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On the commutant of C,,-contractions

LASZLO KERCHY

1. We say that a Hilbert space operator T has property (P), or belongs to the
operator class 2, if every injection X¢{T} is a quasi-affinity. B. Sz.-NaGy and
C. Foias [1] proved that the operators of class Cy, and of finite multiplicity have
property (P). H. BErcovici [2] characterized the class of all Cy-operators having prop-
erty (P). Recently P. Y. Wu [3] showed that every completely non-unitary (c. n. u.)
C,, -contraction with finite defect indices belongs to the class 2. (Actually, he proved
more.) The main purpose of this note is to characterize the class of all C,,-contractions
having property (P).

The author is indebted to Dr. H. Bercovici for his valuable remarks, and
in particular for his suggestions that helped to simplify the proof of Lemma 1.

2. Only bounded linear operators on complex separable Hilbert spaces will
be considered. Separability does not mean a restriction of generality, as it wili
turn out in section 5. We follow the notation and the terminology used in [4].

It is well-known that every contraction T of class Cy, is quasi-similar to a unitary
operator U (cf. [4], 11.3.5). Moreover, since quasi-similar unitary operators are
unitarily equivalent (cf. [4], I1.3.4), the operator U is uniquely determined up to
unitary equivalence.

If T is, moreover, a c. n. u. contraction of class Cy;, then T is quasi-similar to
the operator U of multiplication by e’ on the Hilbert space 4L*(€). (Cf. [4], VI.2.3))
Here 4 is the operator-valued function defined by A(e*)=[I—0O(e*)* @ (")’
where @ denotes the characteristic function of 7. This operator U has absolutely
continuous spectral measure on the unit circle (i.e., is an a. c. u. operator). So U
is unitarily equivalent to an operator M of the form M=M EIGBM £,®- where
{E,}, is a decreasing sequence of measurable subsets of the unit circle C of C, and
M denotes the operator of multiplication by " on the space L2(E,). (We consider the
normalized Lebesgue measure m on C.) For every measurable subset F of C let
F'= denote the closed support of the measure m|F, the restriction of m on the set F.
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16 L. Kérchy

If it is assumed that E,=E, for every n, then the operator M is uniquely determined
(cf. [5]). M will be called the canonical functional model of the a. c. u. operator U,
and the Jordan model of the c. n. u. Cy,-contraction T (cf. [6]).

Now we can state our main result:

Theorem 1. Let T be a c. n. u. contraction of class Cy, on the separable Hilbert
space 9, and let M=M E,@M £,& .- be its Jordan model. Then T has property (P)
if and only if m("Q1 E,)=0.

Sufficiency and necessity of this condition will be proved in sec. 3 and sec. 4,
respectively. In sec. 5 some corollaries are treated, while in sec. 6 we consider arbi-
trary C,,-contractions.

We shall use the following notation. For an operator-valued function N let
dy(e") denote the rank of the operator N(e®). If T is a c. n. u. Cy;-contraction, then
let d,. be the function defined by d,(e?)=d,(e), where 4=4(e") is the operator-
valued function derived from the characteristic function @ (e”) of T.

For two operators, T, and T,, we denote by #(T;, T,) the set of intertwining
operators S(Ty, To)={X|XT,=T,X}. Let Hyp lat (T) denote the lattice of hyper-
invariant subspaces of T.

A system {9,},=, of subspaces of $ will be called basic if, for any n, the sub-
spaces 9,, k;/ﬂ 9, are complementary and Ql (:.»\z/,. 9)={0} (cf. [7)).

3. We shall need some lemmas. The first one should be contrasted with [4],
VI. Th.6.1.

Lemma 1. Let N(e") (0=t=2n) be a function with values operators on a
(separable) Hilbert space €, and measurable. Let us denote by U the restriction of
the operator of multiplication by €" on its reducing subspace M= NL2*(€); and let
M=My &M ®... beits canonical functional model. Then dy (e")=rank N(e") isa
measurable function and for every n=1 we have

E, = {e"|dy(e") = n}=.

