Models for operators with bounded characteristic function

BRIAN W. McENNIS

1. Introduction. In the theory of B. Sz.-NAGY and C. FoIAs [15], the characteristic function Θ_{T} of a completely non-unitary contraction T is used to generate a functional model for T. In addition, if Θ is an arbitrary purely contractive analytic function, then Θ can be used to generate a contraction that has Θ as its characteristic function. The Sz.-Nagy and Foisş theory provides in fact a model of the minimal unitary dilation U of the contraction: U is represented as a shift acting on a subspace of the direct sum of two vector valued L^{2} spaces, and the characteristic function is identified as a projection on the dilation space. (See [15, Chapter VI].).

Now suppose that T is any bounded operator on a Hilbert space \mathfrak{S}. The characteristic function Θ_{T} of T is the operator valued analytic function

$$
\Theta_{T}(\lambda)=\left[-T J_{T}+\lambda J_{T^{*}} Q_{T^{*}}\left(I-\lambda T^{*}\right)^{-1} J_{T} Q_{T}\right] \mid \mathfrak{D}_{T}
$$

where $J_{T}=\operatorname{sgn}\left(I-T^{*} T\right), J_{T^{*}}=\operatorname{sgn}\left(I-T T^{*}\right), Q_{T}=\left|I-T^{*} T\right|^{1 / 2}, Q_{T^{*}}=\left|I-T T^{*}\right|^{1 / 2}$, and $\mathfrak{D}_{T}=J_{T} \mathfrak{S}$. $\Theta_{T}(\lambda)$ is defined for those complex numbers λ for which $I-\lambda T^{*}$ is boundedly invertible, and takes values which are continuous operators from $\mathfrak{D}_{\boldsymbol{T}}$ to the space $\mathfrak{D}_{T^{*}}=J_{T^{*}} \mathfrak{H}$. (See [11]; cf. [1], [3], [4], [5], [6], [8], [10], [13], [15].)

It was shown in [11] that if $\Theta(\lambda)$ is an operator valued analytic function (defined for $\lambda \in D$, the open unit disk in the complex plane), then $\Theta(\lambda)$ coincides with the characteristic function of some operator if and only if it is purely contractive and fundamentally reducible (see Sec. 2 below). This result was obtained by using a model of Ball [1], which is much less geometric than the type constructed by Sz.-NAGY and FoIAş. In particular, the model in [1] does not provide the interpretation of the characteristic function as a projection.

In this paper, we restrict our attention to bounded operator valued analytic functions $\Theta(\lambda)$, i.e., for which $\sup _{\lambda \in D}\|\Theta(\lambda)\|<\infty$. We are then able to obtain a functional model of the Sz.-NAGY and FoIAS type, which provides the extension of
their theory that was promised in the concluding section of [11]. In Sec. 14 we describe the relationship between this model and the model of BaLL [1].

Remark. Other authors [3], [4], [5], [6] have also considered the problem of representing an arbitrary $\Theta(\lambda)$ (satisfying certain conditions) as a characteristic function, but have not used a Sz.-NAGY and FoIAş type model. In [9], however, a model of this type is used to represent dissipative operators, with the unit disk in the Sz.-NAGY and Foiaş theory replaced by the upper half plane.
2. Krein spaces. Purely contractive analytic functions. A Krein space is a space \boldsymbol{R} with an indefinite inner product [., .] (i.e., $[x, x]$ can be negative for some $x \in \mathcal{R}$) on which is defined a fundamental symmetry $J: J^{2}=I,[J x, y]=[x, J y]$, and the J-inner product [J., .] makes $\boldsymbol{\Omega}$ a Hilbert space. The topology on \mathcal{G} is that defined by the J-norm $\|x\|_{J}=[J x, x]^{1 / 2}$. For an operator A on Ω, we denote by A^{*} the adjoint of A with respect to the indefinite inner product [., .]. (See [2], [11].)

If \mathfrak{A} and \mathfrak{B} are subsets of $\boldsymbol{\Omega}$, then we write $\mathfrak{H} \perp \mathfrak{B}$ if $[a, b]=0$ for all $a \in \mathfrak{H}$ and $b \in \mathfrak{B}$. We define $\mathfrak{H}^{\perp}=\{x \in \mathfrak{F}:[a, x]=0$ for all $a \in \mathfrak{H}\}$ and $\mathfrak{H} \ominus \mathfrak{B}=\mathfrak{A} \cap \mathfrak{B}^{\perp}$. A projection on Ω is a continuous operator P such that $P=P^{*}=P^{2}$. A regular subspace of $\mathfrak{\Omega}$ is a subspace \mathfrak{L} such that $\mathscr{L} \oplus \mathfrak{L}^{\perp}=\mathfrak{f}$. The regular subspaces are precisely those that are the ranges of projections (cf. [12]).

