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On the commutant of Cu-contractions 
LÁSZLÓ KERCHY 

1. We say that a Hilbert space operator T has property (P), or belongs to the 
operator class if every injection X£ {7"}' is a quasi-affinity. B. SZ.-NAGY and 
C. FOIA§ [1] proved that the operators of class C0 and of finite multiplicity have 
property (P). H. BERCOVICI [2] characterized the class of all C0-operators having prop-
erty (P). Recently P. Y. Wu [3] showed that every completely non-unitary (c. n. u.) 
Cn -contraction with finite defect indices belongs to the class 2?. (Actually, he proved 
more.) The main purpose of this note is to characterize the class of all Cu-contractions 
having property CP). 

The author is indebted to Dr. H. Bercovici for his valuable remarks, and 
in particular for his suggestions that helped to simplify the proof of Lemma 1. 

2. Only bounded linear operators on complex separable Hilbert spaces will 
be considered. Separability does not mean a restriction of generality, as it will 
turn out in section 5. We follow the notation and the terminology used in [4]. 

It is well-known that every contraction Tof class C u is quasi-similar to a unitary 
operator U (cf. [4], II.3.5). Moreover, since quasi-similar unitary operators are 
unitarily equivalent (cf. [4], II.3.4), the operator U is uniquely determined up to 
unitary equivalence. 

If T is, moreover, a c. n. u. contraction of class C u , then T is quasi-similar to 
the operator U of multiplication by e" on the Hilbert space AL2((£). (Cf. [4], VI.2.3.) 
Here A is the operator-valued function defined by A(eu) = [r-0(e")* 6>(e")]l/2, 
where 0 denotes the characteristic function of T. This operator U has absolutely 
continuous spectral measure on the unit circle (i.e., is an a. c. u. operator). So U 
is unitarily equivalent to an operator M of the form M=MEi@MEi®..., where 
{£•„}„ is a decreasing sequence of measurable subsets of the unit circle C of C, and 
ME denotes the operator of multiplication by e" on the space L2 (E„). (We consider the 
normalized Lebesgue measure m on C.) For every measurable subset F of C let 
F = denote the closed support of the measure m\F, the restriction of m on the set F. 
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16 L. Kerchy 

If it is assumed that En=E= for every n, then the operator M is uniquely determined 
(cf. [5]). M will be called the canonical functional model of the a. c. u. operator U, 
and the Jordan model of the c. n. u. Cu-contraction T (cf. [6]). 

Now we can state our main result: 

T h e o r e m 1. Let T be a c. n. u. contraction of class C u on the separable Hilbert 
space f j , and let M—ME^ © MEn ©... be its Jordan model. Then T has property (P) 
if and only if w ( n £'n)=0. 

nsl 
Sufficiency and necessity of this condition will be proved in sec. 3 and sec. 4, 

respectively. In sec. 5 some corollaries are treated, while in sec. 6 we consider arbi-
trary C u -contractions. 

We shall use the following notation. For an operator-valued function N let 
dN(eu) denote the rank of the operator N(e"). If T is a c. n. u. Cu-contraction, then 
let dTbe the function defined by dT(e")=dA(e"), where A=A (e") is the operator-
valued function derived from the characteristic function 0(e") of T. 

For two operators, 7\ and T2, we denote by S(Tls T2) the set of intertwining 
operators S(Tlt T2) = {X\XT1=TiX}. Let Hyp lat (T) denote the lattice of hyper-
invariant subspaces of T. 

A system {§„}nS1 of subspaces of § will be called basic if, for any n, the sub-
spaces §„, V St are complementary and D ( V § * ) = { 0 } (cf- [7]). 

k&n nml tsn 

3. We shall need some lemmas. The first one should be contrasted with [4], 
VI. Th.6.1. 

L e m m a 1. Let N(e") (0sts2n) be a function with values operators on a 
(separable) Hilbert space (£, and measurable. Let us denote by U the restriction of 
the operator of multiplication by e" on its reducing subspace = NL2 ((£); and let 

© MEn ©... be its canonical functional model. Then dN (e " )=ran k N(e") is a 
measurable function and for every «si we have 

En = {e»\dN(e«) S «}=. 