Proof. Let {e;}; be an orthonormal basis of €. We denote by f; the bounded
measurable functions f;(e")=N(e")e;. Obviously the set {f;(e™)}; generates
(N(eME)~ for every e“€C, and therefore by [8], Ch. II, Prop. 9 it follows that
the family $(e”)=(N(e")€)~, supplied with the notion of measurability induced
by the constant field K(e’)=E, is a measurable field of Hilbert spaces. Now we
infer by [8], Ch.II, Prop. 1 that the function dy is measurable. Moreover, by

]
[8], Ch. II, Prop. 7 we have M= [ H(e*)dm, and so U is the diagonal operator
. g A

@
[ e"dm. Denoting by F, the measurable sets F,,={e“|dy(e)=m} (m=1,2, ...; Ry
¢ ) .
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and:applying [8], Ch. II, Prop. 3, we get that

U= f "dmm@(je"dm] @M;-)meaMg,

where E,={e"|dy(e*)=n}=. (For an arbxtrary opérator, S, S™ denotes the direct
sum of m copies of S.)

‘Taking into account this Lemma we get a characterization for the measurable
subsets in the Jordan model of a c. n. u. C;,-contraction. Namely, we have

Corollary 1. If T is a c. n. u. contraction of class Cy; on a (separable) Hilbert
space  and M=M E,@M & is its Jordan model, then d (%) is a measurable
Junction, and for every natural number n we have

= {e*|dp(e") = n}~.
We shall frequently use the following:

o Lemma 2. If TeL(9) and H,cHyplat T (n=1, 2, ...) are such that =\ 9,
and T|9, has property (P) for every n, then T has property (P). n=l

Lemma 3. Let U be an a. c. u. operator on -the seéarablé Hilbert space $, let
M=M £, ®Mg,® ...€ZL(R) be its canonical functional model, and let E be the set
defined by E= (N E,. Then the following conditions are equivalent:

n=1l

() Ue?; (i) m(E)=
Proof.
a) Let us assume that m(E)=0. Then

U=M @My @...= (Mg zOMp 5,0 )OMgOMD...) =
= (Mg gOMp D )OMOM0.. )OMgDM®...) =
= (M @My ®..) MO M®...) = MOME.

It is evident that M$D¢ 2. Therefore. M@ MID¢ P, and so U¢ 2.

b) Let us assume that m(E)=0. For every n let $, and ], be the subspaces
defined by $,=xcs, (V) and' K,=zc; (MK=LENE) ... 0 }(E,_\E)).
Since M|R, has finite multiplicity, and U|$, is unitary equivalent to M|K,,
we infer by [3], Lemma 2.5 that U|9, belongs to & for every n. On the other hand
9, is 2 hyperinvariant subspace of U for every n, and in virtue of the assumption

V1 9,=9. The Proposition follows by Lemma 2.
~ We shall need yet the following: -

Lemma 4. If T is a c. n. u. contraction of class C,, on a separable Hilbert space
9 and 6.(e")* OL(e")=d holds a.e. for some constant 60, then T is similar
to a unitary operator. (Here @ denotes the characteristic function of T.)

2
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Proof. We infer by Propositions-[4], V.7.1 and V.4.1 that @ has. an: outer
function scalar multiple u such that |u(e®)|=6'2 a.e. Then IIG ()Y hasa bound
independent of A,- and- this 1mphes by '[4], Theorem IX.1.2 that 7'.is similar to a
unitary operator. "

-~ We-aré now able to prove the sufficiency. B IR

. Proposnlon 1. Let. T be a c. n. u. contraction of class C11 on a (separable)
Htlbert space S), and let’ M My &M, e) . be its Jordan model. If m( ﬂ E )—.-0

then TE 97’ ) . . . TR
~Pro of Let 66 H: °°($ ((E)) coincide with the characteristic- functnon of T

Let Ne L=(Z(€)) be the function defined by N(e”)=[0 (e")* © (e)]V/2=[I—42(e¥)]\/2.

In virtue of Corollary 1 we infer by the assumption that

¢)) dr(e") =dgp(e") <= ae.

On the other hand since T€Cy,, it follows that O is outer from both sndes
therefore N(e") is a qua31-aﬁ'1n1ty ae. (Cf. [4], VI35 and V.2.4.) Now WE. mfer
easily from these facts that N(e") is invertible a.e. Therefore its lower bound' func-
tion. m(e")—mf {(N(e")e e)lecC, fle| =1} is posmve Co
@ : o m(e") >0 a.e.

