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Models for operators with bounded characteristic function 
B R I A N W. M c E N N I S 

1. I n t r o d u c t i o n . I n t h e t h e o r y o f B. SZ.-NAGY a n d C . FOIA§ [15], t h e c h a r a c t e r -

istic function 0T of a completely non-unitary contraction T is used to generate a 
functional model for T. In addition, if 0 is an arbitrary purely contractive analytic 
function, then 0 can be used to generate a contraction that has 0 as its characteristic 
function. The SZ.-NAGY and FOIA§ theory provides in fact a model of the minimal 
unitary dilation U of the contraction: U is represented as a shift acting on a sub-
space of the direct sum of two vector valued L? spaces, and the characteristic func-
tion is identified as a projection on the dilation space. (See [15, Chapter VI].) 

Now suppose that T is any bounded operator on a Hilbert space The char-
acteristic function 0T of T is the operator valued analytic function 

© r(A) = [ - r / r + ^ y r . e T . ( / - A 7 ' * ) - 1 / 1 . 0 r ] | © r , . 

where JT=sgi (/— T*T), / r * = s g n (/—2T*), Qt=\I-T*T\ 1 / 2, Qt*=\I-TT*\ 

and 1)r=JT9). 0T(X) is defined for those complex numbers X for which I—XT* 

is boundedly invertible, and takes values which are continuous operators from %>T 

to the space (See [11]; cf. [1], [3], [4], [5], [6], [8], [10], [13], [15].) 
It was shown in [11] that if 0(A) is an operator valued analytic function (defined 

for X the open unit disk in the complex plane), then 0(A) coincides with the 
characteristic function of some operator if and only if it is purely contractive and 
fundamentally reducible (see Sec. 2 below). This result was obtained by using a 
model of BALL [1], which is much less geometric than the type constructed by 
SZ.-NAGY and FOIA§. In particular, the model in [1] does not provide the interpreta-
tion of the characteristic function as a projection. 

In this paper, we restrict our attention to bounded operator valued analytic 
functions 0(A), i.e., for which sup ||@(A)||<°°. We are then able to obtain a func-

tional model of the SZ.-NAGY and FOIA§ type, which provides the extension of 
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their theory that was promised in the concluding section of [11]. In Sec. 14 we describe 
the relationship between this model and the model of BALL [1]. 

R e m a r k . Other authors [3], [4], [5], [6] have also considered the problem of 
representing an arbitrary 0(A) (satisfying certain conditions) as a characteristic 
function, but have not used a SZ.-NAGY and FOIA§ type model. In [9], however, 
a model of this type is used to represent dissipative operators, with the unit disk 
in the SZ.-NAGY and FOIA§ theory replaced by the upper half plane. 

2. Krein spaces. Purely contractive analytic functions. A Krein space is a space ft 
with an indefinite inner product [ . , . ] (i.e., [x, x] can be negative for some x6 f t ) 
on which is defined & fundamental symmetry J: J2=I, [Jx, y] = [x, Jy\, and the 
/-inner product [ / . , . ] makes i l a Hilbert space. The topology on ft is that defined 
by the /-norm | |x | | j=[/x, x] l /2. For an operator A on ft, we denote by A* the adjoint 
of A with respect to the indefinite inner product [ . , . ] . (See [2], [11].) 

If 21 and S are subsets of ft, then we write 21 _L© if [a, ¿>]=0 for all afjll 
and ¿ 6 W e define 2lJ- = {x6ft: [a, x ] = 0 for all «621} and 2 I©® = 2in»-L. 
A projection on ft is a continuous operator P such that P=P* = P2. A regular 
subspace of ft is a subspace £ such that £ © £ x = f t . The regular subspaces are 
precisely those that are the ranges of projections (cf. [12]). 

An operator valued analytic function is a function 0 which is defined and analytic 
in D, the open unit disk in the complex plane, and which takes values that are con-
tinuous operators from a Krein space 35 to a Krein space 0 is said to be purely 
contractive if, for each A6 D, 

[0(A)a, 0(A)a] < [a, a] ( a 6 $ , a ^ 0) 
and 

[ 0 ( A ) X , ©(A)* A J < (0*6®*, A* ^ 0). 
Let 0 o = 0 ( O ) . We call 0 fundamentally reducible if there are fundamental 

symmetries on 35 and that commute with 0„0O and 0 O 0 J , respectively [11, 
Sec. 3]. 

The spaces 35r and T>Tt, defined in Sec. 1, are Krein spaces with the indefinite 
inner products 

jO = (JTx, y) (x, ye £>T) and [x, y] = (JT*x, J>) (x, ye 35T.). 
The characteristic function 0 T is an operator valued analytic function that is purely 
contractive and fundamentally reducible [11, Sec. 4]. 

3. Coincidence of characteristic functions. If D and 35' are two Krein spaces, 
then an operator T: 35—£)' is said to be unitary if it is continuous and invertible, 
and if [TX, TX] = [x, x] for all x61). Two operator valued analytic functions 
0(A): £ > — a n d 0'(A): D'—I)* are said to coincide if there are unitary operators 
1: D - 3 5 ' and t*: D * - * ^ such that 0 ' ( ^ ) = ^ 0 ( A ) t - 1 for all XeD. 
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As in [15, Sec. VI. 1.2], we have the following result. 

P r o p o s i t i o n 3.1. The characteristic functions of unitarily equivalent operators 
coincide. 

P r o o f . Let Тг and Г2 be bounded operators on Hilbert spaces and § 2 , 
respectively, and suppose that for some unitary operator a : , v e have 
Тг=аТ1о~1. Then, if we define т—а\ЪТг and х^ = (т\Т>т*, it is clear that 

(3.1) ФГа = тФГ1, and JTt = zJT%-\ JT* = x^J^x*1, 

в г . (А) = т+(9Т1(А)г-1: 

It follows from (3.1) that x and x^ are unitary operators, and thus Q T and Q T 

coincide. • 
For any bounded operator Г on a Hilbert space § there is a unique maximal 

subspace $j0 in § reducing T to a unitary operator (see, for example, [7, Sec. 4]). 
If =S3G £>o> then Г|§), is completely non-unitary, i.e. there is no non-zero 
subspace of which reduces T to a unitary operator. 