An operator valued analytic function is a function Θ which is defined and analytic in D, the open unit disk in the complex plane, and which takes values that are continuous operators from a Krein space \mathfrak{D} to a Krein space \mathfrak{D}_{*}. Θ is said to be purely contractive if, for each $\lambda \in D$,

$$
[\Theta(\lambda) a, \Theta(\lambda) a]<[a, a] \quad(a \in \mathfrak{D}, a \neq 0)
$$

and

$$
\left[\Theta(\lambda)^{*} a_{*}, \Theta(\lambda)^{*} a_{*}\right]<\left[\dot{a}_{*}, a_{*}\right] \quad\left(a_{*} \in \mathcal{D}_{*}, a_{*} \neq 0\right)
$$

Let $\Theta_{0}=\Theta(0)$. We call Θ fundamentally reducible if there are fundamental symmetries on \mathfrak{D} and \mathfrak{D}_{*} that commute with $\Theta_{0}^{*} \Theta_{0}$ and $\Theta_{0} \Theta_{0}^{*}$, respectively [11, Sec. 3].

The spaces \mathfrak{D}_{T} and $\mathfrak{D}_{T^{*}}$, defined in Sec. 1, are Krein spaces with the indefinite inner products

$$
[x, y]=\left(J_{T} x, y\right) \quad\left(x, y \in \mathfrak{D}_{T}\right) \quad \text { and } \quad[x, y]=\left(J_{T^{*}} x, y\right) \quad\left(x, y \in \mathfrak{D}_{T^{*}}\right)
$$

The characteristic function Θ_{T} is an operator valued analytic function that is purely contractive and fundamentally reducible [11, Sec. 4].
3. Coincidence of characteristic functions. If \mathfrak{D} and \mathfrak{D}^{\prime} are two Krein spaces, then an operator $\tau: \mathfrak{D} \rightarrow \mathfrak{D}^{\prime}$ is said to be unitary if it is continuous and invertible, and if $[\tau x, \tau x]=[x, x]$ for all $x \in \mathfrak{D}$. Two operator valued analytic functions $\Theta(\lambda): \mathfrak{D} \rightarrow \mathfrak{D}_{*}$ and $\Theta^{\prime}(\lambda): \mathfrak{D}^{\prime} \rightarrow \mathfrak{D}_{*}^{\prime}$ are said to coincide if there are unitary operators $\tau: D^{\prime} \rightarrow \mathfrak{D}^{\prime}$ and $\tau_{*}: \mathfrak{D}_{*} \rightarrow \mathcal{D}_{*}^{\prime}$ such that $\Theta^{\prime}(\lambda)=\tau_{*} \Theta(\lambda) \tau^{-1}$ for all $\lambda \in D$.

As in [15, Sec. VI.1.2], we have the following result.
Proposition 3.1. The characteristic functions of unitarily equivalent operators coincide.

Proof. Let T_{1} and T_{2} be bounded operators on Hilbert spaces \mathfrak{S}_{1} and \mathfrak{S}_{2}, respectively, and suppose that for some unitary operator $\sigma: \mathfrak{H}_{1} \rightarrow \mathfrak{S}_{2}$ we have $T_{2}=\sigma T_{1} \sigma^{-1}$. Then, if we define $\tau=\sigma \mid \mathfrak{D}_{T_{1}}$ and $\tau_{*}=\sigma \mid \mathfrak{D}_{T_{1}^{*}}$, it is clear that

$$
\begin{gather*}
\mathfrak{D}_{T_{2}}=\tau \mathfrak{D}_{T_{1}}, \quad \mathfrak{D}_{T_{2}^{*}}=\tau_{*} \mathfrak{D}_{T_{1}^{*}}, \quad \text { and } \quad J_{T_{2}}=\tau J_{T_{1}} \tau^{-1}, \quad J_{T_{2}^{*}}=\tau_{*} J_{T_{1}^{*}} \tau_{*}^{-1} \tag{3.1}\\
\Theta_{T_{*}}(\lambda)=\tau_{*} \Theta_{T_{1}}(\lambda) \tau^{-1}
\end{gather*}
$$

It follows from (3.1) that τ and τ_{*} are unitary operators, and thus $\Theta_{T_{1}}$ and Θ_{T} coincide.

For any bounded operator T on a Hilbert space $\mathfrak{5}$ there is a unique maximal subspace \mathfrak{S}_{0} in \mathfrak{G} reducing T to a unitary operator (see, for example, [7, Sec. 4]). If $\mathfrak{S}_{1}=\mathfrak{G} \Theta \mathfrak{S}_{0}$, then $T \mid \mathfrak{S}_{1}$ is completely non-unitary, i.e. there is no non-zero subspace of \mathfrak{S}_{1} which reduces T to a unitary operator.

