p divides q, then we use the relation $P_{\mathfrak{S}(m)}u=u-m[\overline{m}u]_+$, valid for any inner m and for any $u\in H^2$, $[\ldots]_+$ denoting here the natural projection $L^2\to H^2$. We get by (1.1) and (3.2)

$$(S(q)V_{p,q}-V_{p,q}S(p))h=P_{\mathfrak{H}(q)}z\frac{q}{p}h-\frac{q}{p}P_{\mathfrak{H}(p)}(zh)=$$

$$=\left(z\frac{q}{p}\,h-q\left[\bar{q}z\frac{q}{p}\,h\right]_{+}\right)-\frac{q}{p}(zh-p[\bar{p}zh]_{+})=0$$

because $\bar{q}q=1, \frac{1}{p}=\bar{p}$ on the circle $\{z: |z|=1\}$.

Lemma 3.3. Let $S = S(m_0) \oplus S(m_1)$ be a Jordan operator. Then for every $X \in Alg$ Lat S there exists $Y \in A_S$ such that $X - Y = Z \oplus 0$ with some operator Z on $\mathfrak{H}(m_0)$ and the zero operator on $\mathfrak{H}(m_1)$.

Proof. The subspaces $\mathfrak{H}(m_0) \oplus \{0\}$ and $\{0\} \oplus \mathfrak{H}(m_1)$ are invariant for S so the assumption $X \in Alg \ Lat \ S$ implies

$$X = X_0 \oplus X_1$$
, $X_i \in Alg Lat S(m_i)$ $(j = 1, 2)$.

Consider the (obviously isometric) operator $V = V_{m_0, m_1}$ defined by (3.2), and the subspaces

$$\{Vh\oplus h: h\in \mathfrak{H}\{m_1\}\}\$$
and $\{VS(m_1)h\oplus h: h\in \mathfrak{H}\{m_1\}\}.$

By Lemma 3.2, both are invariant for S, and hence for X also. So we infer

$$X_0Vh = VX_1h$$
 and $X_0VS(m_1)h = VS(m_1)X_1h$ for $h \in \mathfrak{H}\{m_1\}$.

Apply the first equation for $S(m_1)h$ in place of h and compare the results to obtain $VX_1S(m_1)h=VS(m_1)X_1h$ for all $h\in \mathfrak{H}(m_1)$. Hence, $X_1S(m_1)=S(m_1)X_1$. By a well-known theorem of Sarason [8] this implies that $X_1=u(S(m_1))$ for some $u\in H^{\infty}$. Hence, $Y=u(S)=u(S(m_0))\oplus u(S(m_1))$ has the property we needed.

Lemma 3.4. Let $S = S(m_0) \oplus S(m_1)$ be a Jordan operator and let Z be an operator on $\mathfrak{H}(m_0)$ such that $Z \oplus 0 \in Alg$ Lat S. Then

$$(3.3) Z(qH^2 \ominus m_0H^2) \subset qm_1H^2 \ominus m_0H^2$$

for every inner divisor q of m_0/m_1 .

Proof. As m_1 is a divisor of m_0/q , which, in turn, is a divisor of m_0 , we can consider the operators $V_0 = V_{m_0/q, m_0}$ and $V_1 = V_{m_0/q, m_1}$ defined by (3.2) and (3.1), respectively, and observe that $\{V_0 h \oplus V_1 h: h \in \mathfrak{H}(m_0/q)\}$ is a subspace invariant for S (closure follows from the fact that V_0 is an isometry, namely multiplication by the inner function q). Then it is invariant for $Z \oplus 0$ also. Hence we infer that for every $h \in \mathfrak{H}(m_0/q)$ there exists $h' \in \mathfrak{H}(m_0/q)$ such that $ZV_0 h = V_0 h'$ and $0 = V_1 h'$.

As
$$V_1h' = P_{\mathfrak{H}(m_1)}h'$$
 by (3.1), we must have $h' \in \left(H^2 \ominus \frac{m_0}{q}H^2\right) \ominus (H^2 \ominus m_1H^2)$ i.e.

 $h' \in m_1 H^2 \ominus \frac{m_0}{q} H^2$. We conclude that $Zq \mathfrak{H}\left(\frac{m_0}{q}\right) \subset q\left(m_1 H^2 \ominus \frac{m_0}{q} H^2\right)$, and this obviously implies (3.3).