P r o p o s i t i o n 3.2. The characteristic functions of a bounded operator and its 
completely non-unitary part coincide. 

P r o o f . Formally the same as [15, Sec. VI. 1.2]. • 
In Sec. 6 we will deduce (Theorem 6.1) that, for completely non-unitary operators 

with bounded characteristic functions, coincidence of the characteristic functions 
implies unitary equivalence of the operators. 

4. Dilations. Fourier representations. Let Г be a completely non-unitary operator 
on a separable Hilbert space it, and suppose that T has bounded characteristic 
function @r(A), i.e. sup ||®r(A)||«*>. 

лев 
We can construct (see [7]) a Krein space Я containing § as a subspace (with 

the indefinite inner product [ . , . ] of Я restricting to the Hilbert space inner product 
(., .) on § ) and an operator U on Я which is a minimal unitary dilation of T, i.e. 
U is unitary and satisfies 

[U"It, k] = (Tnh, k) (h,k£§>,n= 1 ,2 , . . . ) and V и"Ь= Я. 
n — -M 

(The symbol V denotes closed linear span.) 
The following subspaces of Я are important in the study of the geometry of 

the dilation space (see [13]; cf. [15]): 

& = (U-T)b, 2* = {I-UT*)b, M(fi)= V U»&, M(£*)= V U«2„ 
П——оо П— — о© 

M+(2)= V и-2, МЛК)= V и = Afcej-L, я+ = у и'Ь. 
п = 0 я = 0 и = 0 
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We are assuming that T is completely non-unitary and has bounded character-
istic function. Therefore, by [13, Sec. 6], A/(£+) is regular and, by [13, Corollary 3.2], 

A / ( £ ) V M ( £ J = ft. 

Hence, if P denotes the projection of ft onto M ( £ J (i.e., the projection with range 
M(2t) and null space SR), then we have 

(4.1) (I— P)M(2) — 9? 
(cf. [15, Sec. VI.2.1]). 

It follows from the construction of the dilation in [7] that there are unitary 
operators q>\ £—X)T and (pt: D r , and a fundamental symmetry / on ft 
such that 

(p(U-T)h = QTh, <p+(I—UT*)h = JT*QT*h (*€©; 

cpJ\2 = JT<p, JT*<p^, 
M \ = m , \\<P*1*\\ = \ \ h \ \ (/££,/*€£*). 

(See [13, Sec. 3].) 
Let Ps denote the projection of ft onto £ . If h£M(2), then the Fourier coeffi-

cients of h in M(fi) are 

ln = PeU*"h ( - < * > < „ < o o ) . 

When &T is bounded, we have 2 l l / J 2 < 0 0 (see [13, Sec. 6]; cf. [8, Sec. III.l]), 
B= — oo and thus we can define <PQ, the Fourier representation of M(£), by 

( < M ) ( f ) = Z 
R — oo 

is a unitary operator from M(2) to Z,2(DT), the Krein space of square integrable 
D r-valued functions with inner product 

2)1 
[«,»] = 1 / 2 * / [u(t),v(f)]dt (u,v£L*(ZTj). 

0 

Similarly, if h£M(2J and ln—PStU*nh are the Fourier coefficients of ft 
in M(2^), then we define the Fourier representation of M(£+) , by 

(**.&)(/)= 2 n — OO 

4>St is a unitary operator from M t o L2(T>Tt). (See [13, Sec. 6]; cf. [15, Chap-
ter V]:) 

5. Functional models for a given operator. If I) is a Krein space with funda-
mental symmetry J, then we also denote by J the fundamental symmetry induced 
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on L2(D) by (Jv)(t)=J-v(t). Thus we have on L2(T>T) and L 2 (D r . ) the funda-
mental symmetries JT and JT,, respectively. As in [15, Sec. V.2] we have the operator 
6> r :Z . 2 (® r ) -L 2 (D r t ) defined by 

(©r®)(0 = © r f c X O a.e. (u6L2(D r)), 
where 0T(eu)— lim 0T(re"). Since 0T is a purely contractive analytic function, 
it satisfies [(/— 6>r®r)t;, for all v£L2(T>T), or in terms of the Hilbert space 
inner product on L2(T>T), (JT(I— 0 i0T ) t> , We can therefore define AT= 
=(jT(r-0}0T)Y>2, an operator on Z.2(Dr) that satisfies the relation M r r | | 2 = 
= [(I-0$0T)v,v], for all vdL2(T>T). 

For / £ M ( £ ) we have, using the fact that the Fourier representations are 
unitary and the relation 0T<Pi, = <P2mP\M(2) [13, equation (6.4)], 

[(l-P)f,(I-P)f) = [f,f]~[Pf,Pf\ = [*«/, *tf\-[**Pf, <t>2*Pf] = 

= [*sf,*BF\-IET*sf, ®T**N = [(I-&*T&T)*Sf, *sf\ = Ur**fV 

(cf. [15, Sec. VI.2.1]). Hence, by (4.1), there is a unitary operator <*>„: K-ZTZ^fXV) 
such that 

4>x(I-P)f=AT*ef (f€M(2)). 

Here we are considering 9? as a Hilbert space with the inner product [ . , . ] [13, Theo-
rem 7.1], and ATL2(X>T) as a Hilbert space with the usual inner product on L2(DT). 
(In the sequel, AtL2(T)t) will always be considered as a Hilbert space.) 

Since M(fl+) is regular [13, Sec. 6] we can write 

ft = M ( £ * ) © 9 t . 
If we make the definition 

K = L2(T>rt)®ATL2(T>r), 

then we can deduce that the operator <I> = (Piit®<P% is a unitary operator from ft 
to K. <i> is known as the Fourier representation of ft. 

If we let e" also denote multiplication by the function e" then e"0T=0Te" 
and e''JT = JTeu, and hence e"AT=ATe". We also have UP=PU and <PaU= 
= eu , and so (cf. [15, Sec. VI.2.1]) 

$*V(!-P)f=t?**(!-P)f (.f£M(2)). 