For every natural number n let a, be thc measurable set deﬁned by

3 0, ={erimey > 1} \
It is evident that {a,}, is increasing:

@ e Mg

Moreover, in virtue of (2) we have

® S meN(U ) =0

By the proof of Theorem VIL.5.2 of [4], T has hypermvarlant subspaces Sj,,,
such that '

© . mEmse ve-s
s i; B O (e)*O () ae. on «a, S ‘
™ O,(e”) 0,(e") = {I ae. on Cua,, V e o

“1¥ Here and in the sequel we also use the notation Cx for the set C\a, where a is” any
subset of C. - : SRR
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‘where: ©, -denotés™ a'contractlve analytic furiction-such that the ‘purely cornitractive
part of @ corncrdes with the, charactenstrc functlon of T 19,;

i
R AN

:T Tlﬁ ECu for every n. 4_

We mfer by l.;emma[4 lihat for every n, T, is similar to a umtary operator e
Quasr-srmrlar umtary operators berng umtarlly equrvalent T ‘18 srmrlar to 1ts
Jordan model M,=MmGMem .. We mfer by (7) that ‘ =

(9)!’,‘ v, l;l‘l S _1_1'«,!5..3 D d (e") < vdT (e") a e
and it follows by (1) that e e : .
(10) fie C dy (e") <o ae

By Corollary,l anl;l Lemma 3-we-see ‘that-- M, EQ’ :Since’ similarity- preserves prop-
erty (P), 50 for every n »
(]1) )x Ay dneil degnl TLEP.

_ Takmg 4into accaunt, (6) and;(11),. we infer by Lemma 2 that Te #.. The proof
1s ﬁnrshed

N,
=

s g Preparmg for‘ the proof of" ne‘cessrty ‘we consrder some Lemmas concernmg
a.c.u. operators .

S

Lemma 5. Let U, and U, be a. c. u. operators havmg property (P) Then the
operator U=U,® U, has also pregerty (P)." »

. Proof. \Let\ My=My @M @ E.?(Sj) -and’ -M,=M; @M, &...c £(H")
be the canonical functlonal models of the operators U, and U, respectively. It is
enough to prove that the operator M=M,® M, L(H=5"®H") has the prop—
erty (P).

Taking into account that the sequences {E,}. and {F,}, are decreasmg we 1nfer
by Lemiria 3 that m( ﬂ (E, UF, )) 0. Therefore the hypérinvariant subspaces s

defined’ by Sj ch up)5 (n 1, 2 ) span the spaoe 5. Moréover M |53 “has
finite multrpllcrty, and so it belongs to .@ by Lemma 3. It follows that the operator
M al$o has the property (P) S .

,,,,,,,,

Lemma 6 Let Ul, Ug,‘.. be a. c. u operators ]f m( ﬂ a(@ Uk))>0 then

there exists ‘a strzctly increasing: sequence {n of natural numbers such that n;=0

and m [ N o EB U,)] =0. (o(T) denotes the spectrum of T)

k21 l-nk+1 .

S i

a) Flrst of all we. show that hm m{ [é U,,)] =m [a(é; U,;)]. If E,(+) denotes
A .

n-oo k=1
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the spectral measure of U, forevery n, then E(:)= é E,(-) will be the spectrai meas-
a=1

n=1 u=1

ure of the a. c. u. operator U= é U,. Therefore E [a (,59 U,‘) U o @ U,‘]]]
=1
and so m[a(é U,)\ O o é U,]]]=0. Since a(ﬁé U,]——: : av(EB U,‘)] , We
k=1 =1 =1 =1 n=1 k=1
have lim m [a(é U,)]=m (d‘ (45) U,‘]] .
n=ee k=1 =1
b) Let o denote the set o= o(kEB U,). Let us assume that we have defined
Azl =n

O=n;<ny<...<n, such that for every 1=k=r—1 we have m[a\a( 'éél U,] <

I=n,+1
m( )
NPT

. Applying the result of a) we infer that the sequence {m [a\a( &b U,)]}

{=n 11

=8,+1

- LTS
tends to zero. Therefore there exists an index n, ., >n_such that m [a\a(‘ é U ,] <

m4(ra ). The sequence defined by recursion in this way has the property that
LTS (o-) "k+l

m af,\[ﬂ 0'( oD Uz)) ﬂ ol & _U,) >0, and
k=1 \l=n,+1 k=1 l==n,‘+1

the proof is finished.