Remark. In the particular cases q=1 and $q=\frac{m_0}{m_1}$ (3.3) implies

(3.4)
$$\operatorname{ran} Z \subset m_1 H^2 \ominus m_0 H^2 \text{ and } \ker Z \supset (m_0/m_1) H^2 \ominus m_0 H^2$$

In the proof of the following result we shall use the unitary operator

(3.5)
$$R: m_1 H^2 \ominus m_0 H^2 \rightarrow \mathfrak{H}(m_0/m_1)$$
 defined by $Rh = h/m_1$, which satisfies the relation

$$(3.6) RS(m_0)|(m_1H^2 \ominus m_0H^2) = S(m_0/m_1)R = P_{5(m_0/m_1)}S(m_0)R.$$

Proposition 3.5. The Jordan operator $S = S(m_0) \oplus S(m_1)$ is reflexive whenever $S(m_0/m_1)$ is reflexive.

Proof. By Lemmas 3.3, 3.4, and Corollary 2.2 it suffices to show that every operator $Z \in \text{Alg Lat } S(m_0)$ satisfying (3.3) commutes with $S(m_0)$. We claim that for such a Z we have $RZ \mid \mathfrak{H}(m_0/m_1) \in \text{Alg Lat } S(m_0/m_1)$. Indeed, the general form of the subspaces in Lat $S(m_0/m_1)$ is $qH^2 \ominus (m_0/m_1)H^2$ for q a divisor of m_0/m_1 . By (3.3—4) we have $RZ(qH^2 \ominus (m_0/m_1)H^2) \subset RZ(qH^2 \ominus m_0H^2) \subset R(qm_1H^2 \ominus m_0H^2) = qH^2 \ominus (m_0/m_1)H^2$. The reflexivity of $S(m_0/m_1)$ implies $RZ \mid \mathfrak{H}(m_0/m_1) \in \{S(m_0/m_1)\}'$. Therefore,

$$R(ZS(m_0) - S(m_0)Z) | \mathfrak{H}(m_0/m_1) = ((RZ)S(m_0) - RS(m_0)Z) | \mathfrak{H}(m_0/m_1) =$$

$$= ((RZ)P_{\mathfrak{H}(m_0/m_1)}S(m_0) - S(m_0/m_1)RZ) | \mathfrak{H}(m_0/m_1) = 0$$

so that Z commutes with $S(m_0)$ on $\mathfrak{H}(m_0/m_1)$. Because by (3.4) we have $ZS(m_0) = S(m_0)Z=0$ on $(m_0/m_1)H^2 \oplus m_0H^2$ it follows that $Z \in \{S(m_0)\}'$. The Proposition is proved.

Proof of Theorem A. Let $T \in \mathcal{B}(\mathfrak{H})$ be of class C_0 , with Jordan model $S = \bigoplus_{\alpha} S(m_{\alpha})$ on $\mathfrak{H} = \bigoplus_{\alpha} \mathfrak{H}(m_{\alpha})$. If T is reflexive we infer by Corollary 2.4 that $T | (m_1(T)\mathfrak{H})^-$ is reflexive. But $T | (m_1(T)\mathfrak{H})^-$ is quasi-similar to $S(m_0/m_1)$ and the reflexivity of $S(m_0/m_1)$ follows by Lemma 3.1 and Remark 2.8.

Conversely, let us assume that $S(m_0/m_1)$ is reflexive. Let X be any quasi-affinity such that TX=XS. Let us consider the spaces $\mathfrak{H}_{\alpha}=(X\mathfrak{H}(m_{\alpha}))^{-}$ and $\mathfrak{H}_{\alpha}=(X \ker m_{\alpha}(S|\mathfrak{H}(m_0)))^{-}$ for every ordinal number α . Then the restriction $T|\mathfrak{H}_{\alpha}\vee\mathfrak{H}_{\alpha}$ is quasi-similar to $S(m_0)\oplus S(m_1)$ and $T|\mathfrak{H}_{\alpha}\vee\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ is quasi-similar to $S(m_{\alpha})\oplus S(m_{\alpha})$. All these restrictions are reflexive by Lemmas 2.7, 3.1 and Proposition 3.5 so that the reflexivity of T follows by Corollary 2.3 because $(\mathfrak{H}_{\alpha}\vee\mathfrak{H}_{\alpha})\vee\mathfrak{H}_{\alpha}\vee\mathfrak{H}_{\alpha}=1$ and $\mathfrak{H}_{\alpha}\vee\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ because $(\mathfrak{H}_{\alpha}\vee\mathfrak{H}_{\alpha})\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ and $\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ because $(\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha})\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ and $\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ because $(\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha})\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ because $(\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha})\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ because $(\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha})\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ because $(\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha})\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$ because $(\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha})\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}\otimes\mathfrak{H}_{\alpha}=1$

Corollary 3.6. Let T and T' be two quasi-similar operators of class C_0 . Then T is reflexive if and only if T' is reflexive.