By continuity, it follows that <P%Uh=e"cl»^1 for all /¡£9?. 
Let U denote multiplication by e" on K, i.e. 

U(u ©v) = e" u ©e"v (u£L2(Dr,), v£ AtL2(T>t)). 

Then, since and U— e"4>St, we have 
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The subspace M+{2.+) is regular [8, Sec. III. 2], and thus, by [13, Sec. 4]:, 
we have 

= M + ( £ + ) © 9 t 

(recall the definitions of these subspaces in Sec. 4). Consequently, <P maps onto 
the space 

K + = H2(S>T,)@ATL2(2)T), 

where H2(T>Tt) (the space of D r t-valued analytic functions with square summable 
Taylor coefficients) is identified with a subspace of L2(£T*) in the usual manner 

cf. [15, Sec. V. 1.1]). Then if U+ = U\&+ and U + = U | K + , we have <*>{/+ = U+<Z>. 
For U£H2(T>t*) and. V£AtL2(T)t) we have then 

U + ( u © y ) = ¿'u^^'v and U* (uffiy) = e~''(u — u0)@e~"v. 

R e m a r k on n o t a t i o n . Here (and in the sequel) it is assumed that, for each 
n, u„ denotes the nth coefficient in the Fourier series of the function it. Thus, for 
u£H2(T>Tt), uo=u(0). Also, we will not be distinguishing between a vector and 
the constant function whose range is that vector. 

Let us make the definition H = Since § is a Hilbert space with the inner 
product [., .], and since 0 is unitary, H is also a Hilbert space. We know by [13, 
equation (3.3)] that ft+=§©M+(£), and therefore we deduce § = 5 \ + 0 M + ( £ ) . 
Hence, 

H = K+e<i>M+(f l ) . 

We can obtain an explicit description of $A/+(fl) by making the observation 
that, for g€M + (£ ) , 

= <P[Pg + (I-P)g] = 0etPg®^(I-P)g = © r ^ g f f i J r ^ g 

(using [13,equation (6.4)]). Hence $ M + ( £ ) - { 0 T u @ A T u : M€#2(® t)}. Consequently 
we obtain 

H = K + Q{0Tu@ATu: u6i/2(X>T)}. 

If we denote by T the operator 0T<P_1 on H, then we have T*=U* |H, and 
thus we obtain the following functional model. 

T h e o r e m 5.1. (cf. [15, Theorem VI.2.3]) Let T be a completely non-unitary 
operator on a separable Hilbert space with bounded characteristic function 0T. 
Then the Krein space 

n = [H2(T>T*)@ATL2CZ>T)]Q{0Tu®ATu: u£H2(T>T)} 

is a Hilbert space and T is unitarily equivalent to the operator T on H defined by 

T*(u@v) = e-i'(it-u0)®e-i'v (uffiu€ H). 
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The unitary dilation U of T constructed in [7] is unitarily equivalent to the operator 
U defined on the Krein space 

K = U-Ç&Tt)®ATL?(?>T) by U(u©y) = euu®e"v (w©t>€K). • 

6. Unitary equivalence of completely non-unitary operators. 

T h e o r e m 6.1. Let Tt and T2 be completely non-unitary operators with bounded 
characteristic functions. Then Tx and T2 are unitarily equivalent if and only if their 
characteristic functions coincide. 

P r o o f . By Proposition 3.1, if Tx and T2 are unitarily equivalent, then their 
characteristic functions coincide. Conversely, suppose that x: X > r i — a n d 
V Xiy* —Tit* are unitary operators such that ©TJ<X)=x*©Ti(X)x~1 (X£D). Then 
we obtain (since 0 r ( O ) = — TJT) 

I-T:T, = /-0T2(O)*0T2(O) = T(/-0T i(O)*0T i(O))t-I = T ( / - r* r i )T" 1 , 

and h e n c e / r ^ T / ^ r - 1 . We similarly deduce that JtI~x^Jt*and thus x 
and are unitary with respect to the Hilbert space inner products as well as 
the indefinite inner products. 

We can regard x as mapping L2ÇÙTJ to L2(T>T) (and similarly for T+), and 
then we have AT =xAT T_1. 1 2 11 

Let Tj and T2 be the operators (on H! and H2) defined in Theorem 5.1, unitarily 
equivalent to Tx and T2, respectively. Then, as in [15, Sec. VI. 2.3], we can de-
duce that the operator f , taking u®v to x^u®xv («©DÇHj), is a unitary operator 
from Hx to H2 such that T2 = t T 1 f - 1 . It then follows that 7\ and T2 are unitarily 
equivalent. • 

7. Notes on functional models. When 0 r is bounded and lim T*"=0, then we Tl-*-oo 
have $R = {0} [13, Theorem 5.5] and the model of Theorem 5.1 can also be de-
scribed as follows: 

Let K+ be the space of sequences {/;„}„£0 with /¡„€X>rt («=0, 1,2, ...) and 

2 l|AJ2<°=. The inner product on K+ is defined by 
•=o 

KUBo, (UnSol = 2lh, K] = 2 (Jt*K, K)-
n = 0 n=0 

Clearly, K + is a Krein space, with the fundamental symmetry 7 {/¡„}„ g 0 = {JTt hn}n s 0. 
We consider § as a subspace of K + by identifying the vector h£§> and the 

sequence 
h = {JT*QT*T**h}nS0. 
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By [13, Corollary 8.3], h is in K + , and we have (since lim T*"=0) 

[h, h] = Z(QT*T*"h, Jt*Qt*T*"K) = 
( 1 = 0 

= 2(Tn(I-TT*)T*nh,h) = ( h - l i m T"T*"h, h) = \\h\\2. 
/1=0 

Thus the identification of § as a subspace of K + is valid. 
If V is the unilateral shift on K + , mapping (h0, hlt h2, ...) to (0, h0, hlt ...), 

then we have T*— K*|§. If we identify K+ with the space H2(T>T,), in the obvious 
manner, then V is identified with multiplication by e" (thinking of H2 as a subspace 
of L2). The above model then coincides with the model of Theorem 5.1, which in 
the case lim T*"=0 identifies § with the space 