P r o o f . Let {ej}j be an orthonormal basis of (£. We denote by /} the bounded 
measurable functions fj(eit)=N{ei')eJ. Obviously the set {y}(e")}j- generates 
(N{elt)^)- for every e*£C, and therefore by [8], Ch. II, Prop. 9 it follows that 
the family §(e i ')=(A f(e")G)~, supplied with the notion of measurability induced 
by the constant field St(e")=(E, is a measurable field of Hilbert spaces. Now we 
infer by [8], Ch. II, Prop. 1 that the function dN is measurable. Moreover, by 

© 
[8], Ch. II, Prop. 7 we have 91= f F>(e")dm, and so U is the diagonal operator 

c 
® 
f e"dm. Denoting by Fm the measurable sets Fm = {e"\dN(e'')=m} [m = 1,2, . . . ; K0) 

c 
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and applying [8], Ch. II, Prop. 3, we get that 
® 9 

U^ f eudm s © ( / eudm) ~ © M£> ~ © MBn, q m p M R 

where En={eu\dN{elt)^.n}='. (For an arbitrary operator ,S, 5(l") denotes the direct 
sum of m copies of S.) 

Taking into account this Lemma we get a characterization for the measurable 
subsets in the Jordan model of a c. n. u. Cu-contraction. Namely, we have 

C o r o l l a r y 1. IfTisac. n. u. contraction of class C u on a (separable) Hilbert 
space § and M=MEi®MEt®... is its Jordan model, then is a measurable 
function, and for every natural number n we have 

En = {e^dAe") ^ 

We shall frequently use the following: 

L e m m a 2. If T £ a n d Hyp lat 2" (n=1, 2, ...) are such that £> = V 
and r | f j „ has property (P) for every n, then T has property (P). asl 

L e m m a 3. Let U be an a. c. u. operator on the separable Hilbert space let 
M=MEi®MEi® be its canonical functional model, and let E be the set 
defined by E= p| £„. Then the following conditions are equivalent: 

nsl 
(i) (ii) m(E) = 0. 

P r o o f . 
a) Let us assume that m(E)>-0. Then 

U= MEi®MEi®... ~ (MEi^E®Me^Ei®...y®(ME®ME®...) m 

= (MEiKE®ME^E®...)®(ME®ME®...)®(MB®ME®...) ^ 

^ (MEi®MEi®...)®(ME®ME®...)=M®Mi*<J. 

It is evident that Therefore and so U i &>. 
b) Let us assume that m(E)=0. For every n let and R„ be the subspaces 

defined by S n = f e n ( t / ) 5 and - ®L*(Ett-,\En). 
Since A/|R„ has finite multiplicity, and U |§„ is unitary equivalent to 
we infer by [3], Lemma 2.5 that U\§>„ belongs to SP for every n. On the other hand 
§„ is a hyperinvariant subspace of U for every n, and in virtue of the assumption 
V § „ = § • The Proposition follows by Lemma 2. 

nil 
We shall need yet the following: 

L e m m a A.IfT is a c. n. u. contraction of class C u on a separable Hilbert space 
and @T(e")* &T(e")^S holds a.e. for some constant ¿>0, then T is similar 

to a unitary operator. (Here 0T denotes the characteristic function of T.) 

2 
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P r o o f . We infer by Propositions [4], V.7.1 and V.4.1 that 0T has an oitter 
function scalar multiple u such that |n(ei')|s<51/2 a.e. Then | |0 r(A) - 1 | | h a sa bound 
independent of A, and this implies by [4], Theorem IX. 1.2 that T is similar to a 
unitary operator. 

