On the Korovkin closure

V. KOMORNIK

Let X be a topological space and denote by C(X) the vector lattice of all continuous real functions defined on X. Given a linear subspace $\mathfrak{H} \subset C(X)$, we denote by \mathfrak{H}_0 , as usual, the set of all \mathfrak{H} -bounded, continuous functions:

$$\mathfrak{H}_0 \equiv \{f \in C(X) \colon \exists h_1, h_2 \in \mathfrak{H} \text{ with } h_1 \leq f \leq h_2\}.$$

We define the Korovkin closure of \mathfrak{H} as the set of all functions $f \in \mathfrak{H}_0$ having the following property: "For every net $(L_i)_{i \in I}$ of positive linear maps $L_i: \mathfrak{H}_0 \to \mathfrak{H}_0$ such that $L_i h$ converges to h pointwise on X for all $h \in \mathfrak{H}$, $L_i f$ also converges to f pointwise on X."

We denote the Korovkin closure of the linear subspace \mathfrak{H} by Kor (\mathfrak{H}). The following inclusions are obvious:

$$\mathfrak{H} \subset \operatorname{Kor}(\mathfrak{H}) \subset \mathfrak{H}_0 \subset C(X).$$

This paper is devoted to the characterization of Kor (\mathfrak{H}) in some general cases. We shall extend some results of H. BAUER [1] and K. DONNER [2].

To formulate our theorems, we recall the definition due to H. Bauer, of the space of \mathfrak{H} -affine functions. This space, denoted by \mathfrak{H} , consists of all $f \in \mathfrak{H}_0$ satisfying the equality

$$\sup \{h \in \mathfrak{H} : h \leq f\} = \inf \{h \in \mathfrak{H} : h \geq f\}.$$

We shall prove:

Theorem 1. If X is locally compact and Hausdorff, then for all linear subspaces \mathfrak{H} of C(X) the following identity holds:

$$\operatorname{Kor}(\mathfrak{H}) = \mathfrak{H}.$$

Remark 1. This identity was proved by H. BAUER [1], Theorem 3.3, in the special case when the linear subspace \mathfrak{H} is adapted, i.e. satisfies the following three conditions:

(i) $\mathfrak{H} = \mathfrak{H}^+ - \mathfrak{H}^+$ where $\mathfrak{H}^+ \equiv \{h \in \mathfrak{H} : h \ge 0\},\$

- (ii) $\forall x \in X \exists h_x \in \mathfrak{H}: h_x(x) \neq 0$,
- (iii) $\forall h \in \mathfrak{H} \exists h_1 \in \mathfrak{H} \forall \varepsilon > 0$: the closure of $\{t \in X: |h(t)| > \varepsilon \cdot |h_1(t)|\}$ is compact.

Received August 30, 1980.

V. Komornik

Remark 2. Recently K. DONNER [2] proved a general theorem which can be applied to our situation when \mathfrak{H}_0 is a vector lattice. But \mathfrak{H}_0 is a vector lattice if and only if $\mathfrak{H}=\mathfrak{H}^+-\mathfrak{H}^+$. Thus Donner's result yields that special case of our theorem when the linear subspace \mathfrak{H} satisfies the condition $\mathfrak{H}=\mathfrak{H}^+-\mathfrak{H}^+$.

Theorem 1 will be got as a special case of the following more general one:

Theorem 2. If X is a topological space and \mathfrak{H} is a linear subspace of C(X), then each of the following five conditions implies the identity $\operatorname{Kor}(\mathfrak{H}) = \mathfrak{H}$:

- (a) X is locally compact and totally regular,
- (b) $\mathfrak{H}=\mathfrak{H}^+-\mathfrak{H}^+,$
- (c) dim $\mathfrak{H}^{<\infty}$,
- (d) all the functions in \mathfrak{H} are bounded,
- (e) each point of X has a neighbourhood in the weak topology, induced by C(X), where all the functions from \mathfrak{H} are bounded.

In the proof we shall use the following lemma, essentially proved by H. Bauer:

Lemma. For any $g \in \mathfrak{H}_0$, $x \in X$ and $c \in \mathbb{R}$ such that

 $\sup \{h(x): g \ge h \in \mathfrak{H}\} \le c \le \inf \{h(x): g \le h \in \mathfrak{H}\},\$

there exists a positive linear functional $\mu: \mathfrak{H}_0 \rightarrow \mathbf{R}$ with

- (A) $\mu(g) = c$, and
- (B) $\mu(h) = h(x)$ for all $h \in \mathfrak{H}$.

Proof (compare with [1; 2.2 Lemma]). On \mathfrak{H}_0 the map $f \mapsto \inf \{h(x): f \leq h \in \mathfrak{H}\}$ is a sublinear functional p. This functional majorizes the linear form $\lambda \cdot g \mapsto \lambda \cdot c$ defined on the linear subspace of \mathfrak{H}_0 generated by g. The Hahn—Banach theorem hence implies the existence of a linear form μ on \mathfrak{H}_0 satisfying (A) and the relation $\mu \leq p$. (B) and the positivity of μ follow from this latter inequality.