Lemma 7. Let U, € 2(9,), U, L(9y), ... be a. c. u. operators having property
(P). Then the a. c. u. operator U= Q} U,c Z(D) has property (P) if and only xf
m(ﬂ a(@ Uy))=0. o ’

Proof.
a) Let us assume that m( ﬂ a(@ Uy))=0. In virtue of Lemma 6 there exists

a sequence {m},, (nl—O) such that m(0)>0, where o= ﬁa(V,‘) and V,=

"k+1
= '@ U, for every natural number k. Then for every k we can decompose Vk
I=n +1

into the direct sum V,=V, @V, such that ¥, is unitary equivalent to M. Let
XieSWV,,Viy) bea unitary operator, and X, v €{V{} be the identity operator
(k=1,2,...). In this way we get an injection -X€{U}" which is not-a quasi-
surjection. Therefore U¢ 2.

b) Let us assume now that m(ﬂ F,)=0, where F, G(EB U,‘) Then the
hyperinvariant subspaces "Dl,,—xcpn(U){) (n=1,2,..) of U span the space 9:
V M,=9H. On the other hand, for every natural number k,: Xcr: (U9, reduces

nzl
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. a—1 )
U,, and so U,‘Ixcp (U)9Hr€ 2. Since UISJI,,%@ U,‘Ixcp U)$,, we infer by

Lemma 5 that UWR,E@ for every n. Therefore UGQa and this completes the
proof.
Now we are ready to prove:

B

Proposition 2. Let T be a c. n. u. contraction of class Cy; on a (separable)
Hilbert space 9, and let M=Mg ® My &... be its Jordan model on the Hilbert
space K. If m( (" E,)>0, then T¢2P.

nzl

Proof. _
" a) Since T is quasi-similar to the unitary operator M, we infer by [7] that there
exist a basic system {$,}, of invariant subspaces of T, and a reducing decomposition
K=P K, of K such that for every n T,=T|%, is similar to the a.c. u. operator

U,=M|K,. For every n let C,6#(U,,T,) be an affinity, and let P, denote the
canonical projection of $ onto $, determined by the decomposition $=9,+(V ).
k#n

b) We can reduce the proof to the following two special cases:
(i) There exists an n such that U,¢ 2.

(i) m(nQ1a(U")) > 0.

Indeed, assuming that- U, for every n, and taking into account that
M=@@ U,¢{# (cf. Lemma 3), we infer by Lemmas 7 and 6 that there exists a

n=1

sequence {n},, (m=0), such that m[ﬂ a[ ’él -U,)] =>0. Replacing the basic
k=1 I=n, +1

system {9}, by {Di}, where $,=9, . +...+9, . and the affinities C,

(n=1,2,..) by C,=C, 419..8C, (k=1,2,..), we gain the case (ii). .(Itv can

be easily seen that for every finite index-set N, the linear manifolds + $; and
kEN,

( V Sjk)—l—( V 5,,) are closed. Therefore the operators C,= ’él Ck=1,2,..)

l.-nk+1
wrll be aﬁimtres and {9}, will be a basic system.)

¢) Let us assume that there exists an n such that U,¢#. It can be sup-
posed that n=1. Since similarity preserves the property (P), we infer that 71¢ 2.
Therefore there exists an injection X;€ {73}’ which is not a quasi-surjection. Let

{on } be a sequence of positive numbers such that 2’“ o, || Pl <eo, and let Xe{T}

be the operator defined by Xf=o, X, P, f+ Z P f (f€9). If Xf=0 (f€9), then
for every n P,f=0, and we can prove by lnductron that fe( \/ $) for every n.
Therefore - -f =0, ‘and $o ‘X is ‘an injection. On the other hand (ran X)~ =
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=(ran X,)~ +( V 5,,);&55,4-( V S )= 9,1 that-is: X is not a\quasr-surjectron There-

fore T does not belong to the class P. a T ey s :
d) Let us now suppose that m(a)>0 where o= ﬂ a(U,,) Then for every n

nz1l

there exists a reducing decomposition K,=8,® {7 such-‘that- U, |R, is unitary

equivalent to the operator M,. Let §, and 55 denote the subspaces defined by

5,, C,,R,’,, 97 =C,8/. Then 55 +s§”' s5 and T T|55 s srmrlar to T,,+1
T, .49, for every n.