/1-» ©O 

H2(1>t*)Q0tH2CT)t) 

(since <R={0}). (Cf. [15, p. 277].) 
In [14], ROTA obtains a model for operators with spectrum in the open unit 

disk, and this case is obviously included in the case considered above (namely, 0 T 

bounded and lim T*"=0). Rota's model, however, differs somewhat from the 
JI -»co 

model described above, and gives only a similarity model for T. 
In the remaining sections of this paper we will be considering an arbitrary 

purely contractive analytic function 0(A). We will prove, by constructing a suitable 
functional model (based on that of SZ.-NAGY and FOIA§ [15, Chapter VI]), that if 
0 is bounded and fundamentally reducible then it is the characteristic function of 
some completely non-unitary operator (cf. [11]). 

8. The functional model for a bounded purely contractive analytic function. Let 
0(A): be a bounded purely contractive analytic function. We will assume 
that 0 is fundamentally reducible, so that there are fundamental symmetries on Q 
and commuting with 0%0q and 0 O 0 J , respectively. As in [11, Sec. 5] we define 
the fundamental symmetries 7=sgn (7— 0 j 0 O ) on D and / + = s g n (7— 0O0$) on 

The Hilbert space inner products and norms that we will use on D and 35 ̂  
(and on L2(T>) and L 2 (DJ) will be the J- and -inner products and norms obtained 
from these fundamental symmetries. 

We also define the operators Q=\I-0^0o\l12 and | 7 - 0 O 0 J | 1 / 2 . They 
satisfy the relations (see [7, Sec. 2]) 

j q 2 = I - 0 * 0 o , j * e i = 7 - 0 o 0 o * , 0 o J = J + 0 o , © o e = e * 0 o , 

00 % = J0O*, &o*Q* = Q® o*. 

Since 0 is bounded and purely contractive, it can be considered as an operator 
from L 2 (£) to L2(I>J, and we can define the operator A =(/(/- 0* 0))1'2 on 
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L2(t>). The space AL2(T>) will always be considered as a Hilbert space (with the 
/-inner product), and we have \\Av\\2=^[(I-0* 0)v, u] for y<EZ.2(£>) (cf. Sec. 5). 

Consider the Krein spaces 

K = L2(ZJQAL2(T>) and K + = H2(T>j®AL2(T>) c K, 
and let 

G = {0w©/lw: w£H2(T>)} c K + . 

For v and w in H2(D) we have 

[0v, 0w] + (Av,Aw) = [0*0v,w] + [(I-0*0)v, w] = [t>, w]. 

Hence, since 0 and A are continuous, the operator 0®A, mapping v to 0v®Av, 
is an isometry from H2(T>) to K. Therefore G, which is the range of 0 © A, is a 
regular subspace, of both K and K + [12, Theorem 5.2]. 

If we define H = K + © G , then H is a regular subspace of both K and K + . 
Let U be multiplication by e" on K. Then U is a unitary operator and K + is 

invariant for U; we define U + = U | K + . Since e"0=0eu and euA=Ae", G is 
invariant for U + , and thus H is invariant for U*. We can therefore define an operator 
T on H by T*=U* |H. If we denote by P the projection of K onto H then we have, 
as in [15, Sec. VI.3.1], 
(8.1) T" = PUn |H (n is 0). 
We also have 
(8.2) T*(uffii>) = e~"(u—u0)®e~i'v (u©i;€ H). 

It should be noted that, since the spectrum of U is in the unit circle, T has 
spectrum in the closed unit disk. 

9. Basic properties of the model. A vector u@v (u£H2(Ti^), ¡)£JL2(D)) is in 
H if and only if u®v}_0w®Aw for all w£H2(35). Since we have the equations 

[u®v,0w@Aw\ = [w, 0w]+(v,Aw) = [0*u, w\ + (Av,w) = [0*u + JAv,w], 

we conclude that wffit;£H if and only if 0*u+JAv±H2(D). In this case 

(9.1) 0*u + JAv= 2e-intfn, 
n = l 

with /„ given by 
271 

(9.2) fn — 1 /2n f einl(0*u + JAv)(t)dt. 
o 

From (8.1) we deduce that, for «©ugH, 

(9.3) T(u©p) = (e"w—^0/1)ffi(e"t)—4/i) (cf. [15, Sec. VI. 3.5]). 



12. 
B. W. McEnnis 

P r o p o s i t i o n 9.1. For MffiuCH we have 

(I-T*T)(u®v) = e - " ( 6 > - 0 o ) / i © < r " 4 / i 
and 

(I-TI*)(u®v) = (I-00t)uo®-A6tuo. 

P r o o f . The first formula follows immediately from (9.3) and (8.2). For the 
second formula, we need to obtain the vector / x corresponding to T*(u®v) , which 
(by (8.2)) is done by considering 

0*[e-"(u-uo)] + JA[e-"v] = e-"(0*u + JAv)-e-"0*uo. 

Since 0*u+JAv±H2(T>), we deduce that the required vector is — ©Jw0 and 
hence, applying (9.3), we obtain 

TT*(w©i;) = ( ( u - u o ) + 00Zuo)®(v + A0%uo) = u®v-[(I-00H)uo®-A0tuo]. • 

L e m m a 9.2. If u®v is given by 

U®v = e-"{0-0o)f®e-"Af, 

where / £ D , then H © I > € H , and the vector ft defined by ( 9 . 2 ) is /=(/-©*©„)/. 

P r o o f . (Cf. [15, Sec. VI.3.5].) Since JA-=I-0*0, we have 

0*u+JAv = e-"0*(0-0o)f+e-i'(I-0*0)f= e-"(I-0*0o)f. 

Therefore, 0*u+JAv± H2(T>), and so w©r6H. We also have 
2 71 

f i = 1/271 / ( 7 - 0 (e"r®0)fdt = ( 7 - 0* 0 o ) f . • 
o 

Let us define the subset in ® by 
2 n 

= { / , = 1/2ti f e"(0*u + JAv)(t)dt: u © u 6 H } . 
0 

P r o p o s i t i o n 9.3. Dj is dense in £>. 