Proof. Two operators of class C_0 are quasi-similar if and only if they have he same Jordan model. Corollary obviously follows from Theorem A.

4. Hyper-reflexive operators

Proposition 4.1. If the operators T and T' are quasi-similar and one of them is hyper-reflexive then so is the other.

Proof. Let X and Y be two quasi-affinities such that T'X = XT and TY = YT' and let $A \in Alg Lat \{T'\}'$. Then $XAY \in Alg Lat \{T'\}'$; indeed, for each $\mathfrak{M} \in Lat \{T'\}'$ we have

(4.1)
$$\mathfrak{N} = \bigvee_{Z \in \{T\}'} ZY \mathfrak{M} \in \text{Lat } \{T\}'$$

and $X\mathfrak{N} \subset \bigvee_{Z \in \{T'\}'} XZY\mathfrak{M} \subset \bigvee_{Z' \in \{T'\}'} Z'\mathfrak{M} = \mathfrak{M}$. In particular, $XAY\mathfrak{M} \subset XA\mathfrak{N} \subset X\mathfrak{M} \subset \mathfrak{M}$ and $XAY \in Alg \ Lat \ \{T'\}' \ because \ \mathfrak{M} \in Lat \ \{T'\}' \ is arbitrary.$

If T' is hyper-reflexive it follows that $XAY \in \{T'\}'$ so that $X \cdot AT \cdot Y = XAY \cdot T' = T' \cdot XAY = X \cdot TA \cdot Y$ and $A \in \{T\}'$ because X and Y are quasi-affinities. It follows that T is hyper-reflexive. The Proposition is proved.

Proof of Theorem B. By the preceding proposition it is enough to consider the case T=S. Let us assume that S is hyper-reflexive and take $A \in Alg$ Lat $S(m_0)$. Then the operator $B = \bigoplus_{\alpha} A_{\alpha}$, where $A_0 = A$ and $A_{\alpha} = 0$ for $\alpha \ge 1$, belongs to Alg Lat $\{S\}'$. Indeed, since each $\Re \in Lat \{S\}'$ has the form $\bigoplus_{\alpha} \Re_{\alpha}$ where $\Re_{\alpha} \in Lat \{S\}'$ and this implies $A \in \{S(m_0)\}'$. The reflexivity of $S(m_0)$ follows by Corollary 2.2.

Conversely, let us assume that $S(m_0)$ is reflexive. Because $S(m_\alpha)$ is unitarily equivalent to $S(m_0)|(\operatorname{ran} u_\alpha(S(m_0))^-(u_\alpha=m_0/m_\alpha))$ it follows by Corollary 2.4 that $S(m_\alpha)$ is reflexive for every α . We consider the operators $R_{\alpha\beta} \in \{S\}'$ defined by $R_{\alpha\beta} (\bigoplus_{\gamma} h_{\gamma}) = \bigoplus_{\gamma} k_{\gamma}$ where $k_{\gamma} = 0$ for $\gamma \neq \alpha$ and

$$(4.2) k_{\alpha} = V_{m_{\beta}, m_{\alpha}} h_{\beta} = \begin{cases} P_{\mathfrak{H}(m_{\alpha})} h_{\beta} & \text{whenever } \alpha > \beta, \\ (m_{\alpha} | m_{\beta}) h_{\beta} & \text{whenever } \alpha \leq \beta. \end{cases}$$

Cf. (3.1—2). Obviously, $P_{\alpha} = R_{\alpha\alpha}$ coincides with the orthogonal projection of $\bigoplus_{\gamma} \mathfrak{H}(m_{\gamma})$ α -component space.