Let X, €#(T,,T,,,) be an affinity, and let P’ denote the canomcal prOJectlon

of 9, onto $, determined by the decomposition §,=9H,+$,, moreover let P,

be the pro;ectlon P=Ig —P,. Let {oz,,} be a. sequence of. positive numbers such

that Zaz,,(llX P+ U PIDNPA < oo, and let X € {T»}< denote the operator defined

by Xf= Za,,(X P’+P”)P,, f (fe€9H). As in the precedmg pomt itcan be &asily
seen that X.Ars an injection. On the other hand (ran X)~ = +(V 55..)#514-
+(V Sj,,) %, that is X-is not a quasi-surjection. Therefore T does ‘not. ‘have
property (P), and the proof is completed o )

5. In this section we consider some corollaries of Theorem 1:

-Coroliary 2. Let T be a c. n. u. contraction of class Cu Then T belongs to .?
if and only if its Jordan model M=M; @My, @.:. does. ' '

.Proof. Cf. Theorem 1 and Lemma 3

Corollary 3. Property (P) is a quasi-similarity invariant for c. n. u. C,,-con-
tractzons

Corollary 4. If Tisac. n u Cu-contracuon having property (P) then its
adjomt T* also has property (P).

Proof We have only to note that the adjoint of an operator of the form M
is unitary equivalent to the operator M-, where E ={e|le-"cE).

Corollary 5. Let T be a c. n. u. contraction of class Cy; on-the non-necessarily
separable Hilbert space $. If T has property (P), then the space'  is separable.

Proof Let us assume that 7 has property (P) and the space §) is non-separable.
Then there exists a decomposmon H= GB 9. reducing for T, such that for every
ordinal « less than the ordinal 8 the space 9, is separable. Let M, =@ Mg be

a=1 »n

the- Jordan model of the operator T,=T|$,. Since m(E, )>0 for every oa=>p,
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and. B is non-denumerable, there exist a positive number £>0 and a sequence
{a,}o, of ordinals less than B, such that for every n we have m(E, )>e.

Let 7" be the operator defined by T”'= és T, on the separable Hilbert space
n=1 "
=@ 9, . Taking into account that” T€¢ #, we infer that T'€¢#, and T,€ P
n=1 " .
for every a<f. T’ being quasi-similar to the unitary operator é; M, , it follows
. n=1

that é M, is unitary equivalent to the Jordan model of T”. By Corollary 2 we

=1
infer that EB -M, € 2, and M, EP for every n. Now it follows by Lemma 7 that
lim m(a(@ M )) 0.
On the other hand for every n we have m(o(@ M, ))=m(s(M,))=m(E, =g
what is a contradiction. Therefore the space $ can’t be separable, and the proof is
completed.

. Corollary 6. Let T be a c. n. u. contraction of class Cy,. If T has property (P)
and L is an invariant subspace of T such that T|2cC,,, then T|R has property
(P) also.

Proof. We infer by [4], VI.2.3, VIL.1.1, VIL.2.1 arid VIL.3.3 that d,.m(e")é
=d,(e”) a.e. Now it follows by Corollary 1 and Theorem 1 that T|f has prop-
erty (P).

Corollary 7. Let Ty and T, be c. n. u. contractions of class Cy,. If Ty and T,
belong to the class P, then the direct sum T,® T, has property (P) also.

Proof. We have only to refer to Corollary 2 and Lemma 5.

Corollary 8. Let Ty, T,, ... be c. n. u. contractions of class Cy, having prop-

erty (P). Then the contraction T= é T, belongs to the class # if and only if

n=1

the series D dr (e) converges a.e.
n=1

Proof. Since T,€2, it follows that dy (¢“)<e a.., and the Jordan model
M, of T, has property (P). (Cf. Theorem 1, Corollary 1 and Lemma 3.) On the
other hand we infer by Corollary 2 that the condition T€ # is equivalent to the

condition EB M,c#. But this latter is equivalent to m(ﬂ a(@ M,))=0 by
Lemma 7. On account of Corollary 1 and the proof of Lemma 6 we see that
m(,Q1 o(é}n M,))=0 holds if and only if ";l' d,."(e")<oo a.e., and this completes
the proof.
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6. Finally we intend to characteérize the non-necessarily c.n.u. contractions of
class C,; having property (P). First of all we prove the following:

Lemma 8. Let T¢ £(9) be a c. n. u. contraction of class Cy,, and let Uc L(R)
be an a. c. u. operator. If both T and U have property (P), then their direct sum
S=T@ Uc Z(€) belongs to P also.

Proof. Let Mec #(K) denote the Jordan model of T. By [7] there exist a

basic system {€,}, of invariant subspaces of 7, and a decomposition |&=& B,
k=1

of & reducing for M, such that for every k T|€, is similar to M;=M|B,. Let
C,ef(M;, T|2) be an affinity (k=1,2,...).