Proposition 3.2. The characteristic functions of a bounded operator and its completely non-unitary part coincide.

Proof. Formally the same as [15, Sec. VI.1.2].
In Sec. 6 we will deduce (Theorem 6.1) that, for completely non-unitary operators with bounded characteristic functions, coincidence of the characteristic functions implies unitary equivalence of the operators.
4. Dilations. Fourier representations. Let T be a completely non-unitary operator on a separable Hilbert space $\mathfrak{5}$, and suppose that T has bounded characteristic function $\Theta_{T}(\lambda)$, i.e. $\sup _{\lambda \in D}\left\|\Theta_{T}(\lambda)\right\|<\infty$.

We can construct (see [7]) a Krein space \mathfrak{f} containing \mathfrak{y} as a subspace (with the indefinite inner product [., .] of Ω restricting to the Hilbert space inner product (.,.) on $\mathfrak{5}$) and an operator U on Ω which is a minimal unitary dilation of T, i.e. \boldsymbol{U} is unitary and satisfies

$$
\left[U^{n} h, k\right]=\left(T^{n} h, k\right) \quad(h, k \in \mathfrak{H}, n=1,2, \ldots) \quad \text { and } \quad \bigvee_{n=-\infty}^{\infty} U^{n} \mathfrak{H}=\mathfrak{K}
$$

(The symbol \vee denotes closed linear span.)
The following subspaces of Ω are important in the study of the geometry of the dilation space (see [13]; cf. [15]):

$$
\begin{gathered}
\mathfrak{L}=\left(\overline{U-T) \mathfrak{H}}, \quad \mathfrak{L}_{*}=\left(\overline{\left.I-U T^{*}\right)} \overline{\mathfrak{H}}, \quad M(\mathfrak{L})=\bigvee_{n=-\infty}^{\infty} U^{n} \mathfrak{L}, \quad M\left(\mathfrak{Q}_{*}\right)=\bigvee_{n=-\infty}^{\infty} U^{n} \mathfrak{Q}_{*},\right.\right. \\
M_{+}(\mathfrak{I})=\bigvee_{n=0}^{\infty} U^{n} \mathfrak{L}, \quad M_{+}\left(\mathfrak{L}_{*}\right)=\bigvee_{n=0}^{\infty} U^{n} \mathfrak{L}_{*}, \quad \mathfrak{R}=M\left(\mathfrak{L}_{*}\right)^{\perp}, \quad \mathfrak{R}_{+}=\bigvee_{n=0}^{\infty} U^{n} \mathfrak{S} .
\end{gathered}
$$

We are assuming that T is completely non-unitary and has bounded characteristic function. Therefore, by [13, Sec. 6], $M\left(\mathscr{L}_{*}\right)$ is regular and, by [13, Corollary 3.2],

$$
M(\mathbb{Q}) \vee M\left(\mathscr{E}_{*}\right)=\Omega
$$

Hence, if P denotes the projection of \mathcal{R} onto $M\left(\mathscr{L}_{*}\right)$ (i.e., the projection with range $M\left(\mathcal{L}_{*}\right)$ and null space \mathfrak{R}), then we have

$$
\begin{equation*}
\overline{(I-P) M(\Omega)}=\boldsymbol{R} \tag{4.1}
\end{equation*}
$$

(cf. [15, Sec. VI.2.1]).
It follows from the construction of the dilation in [7] that there are unitary operators $\varphi: \mathscr{L} \rightarrow \mathcal{D}_{T}$ and $\varphi_{*}: \mathscr{L}_{*} \rightarrow \mathcal{D}_{\mathbf{T}_{*}}$ and a fundamental symmetry J on \boldsymbol{R} such that

$$
\begin{gathered}
\varphi(U-T) h=Q_{T} h, \quad \varphi_{*}\left(I-U T^{*}\right) h=J_{T^{*}} Q_{T^{*}} h \quad(h \in \mathfrak{S}) ; \\
\varphi J\left|\mathbb{L}=J_{T} \varphi, \quad \varphi_{*} U J U^{*}\right| \mathscr{L}_{*}=J_{T^{*}} \varphi_{*} ; \\
\|\varphi l\|=\|l\|, \quad\left\|\varphi_{*} l_{*}\right\|=\left\|I_{*}\right\| \quad\left(l \in \mathcal{Q}, l_{*} \in \mathfrak{L}_{*}\right) .
\end{gathered}
$$