P r o o f . Since 0 is purely contractive, the set {(7— 0Q0(,)g: g€X>} is dense in X). 
But Lemma 9.2 shows that ( l — 0 % 0 ^ g is the vector fx for u®v=e~u(0 — 0O)&® 
®e~"Ag, and therefore (I-0%0o)g€D1 for all g€T>. • 

P r o p o s i t i o n 9.4. The set {«„: wffiugH} is dense in 35^. 

P r o o f . Since 0 is purely contractive, the set {(7—0 o 0j)g : g£X^} is dense 
in If u®v=(I—00*)g®—A0*g, where then we have 

0*u + JAv = 0 * ( 7 - 0 0 £ ) g - ( 7 - 0 * 0 ) 0 * g = (<9*-0%)g. 
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Hence, ©*u+JAv±H2{£), and so u®vdH. The proof is completed by noting 
that u0=(r-©0G*)g. • 

10. The spaces S r andDr». Since © is a purely contractive analytic function, the 
operators Q and (defined in Sec. 8) are injective. Thus, for /€X>i and «©p(|H, 
we can define 

<p{JQf) = e~"(& — &0)f®e~"Af and = (I-©&S)u0®-A©*u0. 
JQ and 2* have dense range, and hence (by Propositions 9.3 and 9.4) <p and q>¥ 

are densely defined on 35 and , respectively. If we define 

35T = (/—T*T)H and 35T. = (/—TT*)H, 

then Proposition 9.1 shows that the range of <p is dense in ®T and the range of <¡0* 
is dense in T>Tf. 

Using the fact that [0/, ©of]=[0of, &0f ] for /€X>i, we have 

(10.1) [<pJQf, q>JQf] = [ ( 0 - 0 „ ) / , ( 0 - 0 o ) / ] + | !4/T = 

= [0/, ©f]~[0of, &of] + [(I-0*®)f,f] = l(r-0o&o)f,f] = m m 

Also, since [0*wo, ©o wo]=[0o«o, 0*m0], we have 

(10.2) [<pM*"o, <P*Q*U0] = [ ( /—00i )« o , ( / - 0 0 o > „ ] + |M0o*uo||2 = 
= [ u o , u o ] - 2 [ 0 i u o , 0 i u o ] + [ 0 0 5 u o , 0 0 S u o ] + [ ( / - 0 * 0 ) 0 S u o , © i w « ] = 

= [ ( / - 0 o 6 > j ) M o , M o ] = ne* w0ip. 

If we put on K the norm obtained from the fundamental symmetry J*® I, 
then we have, using the Cauchy—Schwarz inequality [2, Lemma II. 11.4], 

№ f f = [<pJQf; <pJQf\S ll<p/Q/ll2 ( / £ » , ) 
and 

lie*"oll2 = [<P*Q*Uo, P*Q*uo] ^ ll<P*e*"oll2 (u©t;€H). 

Therefore cp^1, defined on a dense subset of X)r, is continuous and has a unique 
continuous extension to all of 35r. Similarly, q>~x has a unique continuous extension 
to all of D r*. By (10.1) and (10.2), these extensions are unitary, with 35 and 35 ̂  
being considered as Hilbert spaces with the J- and J^-inner products. The adjoints 
of these unitary maps are then unitary extensions of q> and cp^, and these extensions 
will also be denoted by <p and (pt . 

We can now assert that 

(10.3) <p(JQf) = e~"(0~0Q)f®e~"Af for all /€3), 
and 
(10.4) <P*(Q*g) = V-eeS)g®-Aetg for ail 
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Note that <p and are unitary with the inner product [. , .] on S T and 7>Tt, 
and with the Hilbert space J- and J*-inner products on 35 and 3)+, respectively. 
We conclude from this that T>T and 35r, are Hilbert spaces. Since they are the ranges 
of isometries, 35T and T>r, are regular subspaces of K [12, Theorem 5.2], and hence, 
by [2, Theorem V.5.2], the intrinsic topologies on 35T and 35 r , (i.e., the topologies 
obtained from the norms [h, h]1'2 on T>T and 35rt) coincide with the strong topologies 
inherited from K. 

T h e o r e m 10.1. (I-T*T)(p=(p(I-0t&o) and ( / — T T * ) = ( J — 0O0J). 

P roof . If / i s in 3), then the vector fx corresponding to u@v=<pJQf (given 
by (9.2)) is / ! = ( / - 0 o 0 o ) / (This follows immediately from (10.3) and Lemma 9.2.) 
Hence by Proposition 9.1, 

(I-T*T)q>JQf= eLi'(0-0o)f1®e-"Af1 = tpJQf = (pJQ(I-0*o0o)f = 

= <P(I-0t0o)JQf. 

The first assertion of the theorem then follows. 
If g is in 35+, and if u®v=(p^Q^g, then (10.4) shows that uo=(I-0o0*)g. 

Hence, by Proposition 9.1, 

( / - T T > * 0 * g = (I-00t)uo®~ A0tuo = <p*Q±Uo = 

= <P*QM-0o®t)g = <P*(I-0o&t)Q*g, 

and the second assertion follows. • 

Since D T and 35T* are Hilbert spaces, we can define 7 r = s g n (/— T*T) and 
Q r = | / - T * T | l / 2 as operators on £ r , and / r *=sgn ( / -TT*) and QTt= | / - T T * | l / 2 

as operators on 35 T*. 

C o r o l l a r y 10.2. JT<p = <pJ, QT(p = <pQ, = and QT*<P* = <P*Q*- • 

We have shown that the inner product [. , .] is positive definite on 35r and T)T*. 
With the inner products [JT.,.] and [JT*.,.], 35r and T>T* are Krein spaces having 
fundamental symmetries JT and JTt, respectively. Corollary 10.2 shows that tp and 
<p^ are Krein space isomorphisms intertwining the fundamental symmetries J and 
JT, and and JTt. 