- We are now able to prove the sufficiency. i n 
m 

. P r o p o s i t i o n 1. Let. T be a c. n. u. contraction of class C u on a (separable) 
Hilberi space and let M—ME @ME ©... be its Jordan model. If m( E„)=fO, 1 - 2 n i l " 
then r 

-' • P r o o f . Let @67/°°(if((£)) coincide with the characteristic function: of r . 
Let N€ L°° (<£ (<£)) be the function defined by N(e")=[0 (e")* 0 ( e i t ) ] l / 2 =[/ - /4 2(e*)]V?. 
In virtue of Corollary 1 we infer by the assumption that 

(1) dAe") = dAt(e") < =o a.e. 

On the other hand since T£CU, it follows that 0 is outer from both sides, 
therefore N(e") is a quasi-affinity a.e. (Cf. [4], VI.3.5 and V.2.4.) Now we infer 
easily from these facts that N(elt) is invertible a.e. Therefore its lower bound func-
tion. m{eir)=inf {(Nie*)e, e)\e£(£, ||e\\ = 1} is positive 

(2) ' ' m(eu) > 0 a.e, / ' ' 

For every natural number n let a„ be the measurable set defined by 

(3) a„ = { e " |m(e") > - I} . - . ' • " 

It is evident that {<xn}„ is increasing: 

(4) ' ' 7- ' ••••••• AI § A 2 G . . . . 

Moreover, in virtue of (2) we have 

(5) m ( C \ ( U O ) = 0. 
- . - • • - - . . »si • • ,; 

By the proof of Theorem VII.5.2 of [4], T has hyperinyariant subspaces £>„, 
sucli that 
(6) : V S , = § ; 

(&(e'')*0(e") a.e, on a„ 
(7) = , 7 

" l T Here arid in the sequel we also use the notation Ca for the set C \ a , where a "is'any 
subset of C. • 
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where @„ denotes a tontractive analytic • function suclithat the purely boritractive 
part, of &„ coincides with the, characteristic function of T\Sr)n\ 
.1' ^ i o l I ]/!•>> ...|> h - U -I.-E- .,/.. -.y: . . . . . . v...' 
(8) l-' • - ^ = for every n. 

We infer by ^miria|4'tihat,! for every n, f n is similar io a Unitary operator. " 1 

Quasi-similar unitary operators being. unitarily equivalent Tn is similar to its 
Jordan model M„=Mem(BMem@ .... We infer.by (7) that , 

(9) ' ' ^ d r j e " ) W ax., ' ' ' ' 
and it follows by (1) that 
(10)' "1-. > ; j ' dTn(e") < co a.e. ' 

By i Corollary! 1 and iiemma: 3 we see that • M„ Since similarity- preserves prop -
"erty (P) ,so ' for every « 
( 1 1 ) • ' - ; T n i 0 > . ••:.'.-.•. 

, ; Taking into acxoupt.(6) and (1,1), we infer by Lemma 2, that T£ • The proof 
is finished. 

I Preparing for the proof of Necessity we consider some Lemmas concerning 
a. c. u. operators. ' ; u 

L e m m a 5. Let U1 and U2 be a. c. u. operators having property (P). Then the 
operator U — t/x©i/2 has also property (P). • 

V P r o o f . L e t \ : M ^ M ^ . f f i ' M ^ © ; - a r i d -M2=MFi®©...£.£?(§") 
be the canonical functional models of the operators U1 and U2 respectively. It, is 
enough to prove that the operator M=MX © = ¡¡V © ?j") has the prop-
erty (P). 

Taking into account that the sequences {£„}„ and {Fn}„ are decreasing we infer 
by Lemma 3 that m( f j (E„U F„))=0. Therefore the hyperinvariarit subspaces §„, 

defined by 2, ..:), span the space Moreover M|§„ has 
finite multiplicity, and so it belongs to ^5 by Lemma 3. It follows that the operator 
M also has the property (P). 

Lemma 6. Let ... be a. c. u. operators. If mi f j i r i © t/»))>-0, then 

there exists a strictly increasing sequence {n$k of natural numbers such that nx=0 

and m f f | a ( ©' t / , i |>0 . (<r(T) denotes the spectrum of T.) 
VtSl jl(=lll, + l ) ) . 