(See [13, Sec. 3].)
Let $P_{\mathfrak{g}}$ denote the projection of Ω onto \mathcal{Q}. If $h \in M(\mathcal{L})$, then the Fourier coefficients of h in $M(\mathbb{L})$ are

$$
l_{n}=P_{\mathfrak{Q}} U^{* n} h \quad(-\infty<n<\infty) .
$$

When Θ_{T} is bounded, we have $\sum_{n=-\infty}^{\infty}\left\|l_{n}\right\|^{2}<\infty$ (see [13, Sec. 6]; cf. [8, Sec. III.1]), and thus we can define $\Phi_{\mathfrak{e}}$, the Fourier representation of $M(\underline{E})$, by

$$
\left(\Phi_{\mathfrak{s}} h\right)(t)=\sum_{n=-\infty}^{\infty} e^{i n t} \varphi l_{n} .
$$

$\Phi_{\mathfrak{R}}$ is a unitary operator from $M(\mathfrak{L})$ to $L^{2}\left(\mathcal{D}_{T}\right)$, the Krein space of square integrable \mathfrak{D}_{T}-valued functions with inner product

$$
[u, v]=1 / 2 \pi \int_{0}^{2 \pi}[u(t), v(t)] d t \quad\left(u, v \in L^{2}\left(\mathcal{D}_{T}\right)\right)
$$

Similarly, if $h \in M\left(\mathscr{E}_{*}\right)$ and $l_{n}=P_{\mathfrak{P}_{*}} U^{* n} h$ are the Fourier coefficients of h in $M\left(\mathscr{I}_{*}\right)$, then we define $\Phi_{\mathbf{S}_{*}}$, the Fourier representation of $M\left(\mathscr{L}_{*}\right)$, by

$$
\left(\Phi_{1 *} h\right)(t)=\sum_{n=-\infty}^{\infty} e^{i \pi t} \varphi_{*} l_{n} .
$$

$\Phi_{\mathfrak{I}_{*}}$ is a unitary operator from $M\left(\mathscr{L}_{*}\right)$ to $L^{2}\left(\mathfrak{D}_{T^{*}}\right)$. (See [13, Sec. 6]; cf. [15, Chapter V]:)
5. Functional models for a given operator. If \mathfrak{D} is a Krein space with fundamental symmetry J, then we also denote by J the fundamental symmetry induced
on $L^{2}(\mathcal{D})$ by $(J v)(t)=J \cdot v(t)$. Thus we have on $L^{2}\left(\mathcal{D}_{T}\right)$ and $L^{2}\left(\mathcal{D}_{T^{*}}\right)$ the fundamental symmetries J_{T} and $J_{T *}$, respectively. As in [15, Sec. V.2] we have the operator $\Theta_{r}: L^{2}\left(\mathcal{D}_{r}\right) \rightarrow L^{2}\left(\mathcal{D}_{T *}\right)$ defined by

$$
\left(\Theta_{T} v\right)(t)=\Theta_{T}\left(e^{i t}\right) v(t) \quad \text { a.e. } \quad\left(v \in L^{2}\left(\mathfrak{D}_{T}\right)\right)
$$

where $\Theta_{T}\left(e^{i t}\right)=\lim _{r \rightarrow 1-} \Theta_{T}\left(r e^{i t}\right)$. Since Θ_{T} is a purely contractive analytic function, it satisfies $\left[\left(I-\Theta_{T}^{*} \Theta_{T}\right) v, v\right] \geqq 0$ for all $v \in L^{2}\left(\mathcal{D}_{T}\right)$, or in terms of the Hilbert space inner product on $L^{2}\left(\mathcal{D}_{T}\right),\left(J_{T}\left(I-\Theta_{T}^{*} \Theta_{T}\right) v, v\right) \geqq 0$. We can therefore define $\Delta_{T}=$ $=\left(J_{T}\left(I-\Theta_{T}^{*} \Theta_{T}\right)\right)^{1 / 2}$, an operator on $L^{2}\left(D_{T}\right)$ that satisfies the relation $\left\|\Delta_{T} v\right\|^{2}=$ $=\left[\left(I-\Theta_{T}^{*} \Theta_{T}\right) v, v\right]$, for all $v \in L^{2}\left(\mathfrak{D}_{T}\right)$.