11. The characteristic function. 35T is regular, and so we can extend JT and 
QT to operators on H by defining them to be zero on H©35T . We similarly extend 
JTt and QTt to operators defined on H. It is clear that these extensions are self-
adjoint, and that JtQ2=I-T*T and J r * g 2 , = / - T T * . We define 

0 r ( A ) = - T / T + A / r » e r » ( / - A T + ) - V r e r | 3 5 r 

for those complex numbers X.for which (/—AT*)-1 exists. It will be shown in 
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the next section that H is a Hilbert space, so that 0 r is in fact the characteristic 
function of T. 

T h e o r e m 11.1. For k£D, 0r(Â)<p = <p+0(A). 

P r o o f . It suffices to show that —TJTq>=(p^0o and, for « = 1 , 2 , 3 , . . . , 
JT*QT*T*"~1JrQr<Pzz::<P*®n- By (10.3) and Corollary 10.2, we have for all 

- T J M Q f ) =-Tq>(JQf) =-T{e~i'(0-0o)f@e-itAf}. 

Lemma 9.2 and (9.3) then give us 

-UTcp{Qf) - - { [ ( 0 - € > , ) / - 0 ( / - 0 „ * 0 o ) / ] © [ J / - J ( / - 0 O * 0 O ) / ] } = 

= (/—00j)0o/ffi -A0%0of = <P*(Q*&of) = <P*@o(Qf)-
Since vectors of the form Qf, with /€35, are dense in we conclude that —TJT<p = 

Now let us assume that for all / € T> and for some n ̂  1 we have 

(11.1) . T *n-1JTQT(pf= e~"" 10 - "Z eik,0Af®e-in,Af. 
v k = 0 t 

By (10.3) and Corollary 10.2, (11.1) is true for n= 1. If we let 

u = e-i*(0-nZeikt0k)f, 
*=o 

then w o =0» / , and we obtain from (8.2) (assuming (11.1)) 

T * n J T Q T < p f = e-" [ e - ' " ( 0 - 2 e""©*)/- 0 , , / ] © e " ' > ' A f = 

= «-'(«+!)» [0 - Zeikt 0J f®e-«"+1)'Af. 
V k=0 / 

Hence, by induction, (11.1) is true for all n s l . 
It follows from (11.1) and Proposition 9.1 that, for n = l , 2, 3, ... and / € 3 5 , 

QT.(JT*QT*1*n-*JTQT<pf) = ( /—IT*) je~"" ( 0 ~'Zo eik'0^.f®e-in'Af\ = 

. = (/— 0 0 j ) 0 „ / © —A0Q0„f= <P*(Q*&„f) = QT*<P*0nf-

(The last two steps used (10.4) and Corollary 10.2.) Since QT» is injective on 35T*, 
we conclude that ./•/* 6r»T*" JTQT<P = <P*@n f o r " = 1,2, 3, ... and the theorem 
is proved. • 

12. Positivity of H. In this section we prove that, with the inner product [ . , . ] , 
H is a Hilbert space. We will need the following results. 

6* 
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L e m m a 12.1. (cf. [15, Sec. VI.3.2]) Suppose that the vector h£H satisfies 

( 1 2 . 1 ) . ( / - T * T ) T " H = 0 = ( / — T T * ) T * " F T 

for all /7=0, 1, 2 , . . . . Then h=0. 

P r o o f . We can write h in the form h=u®v. Take n S 0 , and assume that 
uk—0 for all &</»; when n=0, this is assuming nothing about u. Then (8.2) 
shows that 

T*"h =e-in'u®e-Ua v. 

By (12.1) and Proposition 9.1, we deduce 

0 = ( / -TT*)T* n / i = (l-00t)u„®-A0tu„. 

In particular, (l—0o0^)un=0, and since 0 is purely contractive, we have u n =0 . 
Therefore, by induction, u=0 and h=0®v. 

OO 
Since h£H, v must satisfy JAv— e~ik'fk for some vectors fk£ £ {k—l, 2 , . . . ) . 

4 = 1 

Take and assume that fk—0 for all k^n; again, this is a null assumption 
when 77=0. Then clearly we have, using (9.3), Tnh=Q®e'"'v, and also 

JA(e»v) = Ze~ik'fn+k. 
k=l 

By (12.1) and Proposition 9.1, we deduce 

0 = (/—T*T)T"/i = e-"(0-0o)fn+1®e-"Afn+1. 

Therefore we have (0 — 0o)fn+1=O=Afn+1 and hence 

o = 0*(0—0o)fn+1+jA2fn+1 = (/-e*6>0)/B+1. 
In particular, (/—6>J0O)/B+1=O, and since 0 is purely contractive, we have 
/ B + 1 = 0 . We conclude (by induction) that JAv=0, and thus v=0 (v£AL2

yTi)). 
Therefore h=Q. • 

T h e o r e m 12.2. Let U be a neighborhood of zero contained in the unit disk D. 
Then H is the closed linear span of vectors of the form {I—nT*)~lJTQTq>f and 
(T-nTy^Q^cp^g, where /igU./E®, and 

P r o o f . Since T has spectrum in the closed unit disk (Sec. 8), both (/— / /T*) - 1 

and (I—juT)-1 are defined for /¿^U. 
Suppose that the vector /J£H is orthogonal to (I—nY*)~1JTQT<pf and 

( / - / i T ) - 1 ^ « ^ , for all /££>. and g^t)* . The theorem will be proved 
once we show that h=0. 

We have, for all f£T> and 

0 = [h, (I-nT*)-UTQrq>f\ = [JTQrU-m^h, <pf], 
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and thus, since T>T is a Hilbert space, JTQT(I—pT)~ lh=Q for all This is 
true only if J T Q r T ' , / i = 0 for « = 0 , 1, 2 , . . . , and hence 

(12.2) ( Z - T * 1 ) T n h = 0 for n= 0 , 1 , 2 , . . . . 