P roo f . . ,. 

:: - a) First of all we show that Jim m |<r | © © t/*) . If £•„(.•) denotes 
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OO I 

the spectral measure of Ua for every n, then £ ( • ) = © £„( • ) will be the spectral meas-
•=i 

ure of the a. c. u. operator U= © Un. Therefore E | J a i / t j j j = 0 , 

and so m ( © L® t /*))) = S i n c e a ( ® = ^ l ) , W C 

have Jim m |<r | © C / ^ j ^ m | < f | © l / t j j . 

b) Let a denote the set a = (") ff(© Uk). Let us assume that we have defined 
»SI *Sn 

0 = « ! < n 2 < . . . < 7 i r such tha t f o r every 1 S f c ^ r — 1 we have m © i / , j j < 

< . Applying the result of a) we infer that the sequence jm |<r\<x ̂  © C/^ j j 

tends to zero. Therefore there exists an index/i r+1>-/i r such that m ^ © 

< The sequence defined by recursion in this way has the property that 
4' 

m 

t he proof is finished. 
[ ° \ { n A X T h e r e f o r e w , ( i 0 1

( x ( ( i ^ l ) ^ 0 , a n d 

L e m m a 7. Let t/1£.Sf(ijj1), i/2€^(¡Da). ••• be a. c. u. operators having property 

(P). Then the a. c. u. operator U= © (/„£:?($) has property (P) if and only if 
n = 1 

' K n * ( © uk))=Q. 

' HS1 ksn 

P r o o f . a) Let us assume that m( <x(© £/»))>0. In virtue of Lemma 6 there exists »ex kmn 
a sequence {«J», («1=0), such that m(ff)>0, where a— P | o ( V k ) and Vk = 

*S1 
"t+i • 

= © t/( for every natural number k. Then for every k we can decompose Vk l = nk + l 
into the direct sum Vk=Vk®Vk such that Vk is unitary equivalent to Ma. Let 
Xke^(Vk, K+i) ^ a unitary operator, and Xke{Vk}' be the identity operator 
(Ac= 1, 2, ...). In this way we get an injection X£ {U}' which is not a quasi-
suijection. Therefore U^SP. 

b) Let us assume now that F„)=0, where F„=a( © UkI. Then the 
»si u=» / , 

hyperinvariant subspaces 9JI„=Xcf (U)9) (« = 1,2, ...) of U span the space f j : 
V 9M„ = f>. On the other hand, for every natural number k, y_CF (Uk)<ok reduces 

»SI " 
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Uk, and so Uk\XcF (£/»)&€ Since "© Uk\XcF (Uk)%k, we infer by 

Lemma 5 that U f o r every n. Therefore U€&>, and this completes the 
proof. 

Now we are ready to prove: 

P r o p o s i t i o n 2. Let T be a c. n. u. contraction of class C u on a (separable) 
Hilbert space 5), and let M—ME ®ME ffi... be its Jordan model on the Hilbert 
space ft. If m ( f | £„)>0, then 

nil 

P r o o f . 
a) Since T is quasi-similar to the unitary operator M, we infer by [7] that there 

exist a basic system {§„}„ of invariant subspaces of T, and a reducing decomposition 
ft= © ft„ of ft such that for every n T„=T\§>„ is similar to the a. c. u. operator 

a 
Un=M|ft„. For every n let C„iJ(Un, T„) be an affinity, and let Pn denote the 
canonical projection of onto §„ determined by the decomposition § = § „ + ( V §*)• 

b) We can reduce the proof to the following two special cases: 
(i) There exists an n such that Un $ 3P. 