For $f \in M(\mathbb{I})$ we have, using the fact that the Fourier representations are unitary and the relation $\Theta_{T} \Phi_{\mathfrak{Q}}=\Phi_{\mathbf{2}_{*}} P \mid M(\mathbb{E})$ [13, equation (6.4)],

$$
\begin{aligned}
& {[(I-P) f,(I-P) f]=[f, f]-[P f, P f]=\left[\Phi_{\mathfrak{\Sigma}} f, \Phi_{\mathfrak{\Sigma}} f\right]-\left[\Phi_{\mathfrak{R}^{*}} P f, \Phi_{\mathfrak{Q}^{*}} P f\right]=} \\
& =\left[\Phi_{\mathfrak{Q}} f, \Phi_{\mathbf{2}} f\right]-\left[\Theta_{T} \Phi_{\mathbf{2}} f, \Theta_{T} \Phi_{\mathbf{2}} f\right]=\left[\left(I-\Theta_{T}^{*} \Theta_{T}\right) \Phi_{\mathbf{2}} f, \Phi_{\mathfrak{2}} f\right]=\left\|\Delta_{T} \Phi_{\mathfrak{2}} f\right\|^{2}
\end{aligned}
$$

(cf. [15, Sec. VI.2.1]). Hence, by (4.1), there is a unitary operator $\Phi_{\mathfrak{g}}: \mathfrak{R} \rightarrow \overline{\Delta_{T} L^{2}\left(\mathfrak{D}_{T}\right)}$ such that

$$
\Phi_{\mathfrak{F}}(I-P) f=\Delta_{T} \Phi_{\mathfrak{Q}} f \quad(f \in M(\mathfrak{L})) .
$$

Here we are considering \mathfrak{R} as a Hilbert space with the inner product [. , .] [13, Theorem 7.1], and $\overline{\Delta_{T} L^{2}\left(\mathcal{D}_{T}\right)}$ as a Hilbert space with the usual inner product on $L^{2}\left(\mathcal{D}_{T}\right)$. (In the sequel, $\overline{\Delta_{T} L^{2}\left(\mathfrak{D}_{T}\right)}$ will always be considered as a Hilbert space.)

Since $M\left(\mathscr{L}_{*}\right)$ is regular [13, Sec. 6] we can write

$$
\mathfrak{\Re}=M\left(\mathfrak{L}_{*}\right) \oplus \mathfrak{R} .
$$

If we make the definition

$$
\mathbf{K}=L^{2}\left(\mathfrak{D}_{T^{*}}\right) \oplus \overline{\Delta_{T} L^{2}\left(\mathcal{D}_{T}\right)},
$$

then we can deduce that the operator $\Phi=\Phi_{\mathfrak{Q}_{*}} \oplus \Phi_{\boldsymbol{g}}$ is a unitary operator from Ω to $\mathrm{K} . \Phi$ is known as the Fourier representation of Ω.

If we let $e^{i t}$ also denote multiplication by the function $e^{i t}$ then $e^{i t} \Theta_{T}=\Theta_{T} e^{i t}$ and $e^{i t} J_{T}=J_{T} e^{i t}$, and hence $e^{i t} \Delta_{T}=\Delta_{T} e^{i t}$. We also have $U P=P U$ and $\Phi_{\mathbf{2}} U=$ $=e^{i t} \Phi_{\mathfrak{Q}}$, and so (cf. [15, Sec. VI.2.1])

$$
\Phi_{\Re} U(I-P) f=e^{i t} \Phi_{\Re}(I-P) f \quad(f \in M(\mathcal{L}))
$$

By continuity, it follows that $\Phi_{\mathfrak{g}} U h=e^{i t} \Phi_{\mathfrak{g}} h$ for all $h \in \mathcal{R}$.
Let \mathbf{U} denote multiplication by $e^{i t}$ on \mathbf{K}, i.e.

$$
\mathrm{U}(u \oplus v)=e^{i t} u \oplus e^{i t} v \quad\left(u \in L^{2}\left(\mathfrak{D}_{T^{*}}\right), v \in \bar{\Delta}_{T}{L^{2}\left(\mathfrak{D}_{T}\right)}\right) .
$$

Then, since $\Phi_{\Re} U=e^{i t} \Phi_{\Re}$ and $\Phi_{\mathbf{2}_{*}} U=e^{i t} \Phi_{\mathfrak{P}_{k}}$, we have $\Phi U=\mathbf{U} \Phi$.

The subspace $M_{+}\left(\mathscr{L}_{*}\right)$ is regular [8, Sec. III. 2], and thus, by [13, Sec. 4], we have

$$
\mathfrak{f}_{+}=M_{+}\left(\mathscr{I}_{*}\right) \oplus \boldsymbol{R}
$$

(recall the definitions of these subspaces in Sec. 4). Consequently, Φ maps Ω_{+}onto the space

$$
\mathbf{K}_{+}=H^{2}\left(\mathfrak{D}_{T^{*}}\right) \oplus \overline{\Delta_{T} L^{2}\left(\mathcal{D}_{T}\right)}
$$

where $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$ (the space of $\mathfrak{D}_{T^{*}}$-valued analytic functions with square summable Taylor coefficients) is identified with a subspace of $L^{2}\left(\mathcal{D}_{T^{*}}\right)$ in the usual manner cf. $\left[15\right.$, Sec. V. 1.1]). Then if $U_{+}=U \mid \mathfrak{R}_{+}$and $\mathbf{U}_{+}=\mathbf{U} \mid \mathbf{K}_{+}$, we have $\Phi U_{+}=\mathbf{U}_{+} \Phi$.