Also, for g d ® , and n^U, we have 

0 = [hAI-liTj-iQ^cp+g] = lQT*(I-im~1h,<p*gl 

and so it follows, as above, that 

(12.3) (7—TT*)T*nJj = 0 for n = 0, 1, 2, ... . 

(12.2) and (12.3), together with Lemma 12.1, imply that h=0. • 

H is known to be regular, and thus (by [2, Theorem V.3.4]) H is a Krein space. 
Therefore, in order to prove H is a Hilbert space it suffices to show that it is posi-
tive. Obviously we need only show that [h, H\ SO for a set of vectors h dense in H, 
and in particular (by Theorem 12.2) for vectors of the form 

(12.4) h = 2 { ( / - ^ T * ) - V r e T q > f t H I - M i T ) - ^ ^ } , 
¡=1 

where n ^ l and, for i '= l , 2, . . . ,« , and /¿¡€tf, some neighborhood 
of zero in the unit disk. 

For the vector h defined by (12.4) we have 

[h, h] = 2 2 { [ ( ' - f t T * ) - l J T Q r < P f i , (i-iijTl-'JrQTvfjn 
i=l i=l 

+[(/- rtT*) ~ 1jt QTVfiAi-HjTt-iQT'V* gj]+ 

+l(i-mT)-1QT*<P*gi, (i-HjV^Qr^gj]} = 

+ [<p;Vr.QT>(I-JijT*)-1 (1-^*)-'JrQTVfi, gj] + 

+[<p~1QT(i-fijT)~1{i-HiT)~1QT*<p*gi,fj]+ 

+ [<PZ1JTQT*{I-fiJ?*)-1(.I-HiT)-1QT*<P*gi, gy]}-

In the above calculation it should be recalled that q> is unitary f rom the Krein space 
D to the Krein space 2 ) r , with the inner product [JT.,.]. A similar observation 
applies to <p#. 
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It can be shown ([10, Sec. IV.5]; cf. [11, Sec. 4] and [15, Sec.VI.1.1]) that, for 

I-0T(Mr&T(X) = (1 - Xfi)QT(I- pT)-1^- AT*) -1 JT QT, 

I-0T(ji)0T(Xr = (1 -A/i)/r.0I.»(/-/rr*)-i(/-AT)-ieT', 
0 T ( A ) - 0 T < £ ) = ( A - ^ ) / r , e r * ( / - / r r * ) - 1 ( / - A T * ) - i / r e r , 

and 
eT{X)*-eTQi)* = (?.—fi)QT(i—frT)~1(i—xT)~iQTt.. 

Hence, using Theorem 11.1, we have 

(12.5) [h, h)= 2 2 {[(1 + 
1=1 j=1 

+[(nt-PJ)-1{eoid-e(MJ))f„ sj]+ 

+ [(Int - ¡¡j) - 1 ( 0 (fid* - © 0ij)*) g,, f j ] + 

+ [(1 -tiifiJ)-1(l-0(jij)&(ji,r)gi, gy]}. 

Equation (12.5) can be rewritten in the form 

(12.6) [h, h]= 2 2[fcO'y Mi)(Ji@gi),Xfj®gj)l 
; = l j = l 

where k(ji, A) is the operator matrix given by [11, Equation (6.1)]. By [11, Theorem 3], 
k(ji, A) is positive definite when 0 is purely contractive and fundamentally reducible, 
and it therefore follows that [/?, /¡]s0. Thus H is a Hilbert space. 

13. The functional model for a bounded purely contractive analytic function: the 
main theorem. 

T h e o r e m 13.1. Let 0(A): 35 — b e a bounded purely contractive funda-
mentally reducible analytic function. Then the Krein space ' 

H = [ / / 2 ( D J © J Z , 2 ( D ) ] e { 0 > v © J w : H><Ei72(35)} 

isfa Hilbert space and the operator T on H defined by 

T*(uffit>) = e-u(u-u0)®e-"v (u©u£H) 

is completely non-unitary. The function 0 coincides with the characteristic function 
of T. The operator U on the Krein space K=L2(£>J®AL2(T>) defined by U (u®v) = 
—euu®e"v (u®v£K) is unitarily equivalent to the unitary dilation of T given by the 
construction in [7]. 

P r o o f . It was shown in Sec. 12 that H is a Hilbert space, and Lemma 12.1 
shows that T is completely non-unitary. 0 coincides with 0T by virtue of 
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Theorem 11.1. Finally, Theorem 5.1 shows that U is unitarily equivalent to the 
dilation of T given in [7]. • 

The construction of the dilation in [7] defines, in a natural way, a fundamental 
symmetry on the dilation space (referred to in Sec. 4 of this paper). For the space 
К above, this fundamental symmetry is not the obvious one ( / * © / ) , but the one 
defined as follows: 

Let M = { i / ® 0 : M_L#2(35+)}. Then we have 

K = M ® K + = M ® H © G 

(see Sec. 8). We can therefore define a fundamental symmetry J on К by 

J ( u ® 0 ) = J*u®0 (ифО^М), J(u©i;) = мфг; (u©i>6H), 

J (0w®Aw) = 0Jw®AJw (0w®Aw£ G). 

J is a fundamental symmetry since H is a Hilbert space and, for w d H 2 ( b ) , we have 

[0Jw®AJw, 0w®Aw] = [0*0Jw+(I-0*0)Jw, w] = [Jw, w] S 0. 

14. Comparison with the model of Ball. In this section we determine the relation-
ship between the model of BALL [1] and the model described in Theorem 13.1. 

Assume that 0 satisfies the conditions of Theorem 13.1 and let k(ji, A) be the 
operator matrix given by [11, Equation (6.1)]. Then the matrix 

(14.1) fc'Gi, A) = ( / © / , ) / с (I, Д)(У©/) 

coincides with the kernel matrix defined in [1, Theorem 2] (cf. [11, Sec. 6]). Also, as 
in [11], we will define 0 (A)=0(1 )* . 

Let us now consider an element u®v in H, so that и £ # 2 ( Ф + ) and и£АЬг(Ъ), 
with 0*u+JAv±H2(T>). Therefore, if w is defined by 

w (e") = e~il[0*u + JAv](-t), 

then w€B2(X>). Thus we can define a map Г f rom H to Л2(Ъ)®Н2(Ъ^ by 

r ( u ® v ) = w ® / » « . 