Since T¢ 2, we infer by Corollary 2 that M¢c 2 also. Now by Lemma 7 it
follows that m(ﬂCa) 0, where o —-Ca(EB M) (n=1,2,...). For every n let

R, K, ,, 5. be defined by K, =, ()= D Ruo K=2e, MK= @ K.,

where R, ,=1, (MIB,, K, ,=xc, (MIB; (k= 1 2 ..), and 9,= V Sj" o 5 =
=V 55,’,,,‘, where 9, ,=C R, ;> 9,:=C&K,, k=1,2,..). Itis clear that for
k=1

every n &, ,={0} if k>n, and so & = @ K, ;. It follows that §, ,={0} if

k>n, thatis 9,=9,,+:. +5" nt Therefore the subspaces §, and §, are com-
plementary: $,+9:=9, and T,=T|9, is similar to M,=M|K,. Moreover
T.=T|$, is quasi-similar to M,=M|R,, and m(c(M,)4¢,)=m(c(M,)4Cs,)=0
for every n.

For every n let the subspaces R,, R,, €,, € be defined by R, =y, (U)R,
R =1, (VR €,=H,0R, and €,=5,®R,. Then the decomposition (E="(€,,—i—(€,’,
reduces S, moreover the restriction S,=S|€,=T,o U, (U,=U|R,) of S onto €,
is similar to M,®U,, and the restriction S,=S|€.=T,0U, (U,=U|R)) of S
onto €, is quasi-similar to M, & U,. :

Let X¢{S} be an arbitrary operator, and let » be a natural number. Let

xp xp
xp Xy

be the matrix of X in the decomposition €=€,+4E,. On account of X¢{S} we
infer that X{Me#(S,, S). Let Y, eSM,®U,,S,) and Z,€5(S,, M.®U)) be
quasi-affinities. Then the operator X,=Z, XY, belongs to S(M,oU,, M. U.)
and we infer by [9], Lemma 4.1 that (ker X;)* and (ran X;)~ are reducing subspaces
of M,®U, and M,@ U, respectively, and (M,® U,)|(ker X))+ is unitary equiv-
alent to (M,®U,)|(ran X;)~. Since m(o(M,® U,)40,)=m(c(M,® U,)4Ca,)=0,
and M,®U,, M,® U, are a. c. u. operators, it follows that X;=0, and so X{®=0.
Therefore €,¢Hyp lat (S).
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On the other hand we infer by the equation m( ﬂ Co) 0 that V € =C.

Since we have that S,€ & for every n (cf. Lemma 5), an argument similar to the end
of the proof of Proposition 1 completes the proof.

It is well-known that for every contraction T of class C;; on the Hilbert space
$ there exists a (unique) ““canonical” decomposition H=9, D H, ®H; of H reducing
for T, such that T;=T|$, is a c. n. u. contraction of class C,;, T,=T|9, is an
a. c. u. operator and T,=T|$H, is a singular unitary operator. (Cf. [4], 1.3.2.)

Theorem 2. Let T be a contraction of class Cy,4 and let T=T,T,dT; be
its “canonical” decomposition. Then T has property (P) if and only if T, belongs to &
for i=1,2,3. '

Proof. Let us assume that T, # for i=1, 2, 3. (Thé other part of the proof

is trivial.)
Let X€{T} be an arbitrary operator, and let §u X3z
21

decomposition H=(H; B H) D H;. Then X, Ze.# (MleBTz, T,), where M, is the
Jordan model of T, and Ze S(M T, T, ® T,) is a quasi-affinity. Since M, BT,
is an a. c. u. operator and Ty is a singular unitary operator, we infer by [9], Lemma 4.1
that X,,Z=0, and so X, =0. A similar argument shows that X;,=0 also holds,
therefore $,®9H. and $H; belong to Hyp lat (7). Applying Lemma 8 the Theorem
follows.

It can be given a “‘canonical’ functional model for an arbitrary singular unitary
operator also. Now a singular measure p plays the role of the Lebesgue measure,
and the form of the space of the functional model is Lﬁ(El)eaLﬁ(Ez)ea e
(E,2E,=2...). Lemma 3 also holds its validity if condition (ii) is replaced by
u(E)=0. Taking into account the previous theorems, it can be easily seen that
Corollaries 2—8 hold for arbitrary contractions of class Cj; also.

] be its matrix in the

*

In a subsequent paper shall continue the study of the class 2N C,;. Among
others we shall show that, for quasi-similar £ C;, -contractions, the lattices of C,;-
invariant subspaces are isomorphic. (An invariant subspace £ for T is called C,,-
invariant if T|¢Cy,.)
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