For $u \in H^{2}\left(\mathfrak{D}_{T *}\right)$ and $v \in \overline{\Delta_{T} L^{2}\left(\mathfrak{D}_{T}\right)}$ we have then

$$
\mathbf{U}_{+}(u \oplus v)=e^{i t} u \oplus e^{i t} v \quad \text { and } \quad \mathbf{U}_{+}^{*}(u \oplus v)=e^{-i t}\left(u-u_{0}\right) \oplus e^{-i t} v .
$$

Remark on notation. Here (and in the sequel) it is assumed that, for each n, u_{n} denotes the nth coefficient in the Fourier series of the function u. Thus, for $u \in H^{2}\left(\mathcal{D}_{T *}\right), u_{0}=u(0)$. Also, we will not be distinguishing between a vector and the constant function whose range is that vector.

Let us make the definition $\mathbf{H}=\Phi \mathfrak{5}$. Since $\mathfrak{5}$ is a Hilbert space with the inner product [., .], and since Φ is unitary, \mathbf{H} is also a Hilbert space. We know by [13, equation (3.3)] that $\mathfrak{K}_{+}=\mathfrak{5} \oplus M_{+}(\mathfrak{I})$, and therefore we deduce $\mathfrak{G}=\mathfrak{K}_{+} \ominus M_{+}(\mathfrak{l})$. Hence,

$$
\mathbf{H}=\mathbf{K}_{+} \ominus \Phi M_{+}(\mathfrak{L}) .
$$

We can obtain an explicit description of $\Phi M_{+}(\mathbb{L})$ by making the observation that, for $g \in M_{+}(\mathcal{Q})$,

$$
\Phi g=\Phi[P g+(I-P) g]=\Phi_{\mathfrak{Q}^{*}} P g \oplus \Phi_{\mathfrak{\Re}}(I-P) g=\Theta_{T} \Phi_{\mathfrak{l}} g \oplus \Delta_{T} \Phi_{\mathfrak{q}} g
$$

(using [13, equation (6.4)]). Hence $\Phi M_{+}(\mathcal{L})=\left\{\Theta_{T} u \oplus \Delta_{T} u: u \in H^{2}\left(\mathfrak{D}_{T}\right)\right\}$. Consequently we obtain

$$
\mathbf{H}=\mathbf{K}_{+} \ominus\left\{\Theta_{T} u \oplus \Delta_{T} u: u \in H^{2}\left(\mathcal{D}_{T}\right)\right\}
$$

If we denote by T the operator $\Phi T \Phi^{-1}$ on \mathbf{H}, then we have $\mathrm{T}^{*}=\mathbf{U}_{+}^{*} \mid \mathbf{H}$, and thus we obtain the following functional model.

Theorem 5.1. (cf. [15, Theorem VI.2.3]) Let T be a completely non-unitary operator on a separable Hilbert space \mathfrak{G}, with bounded characteristic function $\boldsymbol{\Theta}_{\boldsymbol{T}}$. Then the Krein space

$$
\mathbf{H}=\left[H^{2}\left(\mathfrak{D}_{T^{*}}\right) \oplus \overline{\Delta_{T} L^{2}\left(\mathcal{D}_{T}\right)}\right] \ominus\left\{\Theta_{T} u \oplus \Delta_{T} u: u \in H^{2}\left(\mathcal{D}_{T}\right)\right\}
$$

is a Hilbert space and T is unitarily equivalent to the operator \mathbf{T} on \mathbf{H} defined by

$$
\mathbf{T}^{*}(u \oplus v)=e^{-i t}\left(u-u_{0}\right) \oplus e^{-i t} v \quad(u \oplus v \in \mathbf{H}) .
$$

The unitary dilation U of T constructed in [7] is unitarily equivalent to the operator \mathbf{U} defined on the Krein space

$$
\mathbf{K}=L^{2}\left(\mathfrak{D}_{T^{*}}\right) \oplus \overline{\Delta_{T} L^{2}\left(\mathfrak{D}_{T}\right)} \quad \text { by } \quad \mathbf{U}(u \oplus v)=e^{i t} u \oplus e^{i t} v \quad(u \oplus v \in \mathbf{K}) .
$$

6. Unitary equivalence of completely non-unitary operators.

Theorem 6.1. Let T_{1} and T_{2} be completely non-unitary operators with bounded characteristic functions. Then T_{1} and T_{2} are unitarily equivalent if and only if their characteristic functions coincide.