We will prove that Г Н , normed so that Г is unitary, is the Hilbert space T>(B) 
considered by BALL [1, Sec. 3.1]. 

Let us take /££> and We denote by f and / „ the functions / " ( A ) = 
=(1 -А/*)"1 /(Л61>) (cf. [15, Sec.V.8]) and / Д г ) = ( е " - ^ ) " 1 / (/<E[0, 2TI]). It is 
clear that / " € Я 2 ( D ) and f ^ L 2 ( 3 5 ) . From the boundedness of 0 , and the fact 
that (A—/¿)-1(0(A) — 0(j*))f is analytic for AgZ), we conclude that the function 

(14.2) u = ( 0 - 0 (/!))/„ 



12. 
B. W. McEnnis 

s i n / / 2 ( D J , and the function 

(14.3) w = (I-09(H))/" 

is in H*(T>). It is immediate from the definitions of k, B, f , and /,,, that w(A)© 
®u(X)=k(X,fi)(f®0), for all A€i>. 

Let us also consider the function 

(14.4) o = Af„ 

in AL2(t>). Then we have, using (14.2) and (14.4), 

&*u+JAv = 6*{©-9(ji))fltHl-®*®)f„ = (I-e*Q(ii))ft, 
and hence 

e~*[0*u+JAvH-O = e~"(l—0(e~'')*0 (jx)) (e~"—n)~1f= 

= (/—0(e")0(/*))(l —e i ' / i )~ 1 /= vv(e"), 

where H> is given by (14.3). Therefore u©t>€H and r(u@v)=w®J+u, i.e., 

r(u@v)(Z) = (I@J*)k(X,n)(f® 0). 

By using (8.2), (14.2), and (14.4), we obtain 

(/—/iT*)'(u©») = [u-ne-u(u-u0)]®[v-ne-"v] = 

= e-,t[(.e"-n)u + fiu0]®e-i,(e"-fi)v = e - " [ ( 0 - 0 0 ) ) / - (0o-0 Qi))/] ®e~"Af = 

= e-*(0-0o)fee-"Af. 

It therefore follows, using (10.3) and Corollary 10.2, that 

(I—/J.T*)(u®v) = q>JQf= JTQT<pf, 
and thus we obtain 

(14.5) r{(I-nl*)-^JTQT(pf) (A) = (I®J,)k(X, n)(f® 0). 

Let us take g€35 t and n£D, and consider the functions u =(l—00(p)*)g'1, 
p ' = — J©(/Z)*g", and w'=(0 — 0(fi))gll. Then we obtain, in a manner similar to 
that used in deriving (14.5), the formula 

(14.6) r ( ( / - ^ - 1 g 7 . . ^ g ) ( A ) = (/®J*)k(X,/i)(0®g). 

By Theorem 12.2, H is the closed linear span of vectors of the form 
(I-liT^JrQryf and (/—/¿T)-1<2r*<?'*&> where /££>, g€X>+, and fi(LD. The 
space 35(5) in [1] is defined so that a dense subset is that spanned by vectors which 
are pairs of functions (in A) of the form (I®J+)k(X, n)(f ©0) and 
(!@JJk(X, n)(0®g), where / 6 ® , and /itD. (Recall that the kernel 
matrix in [1] is given by (14.1).) Thus we will have rtl=T)(B), with r unitary, 
once we have checked that the norm induced by r, on the dense subset of T>(B) 
described above, is the same as that defined in [1]. 
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Consider the vector A£H defined by (12.4). Then, by (14.5) and (14.6), 

(r*)(A) = (/©/«) ¿/c(I, nd(fi®gi)= Zk'fcaWfi®gd 
¡=1 ¡=1 

(using (14.1)), and it follows from the definition of the inner product in [1] that 

i\m*= 2 2 mjfi®gi)> (Jfj®gj)) = 
¡ = i i = i 

= 2 2 ((KBJjkinj, riu® gi), (Jfj®gj)) = 
i=i j=i 

= 2 2 ( U © J*) k (jij, nd (f © g(), ( f j e g;)). 
i = l J = 1 

But the inner product (., .) on £>©1)^ is the /©/^ - inne r product, and hence 

II rhr = 2 2 IkQij, ^ ( / ¡ © g , ) , (fj®gj)]. 
¡=iy=i 

Consequently, we have (by (12.6)) \\Th\\2=[h, h], and so r H = D ( 5 ) with F 
unitary. 

In [1] the characteristic function B of an operator T is taken to be B—0T 

(cf. [11, Sec. 6]), and so in comparing the two models we should take B=0. In 
Ball's model, B is shown to be the characteristic function of the operator R on 
£>(.8) defined by 

R(w®u) = e~"(w> —w0)ffi (e"u—BJw0). 

We show now that RT=TT. 
For Mffir£H, we have defined T{u@v)=w®JJfu, where w(eir) = 

=e~u[0*u+JAv](—t). Thus w0 is the vector fx given by (9.2) and, using (9.3), 
we have 

T(u©t?) = (e'' u — 0wo)(B(e" v — Aw0). 
Note that 

0*(e"u-0wo) + JA(ei'v-Awo) = eu(0*u + JAv)-wo, 
and hence 

rT(u®i>) = e~" (w — w0) © J* (eu u — 0wo). 

Since B=0, we have B=J^0J, and thus we conclude that 

RT(u®v) = RiwQJ+u) = e-u(w-w0)@(ei'J*u-J*0wo) = /T(uffiy). 

T h e o r e m 14.1. Suppose 0 satisfies the conditions of Theorem 13.1, and let T 
be the operator, defined in that theorem, having 0 as its characteristic function. Then 
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T is unitarily equivalent to the operator R defined in [1], with B= 0. The equivalence 
is implemented by the unitary operator T: H — T>(B) given by T (u ®v) = wQ)J^u 
(w©u€H), where 

w(e") = e-"[0*u + JAv](-t). • 
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