Proof of Theorem 2. The relation $\hat{\mathfrak{H}} \subset \operatorname{Kor}(\mathfrak{H})$ is well-known (see [1], Corollary 1.3). Conversely, we shall show that given any $g \in \mathfrak{H}_0 \setminus \hat{\mathfrak{H}}$, g does not belong to Kor (\mathfrak{H}).

As condition (e) is weaker than conditions (a), (c), (d), we treat only cases (b) and (e).

Because of $g \notin \hat{\mathfrak{H}}$ there is a point $x \in X$ and a number $c \in \mathbb{R}$ such that

 $\sup \{h(x): g \ge h \in \mathfrak{H}\} < c < \inf \{h(x): g \le h \in \mathfrak{H}\}, \quad c \neq g(x).$

Let us fix by the above Lemma a positive linear functional μ satisfying (A) and (B). By the relation $g \in \mathfrak{H}_0 \setminus \hat{\mathfrak{H}}$ we can choose a function h_0 with

(C) $h_0 \in \mathfrak{H}$, $h_0 \ge 0$, $h_0(x) > 1$. (Indeed, for any functions $h_1, h_2 \in \mathfrak{H}$, $h_1 \le g \le h_2$ we have $h_2 - h_1 \ge 0$ and $h_2(x) - -h_1(x) > 0$.)

42

•

۰. .

If condition (b) is satisfied, fix a neighbourhood base \mathscr{B} of x in the weak topology induced by C(X) so as to satisfy

(D) $h_0(t) > 1$ for any $t \in U \in \mathcal{B}$.

If condition (e) is satisfied, fix a neighbourhood base \mathscr{B} of x in the weak topology induced by C(X), satisfying over and above (D) also the following condition:

(E) Each function from \mathfrak{H} is bounded on each element of \mathscr{B} . Assign to every $U \in \mathscr{B}$ a function $q_U \in C(X)$ such that

(F) $0 \le q_U \le 1$, $q_U(x) = 1$, $q_U(t) = 0$ for all $t \in X \setminus U$.

(This is possible because the weak topology is totally regular.)

For $U \in \mathscr{B}$ and $f \in \mathfrak{H}_0$ we define

$$L_{\boldsymbol{U}}f \equiv \mu(f) \boldsymbol{\cdot} q_{\boldsymbol{U}} + f - f \boldsymbol{\cdot} q_{\boldsymbol{U}}.$$

Obviously, $L_U: \mathfrak{H}_0 \to C(X)$ is a positive linear map. Moreover, $L_U: \mathfrak{H}_0 \to \mathfrak{H}_0$ is also true: being \mathfrak{H}_0 a linear subspace, this will follows from the two relations $q_U \in \mathfrak{H}_0$ and $f \cdot q_U \in \mathfrak{H}_0$ (for all $U \in \mathscr{B}$ and $f \in \mathfrak{H}_0$). The first relation follows from (C), (D) and (F): $0 \leq q_U \leq h_0$. If condition (b) is satisfied, then there is an $h \in \mathfrak{H}$ with $-h \leq \leq f \leq h$ from which we get $-h \leq f \cdot q_U \leq h$, proving the second relation. If condition (e) is satisfied, then $f \cdot q_U$ is bounded by (E), (F) and vanishes on $X \setminus U$ then there is therefore by (C) and (D) a real number d with $-d \cdot h_0 \leq f \cdot q_U \leq d \cdot h_0$. Hence again $f \cdot q_U \in \mathfrak{H}_0$.

Finally, take the net $(L_U)_{U \in \mathscr{B}}$ of positive linear maps $L_U: \mathfrak{H}_0 \to \mathfrak{H}_0$. An easy computation shows that the net $(L_U h)_{U \in \mathscr{B}}$ converges to h pointwise (moreover uniformly) on X for all $h \in \mathfrak{H}(\mu(h) = h(x)$ by (B)), but the net $(L_U g)_{U \in \mathscr{B}}$ does not converge to g pointwise on X because $((L_U g)(x))_{U \in \mathscr{B}}$ is a constant net with the constant $\mu(g) = c \neq g(x)$ by (A). Thus g does not belong to the Korovkin closure of \mathfrak{H} and the theorem is proved.

Remark. The results of this paper (and the proofs) remain valid if we replace pointwise convergence by uniform convergence on the compact subsets of X in the definition of the Korovkin closure. The author wishes to thank Dr. Z. Sebestyén for having followed with attention these investigations.

References

H. BAUER, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier, 23 (1973), 245-260.
K. DONNER, Korovkin closures for positive linear operators, J. Appr. Theory, 26 (1979), 14-25.

DEPARTMENT OF MATH. ANALYSIS, II LORÁND EÖTVÖS UNIVERSITY H—1445 BUDAPEST 8, PF. 323