Proof. By Proposition 3.1, if T_{1} and T_{2} are unitarily equivalent, then their characteristic functions coincide. Conversely, suppose that $\tau: \mathcal{D}_{T_{1}} \rightarrow \mathcal{D}_{T_{2}}$ and $\tau_{*}: \mathfrak{D}_{T_{1}^{*}} \rightarrow \mathfrak{D}_{T_{2}^{*}}$ are unitary operators such that $\Theta_{T_{2}}(\lambda)=\tau_{*} \Theta_{T_{1}}(\lambda) \tau^{-1}(\lambda \in D)$. Then we obtain (since $\Theta_{T}(0)=-T J_{T}$)

$$
I-T_{2}^{*} T_{2}=I-\Theta_{T_{2}}(0)^{*} \Theta_{T_{2}}(0)=\tau\left(I-\Theta_{T_{1}}(0)^{*} \Theta_{T_{1}}(0)\right) \tau^{-1}=\tau\left(I-T_{1}^{*} T_{1}\right) \tau^{-1}
$$

and hence $J_{T_{2}}=\tau J_{T_{1}} \tau^{-1}$. We similarly deduce that $J_{T_{2}^{*}}=\tau_{*} J_{T_{1}^{*}} \tau_{*}^{-1}$, and thus τ and τ_{*} are unitary with respect to the Hilbert space inner products as well as the indefinite inner products.

We can regard τ as mapping $L^{2}\left(\mathfrak{D}_{T_{1}}\right)$ to $L^{2}\left(\mathfrak{D}_{T_{2}}\right)$ (and similarly for τ_{*}), and then we have $\Delta_{T_{2}}=\tau \Delta_{T_{1}} \tau^{-1}$.

Let \mathbf{T}_{1} and \mathbf{T}_{2} be the operators (on \mathbf{H}_{1} and \mathbf{H}_{2}) defined in Theorem 5.1, unitarily equivalent to T_{1} and T_{2}, respectively. Then, as in [15, Sec. VI. 2.3], we can deduce that the operator $\hat{\tau}$, taking $u \oplus v$ to $\tau_{*} u \oplus \tau v\left(u \oplus v \in \mathbf{H}_{1}\right)$, is a unitary operator from \mathbf{H}_{1} to \mathbf{H}_{2} such that $\mathbf{T}_{2}=\hat{\tau} \mathbf{T}_{1} \hat{\tau}^{-1}$. It then follows that T_{1} and T_{2} are unitarily equivalent.
7. Notes on functional models. When Θ_{T} is bounded and $\lim _{n \rightarrow \infty} T^{* n}=0$, then we have $\mathfrak{R}=\{0\}[13$, Theorem 5.5] and the model of Theorem 5.1 can also be described as follows:

Let K_{+}be the space of sequences $\left\{h_{n}\right\}_{n き 0}$ with $h_{n} \in \mathfrak{D}_{T^{*}}(n=0,1,2, \ldots)$ and $\sum_{n=0}^{\infty}\left\|h_{n}\right\|^{2}<\infty$. The inner product on \mathbf{K}_{+}is defined by

$$
\left[\left\{h_{n}\right\}_{n \succeq 0},\left\{k_{n}\right\}_{n \geqq 0}\right]=\sum_{n=0}^{\infty}\left[h_{n}, k_{n}\right]=\sum_{n=0}^{\infty}\left(J_{T^{*}} h_{n}, k_{n}\right) .
$$

Clearly, \mathbf{K}_{+}is a Krein space, with the fundamental symmetry $J\left\{h_{n}\right\}_{n \geqq 0}=\left\{J_{T_{*}} h_{n}\right\}_{n \geqq 0}$.
We consider \mathfrak{G} as a subspace of \mathbf{K}_{+}by identifying the vector $h \in \mathfrak{G}$ and the sequence

$$
\mathbf{h}=\left\{J_{T^{*}} Q_{T^{*}} T^{* n} h\right\}_{n \geqq 0} .
$$

By [13, Corollary 8.3], \mathbf{h} is in \mathbf{K}_{+}, and we have (since $\lim _{n \rightarrow \infty} T^{* n}=0$)

$$
\begin{gathered}
{[\mathbf{h}, \mathbf{h}]=\sum_{n=0}^{\infty}\left(Q_{T^{*}} T^{* n} h, J_{T^{*}} Q_{T^{*}} T^{* n} h\right)=} \\
=\sum_{n=0}^{\infty}\left(T^{n}\left(I-T T^{*}\right) T^{* n} h, h\right)=\left(h-\lim _{n \rightarrow \infty} T^{n} T^{* n} h, h\right)=\|h\|^{2} .
\end{gathered}
$$