Let $A \in Alg Lat \{S\}'$; we have $P_{\alpha}AP_{\beta} \in Alg Lat \{S\}'$ and $A = \sum_{\alpha,\beta} P_{\alpha}AP_{\beta}$ in the strong operator topology. To conclude the proof it is enough to show that $P_{\alpha}AP_{\beta} \in \{S\}'$. Let us note that the operators $R_{\beta\alpha}P_{\alpha}AP_{\beta}$ and $P_{\alpha}AP_{\beta}R_{\beta\alpha}$ belong to Alg Lat $\{S\}'$ and are of the form $\bigoplus_{\gamma} T_{\gamma}$ with $T_{\gamma} = 0$ for $\gamma \neq \beta$ and $\gamma \neq \alpha$, respectively. Considering the spaces of the form $\ker m(S) \in Lat \{S\}'$ for m a divisor of m_0 , it is easily seen that necessarily $T_{\gamma} \in Alg Lat S(m_{\gamma})$ so that $T_{\gamma} \in \{S(m_{\gamma})\}'$ by

the reflexivity of $S(m_{\gamma})$. It follows that $R_{\beta\alpha}P_{\alpha}AP_{\beta}$ and $P_{\alpha}AP_{\beta}R_{\beta\alpha}$ commute with S and therefore

$$R_{\beta\alpha}(P_{\alpha}AP_{\beta}S-SP_{\alpha}AP_{\beta})=(P_{\alpha}AP_{\beta}S-SP_{\alpha}AP_{\beta})R_{\beta\alpha}=0.$$

If the range of $R_{\beta\alpha}$ does not contain ran P_{β} it follows that $\beta < \alpha$ and therefore $R_{\beta\alpha}$ is one-to-one on ran P_{α} ; therefore in both cases we infer $P_{\alpha}AP_{\beta} \in \{S\}'$. The Theorem is proved.

Remark 4.2. It follows from Theorems A and B that each hyper-reflexive operator of class C_0 is also reflexive. This fact can be proved directly also, by using Theorem 2.1.

References

- [1] C. Apostol, R. G. Douglas, C. Folas, Quasi-similar models for nilpotent operators, *Trans. Amer. Math. Soc.*, 224 (1976), 407—415.
- [2] H. Bercovici, Teoria operatorilor de clasa C₀, Stud. Cerc. Mat., 31 (1979), 657—704.
- [3] H. Bercovici, On the Jordan model of C_0 operators. II, Acta Sci. Math., 42 (1980), 43—56.
- [4] H. Bercovici, C. Foias, B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe C₀. III, Acta Sci. Math., 37 (1975), 313—322.
- [5] J. A. DEDDENS, P. A. FILLMORE, Reflexive linear transformations, Linear Algebra and Appl., 10 (1975), 89—93.
- [6] C. Foias, Reflexive operators (lecture), Conference of Operator Theory (Timisoara, June 1976).
- [7] E. A. Nordgren, On the quasi-equivalence of matrices over H^{∞} , Acta Sci. Math., 34 (1973), 301—310.
- [8] D. SARASON, Generalized interpolation in H[∞], Trans. Amer. Math. Soc., 127 (1967), 179—203.
- [9] B. Sz.-Nagy, Diagonalization of matrices over H^{∞} , Acta Sci. Math., 38 (1976), 223-238.
- [10] B. Sz.-Nagy, C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North Holland—Akadémiai Kiadó (Amsterdam—Budapest, 1970).
- [11] B. Sz.-Nagy, C. Foias, Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert, Acta Sci. Math., 31 (1970), 91—115.
- [12] B. Sz.-Nagy, C. Foias, Compléments à l'étude des opérateurs de classe C₀. (I), Acta Sci. Math., (1970), 287—296.
- [13] B. Sz.-Nagy, C. Foias, Commutants and bicommutants of operators of class C₀, Acta Sci. Math., 38 (1976), 311—315.
- [14] P. Y. Wu, Commutants of $C_0(N)$ contractions, Acta Sci. Math., 38 (1976), 193—202.
- [15] P. Y. Wu, On the reflexivity of $C_0(N)$ contractions, Proc. Amer. Math. Soc., 79 (1980), 405-409.

(H. B.)
DEPARTMENT OF MATH.
UNIVERSITY OF MICHIGAN
ANN ARBOR, MI 48109
ILS A

(C. F.)
DEPARTMENT OF MATH.
INDIANA UNIVERSITY
BLOOMINGTON, IN 47405
U.S.A.

(B. SZ.-N.) BOLYAI INSTITUTE UNIVERSITY SZEGED 6720 SZEGED HUNGARY