(ii) m( n o(U„)) > 0. 
nmi 

Indeed, assuming that !/„£ & for every n, and taking into account that 
M= © XJ„ $ g? (cf. Lemma 3), we infer by Lemmas 7 and 6 that there exists a 

n s i 

sequence («i=0), such that m\ f ] a\ © Ul =-0. Replacing the basic 
V/=nk+l )) 

system {§„}„ by where + . . . + § n j t + i , and the affinities C„ 

(n=1,2,...) by q = C „ t + 1 © . . . © C n t + i {k=\, 2, ...), we gain the case (ii). (It can 
be easily seen that for every finite index-set Nx the linear manifolds + and 

"k + l 
( V §*) + ( V are closed. Therefore the operators Ck= © C, (k=l, 2, ...) 
kiN1 kiNt

 !="fc + l 
will be affinities, and will be a basic system.) 

c) Let us assume that there exists an n such that It can be sup-
posed that n=1. Since similarity preserves the property (P), we infer that 3?. 
Therefore there exists an injection which is not a quasi-surjection. Let 
{<*„}„ be a sequence of positive numbers such that 2 «„ II-PJ and let {T}' 

n = 1 

be the operator defined by Xf=a1X1P1f+ j? ockPkf ( / € § ) . If Xf=0 ( / € 5 ) , then 
'«¡ = 2 

for every n P„f— 0, and we can prove by induction that / 6 ( V %>k) for every n. 
' ksn 

Therefore / = 0 , and so X is an injection. On the other hand, (ran X)~ = 
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==(ran2rj)-4r(V S O ^ Ö i + t-V §,)=5, , \ - that-is:'Xis>nçta\qü^i-$utjection. There-
ngí ' n&a. ' 

fore T does not belong to the class, â?. ..-= • .. ^ d) Let us now suppose that 0, where a— H a(U„). Then for every n 
nsl 

there exists a reducing decomposition such ' that is unitary 
equivalent to the operator Ma. Let and §>"n denote the subspaces defined by 

= Then + and similai; tö r ; + 1 = 
= Ttt+1\9y'n+1 for every n. ; / , 

Let be an affinity, and let P'„ dénote thé canonical projection 
of §„ onto SX determined by the decomposition §„ = 5» + §„'> moreover let PZ 
be the projection: P^ = IS)n — P'n. Let {a„}„ .be a. sequence of positive numbers such 

thát •¿an(| |Zn | | | | / 'B ' | | + I I P J c » , and let Xi{T}' denote the operator defined 
»1 = 1 CO 

by Xf= 2! «n (Xn P'n + K) PJ ( / £ § ) • As in the preceding point, it can be easily 
n 1. . 

seen that X is an injection. On the other hand (ran X)' = V §„) + 
e . ns2 

+ ( V §„) = Ö, that is A' is not a quasi-surjection. Therefore T does not have n£2 . . . 
property (P), and the proof is completed. 

5. In this section we consider some corollaries of Theorem l j 

C o r o l l a r y 2. Let T be a c. n. u. contraction of class C u . Then T belongs to 
if and only if its Jordan model Af=A/¿l©M£2©... does. 

P r o o f . Cf. Theorem 1 and Lemma 3. 

C o r o l l a r y 3. Property (P) is a quasi-similarity invariant fór c. n. u. C^-con-
tractions. , 

C o r o l l a r y 4. If T is a c. n. u. C^-contraction having property (P), then its 
adjoint T* also has property (P). 

P r o o f . We have only to note that the adjoint of an operator of the form ME 

is unitary equivalent to the operator ME~, where E ={eu\e~"£E}. 

C o r o l l a r y 5. Let T be a c. n. u. contraction of class C u on the non-necessarily 
separable Hilbert space If T has property (P), then the space is separable. 

P r o o f . Let us assume that Thas property (P) and the space § is non-separable. 
Then there exists a decomposition § = © £>x reducing for T, such that for every 

ordinal a less than the ordinal /? the space" § a is separable. Let Ma= © ME be 

the Jordan model of the operator ,Ta=T|§a. Since m(Ea J>0 for every a 
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and p is non-denumerable, there exist a positive number e > 0 and a Sequence 
K } ~ 1 of ordinals less than /?, such that for every n we have m(Ex 

OO 
Let T' be the operator defined by T' = © T on the separable Hilbert space 

n=l 

© Taking into account that we infer that T Z & , and Ta£&> 
n = 1 

CO 

for every a</?. T' being quasi-similar to the unitary operator 0 M , it follows 
n = l 

that © Mx is unitary equivalent to the Jordan model of T'. By Corollary 2 we 
n = l " 

infer that © Mx € 0>, and Ma for every n. Now it follows by Lemma 7 that 

l i m m H © ~ M j ) = 0 . n-o° fcsn 
On the other hand for every n we have mU.r(© Mx ))^m(a(Mx ))=m(E )>e , 

kmn k " 
what is a contradiction. Therefore the space §> can't be separable, and the proof is 
completed. 

C o r o l l a r y 6. Let T be a c. n. u. contraction of class C u . If T has property (P) 
and £ is an invariant subspace of T such that 7T |£iC1 1 , then T"|fl has property 
(P) also. 

P r o o f . We infer by [4], VI.2.3, VII.1.1, VII.2.1 and VII.3.3 that d m ( e i r ) ^ 
^d T ( e u ) a.e. Now it follows by Corollary 1 and Theorem 1 that :T|£ has prop-
erty (P). 

C o r o l l a r y 7. Let T1 and T2 be c. n. u. contractions of class C n . If T1 and T2 

belong to the class then the direct sum Tx © T2 has property (P) also. 

Proof. We have only to refer to Corollary 2 and Lemma 5. 

C o r o l l a r y 8. Let 7 \ , T2, ... be c. n. u. contractions of class C u having prop-
oo 

erty (P). Then the contraction T= © Tn belongs to the class & if and only if 
n=l 

oo 
the series 2 ^Tn(eit) converges a.e. 

n = l 

P r o o f . Since Tn£ S?, it follows that dT (e")«=°o a.e., and the Jordan model 
Mn of T„ has property (P). (Cf. Theorem 1, Corollary 1 and Lemma 3.) On the 
other hand we infer by Corollary 2 that the condition T£ 0> is equivalent to the 

condition © But this latter is equivalent to m ( f | <r(© ^ k ) ) = 0 by 
n=l » s i kmn 

Lemma 7. On account of Corollary 1 and the proof of Lemma 6 we see that 
00 

m( p | <r(© M j ) = 0 holds if and only if ? dT ( e " ) « = o a.e., and this completes 
nSl tSB n = l n 

the proof. 
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6. Finally we intend to characterize the non-necessarily c.n.u. contractions of 
class C n having property (P). First of all we prove the following: 

Lemma 8. Let T€£?($>) be a c. n. u. contraction of class C u , and let i /6 JSf(91) 
be an a. c. u. operator. If both T and U have property (P), then their direct sum 
S=T®U£&(<&) belongs to Sf also. 

P r o o f . Let M£Se(S<) denote the Jordan model of T. By [7] there exist a 
basic system {fit}* of invariant subspaces of T, and a decomposition ft = © 93fc 

ksl 
of ft reducing for M, such that for every k r | £ t is similar to M't=M\^&k. Let 
Ck£J(M'k, T!£*) be an affinity (fc=l , 2,. . .) . 

Since T£ SP, we infer by Corollary 2 that SP also. Now by Lemma 7 it 
follows that m( f |C f f „ )=0 , where on=Co(Q> Mk) («=1, 2, ...). For every n let 

ft,, defined by ftn=Zff ( M ) f t = © ftn,„ ft>Zc ( M ) f t - © St'n k, ksl i s i 

where S^k=x.JL*Q*k, K*=Xc„„ (K>»* (k=1,2,...), and V 
" " ksl 

= v Kk> where § n > k = C t f t n i 4 , $ ; k = C t f t ; t ( f c= l ,2 , ...). It is clear that for 
ksl 

every n ft„ k={0} if k>n, and so ft„=© ft„ k . It follows that §„*={()} if 
k = l 

k > n , that is § „ = § „ , i + ••• + §„,„• Therefore the subspaces §>n and 9)'n are com-
plementary: + = and Tn = T\9)n is similar to M„=M\S<„. Moreover 
T'„=T\§'n is quasi-similar to M'n=M\Wn, and m(a(M^Aa^=m(a(M'n)ACa„)=0 
for every n. 

For every n let the subspaces 5R„, 5?^, <Sn, (£'n be defined by tRn=xa (C/)9i, 
SR^=XCff i i(^)9i.«„=§„©9in and Then the decomposition ( g = g n + g ; 
reduces S, moreover the restriction Sn=S\<£n=Tn®U„ (Un=U|9?„) of S onto G„ 
is similar to Mn®U„, and the restriction S'n=S\V„=T'n@U'„ (U'^U^'J of S 
onto <£'„ is quasi-similar to M'n © U'n. 

Let X£ {5}' be an arbitrary operator, and let n be a natural number. Let 

№ 
be the matrix of X in the decomposition + On account of Z e i s ' } ' we 
infer that X^eS(Sn, S'n). Let YneS(Mn®Un, Sn) and ZniJ(S'„,M'n®U'n) be 
quasi-affinities. Then the operator X'n=ZnX™Yn belongs to J(Mn®Un, M'n®U'n) 
and we infer by [9], Lemma 4.1 that (ker X'J-1 and (ran X'n)~ are reducing subspaces 
of Mn®U„ and M'n®U'„ respectively, and (Mnffi i /J | (ker X^)1- is unitary equiv-
alent to (M'n®U'„)\(Tza X'n)~. Since m(a(Mn©Un)Aan)=m(a(M'n© U'n)ACan) = 0, 
and M„®Un, M'n®U'n are a. c. u. operators, it follows that X'n=0, and so 
Therefore G„6Hyp lat (S). 
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On the other hand we infer by the equation m((~)Ca„)=0 that V ®« = ®-
RSI "SI 

Since we have that S„£ 0> for every n (cf. Lemma 5), an argument similar to the end 
of the proof of Proposition 1 completes the proof. 

It is well-known that for every contraction T of class C u on the Hilbert space 
f> there exists a (unique) "canonical" decomposition § = § 1 © § 2 ® of § reducing 
for T, such that J ' 1 = r | § 1 is a c. n. u. contraction of class C u , T2=T|§2 is an 
a. c. u. operator and T3=T|<jj3 is a singular unitary operator. (Cf. [4], 1.3.2.) 

T h e o r e m 2. Let T be a contraction of class C l l p and let T= © JT2 © T3 be 
its "canonical" decomposition. Then T has property (P) if and only if Tt belongs to 8? 
for i=l,2,3. 

P r o o f . Let us assume that Tfc SP for i = l , 2, 3. (The other part of the proof 
is trivial.) 

[X X 1 
v11 v12 be its matrix in the A 21 22J 

decomposition § = ( § i © § 2 ) © § 3 - Then X21 Zg ©T2, Ta), where M1 is the 
Jordan model of 7 \ , and Z ^ J ( M X @ T 2 , Tx©T2) is a quasi-affinity. Since M t ® T 2 

is an a. c. u. operator and T3 is a singular unitary operator, we infer by [9], Lemma 4.1 
that X21Z=0, and so Z 2 1 =0. A similar argument shows that X12=0 also holds, 
therefore © § 2 and § 3 belong to Hyp lat (T). Applying Lemma 8 the Theorem 
follows. 

It can be given a "canonical" functional model for an arbitrary singular unitary 
operator also. Now a singular measure fi plays the role of the Lebesgue measure, 
and the form of the space of the functional model is L2(Ej) © L^E^ © . . . , 

Lemma 3 also holds its validity if condition (ii) is replaced by 
n(E)=0. Taking into account the previous theorems, it can be easily seen that 
Corollaries 2—8 hold for arbitrary contractions of class C n also. 

* 

In a subsequent paper shall continue the study of the class 3? fl C n . Among 
others we shall show that, for quasi-similar ^ n c u -contractions, the lattices of C n -
invariant subspaces are isomorphic. (An invariant subspace £ for T is called C u -
invariant if T | f i € C u . ) 
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