Thus the identification of $\mathfrak{5}$ as a subspace of \mathbf{K}_{+}is valid.
If V is the unilateral shift on K_{+}, mapping ($h_{0}, h_{1}, h_{2}, \ldots$) to ($0, h_{0}, h_{1}, \ldots$), then we have $T^{*}=V^{*} \mid \mathfrak{I}$. If we identify K_{+}with the space $H^{2}\left(\mathfrak{D}_{T^{*}}\right)$, in the obvious manner, then V is identified with multiplication by $e^{i t}$ (thinking of H^{2} as a subspace of L^{2}). The above model then coincides with the model of Theorem 5.1, which in the case $\lim _{n \rightarrow \infty} T^{* n}=0$ identifies \mathfrak{G} with the space

$$
H^{2}\left(\mathcal{D}_{T^{*}}\right) \ominus \Theta_{T} H^{2}\left(\mathfrak{D}_{T}\right)
$$

(since $\mathfrak{R}=\{0\}$). (Cf. [15, p. 277].)
In [14], Rota obtains a model for operators with spectrum in the open unit disk, and this case is obviously included in the case considered above (namely, Θ_{T} bounded and $\lim _{n \rightarrow \infty} T^{* n}=0$). Rota's model, however, differs somewhat from the model described above, and gives only a similarity model for T.

In the remaining sections of this paper we will be considering an arbitrary purely contractive analytic function $\Theta(\lambda)$. We will prove, by constructing a suitable functional model (based on that of Sz.-NaGY and FoIaş [15, Chapter VI]), that if Θ is bounded and fundamentally reducible then it is the characteristic function of some completely non-unitary operator (cf. [11]).
8. The functional model for a bounded purely contractive analytic function. Let $\Theta(\lambda): \mathcal{D} \rightarrow \mathfrak{D}_{*}$ be a bounded purely contractive analytic function. We will assume that Θ is fundamentally reducible, so that there are fundamental symmetries on \mathfrak{D} and \mathcal{D}_{*} commuting with $\Theta_{0}^{*} \Theta_{0}$ and $\Theta_{0} \Theta_{0}^{*}$, respectively. As in [11, Sec. 5] we define the fundamental symmetries $J=\operatorname{sgn}\left(I-\Theta_{0}^{*} \Theta_{0}\right)$ on D and $J_{*}=\operatorname{sgn}\left(I-\Theta_{0} \Theta_{0}^{*}\right)$ on \mathfrak{D}_{*}. The Hilbert space inner products and norms that we will use on \mathfrak{D} and \mathfrak{D}_{*} (and on $L^{2}(\mathfrak{D})$ and $L^{2}\left(\mathfrak{D}_{*}\right)$) will be the J - and J_{*}-inner products and norms obtained from these fundamental symmetries.

We also define the operators $Q=\left|I-\Theta_{0}^{*} \Theta_{0}\right|^{1 / 2}$ and $Q_{*}=\left|I-\Theta_{0} \Theta_{0}^{*}\right|^{1 / 2}$. They satisfy the relations (see [7, Sec. 2])

$$
\begin{gathered}
J Q^{2}=I-\Theta_{0}^{*} \Theta_{0}, \quad J_{*} Q_{*}^{2}=I-\Theta_{0} \Theta_{0}^{*}, \quad \Theta_{0} J=J_{*} \Theta_{0}, \quad \Theta_{0} Q=Q_{*} \Theta_{0} \\
\Theta_{0}^{*} J_{*}=J \Theta_{0}^{*}, \quad \Theta_{0}^{*} Q_{*}=Q \Theta_{0}^{*}
\end{gathered}
$$

Since Θ is bounded and purely contractive, it can be considered as an operator from $L^{2}(\mathfrak{D})$ to $L^{2}\left(\mathfrak{D}_{\star}\right)$, and we can define the operator $\Delta=\left(J\left(I-\Theta^{*} \Theta\right)\right)^{1 / 2}$ on
$L^{2}(\mathfrak{D})$. The space $\overline{\Delta L^{2}(\mathfrak{D})}$ will always be considered as a Hilbert space (with the J-inner product), and we have $\|\Delta v\|^{2}=\left[\left(I-\Theta^{*} \Theta\right) v, v\right]$ for $v \in L^{2}(\mathcal{D})$ (cf. Sec. 5).

Consider the Krein spaces

$$
\mathbf{K}=L^{2}\left(\mathfrak{D}_{*}\right) \oplus \overline{\Delta L^{2}(\mathcal{D})} \quad \text { and } \quad \mathbf{K}_{+}=H^{2}\left(\mathcal{D}_{*}\right) \oplus \overline{\Delta L^{2}(\mathfrak{D})} \subset \mathbf{K}
$$

and let

$$
\mathbf{G}=\left\{\Theta w \oplus \Delta w: w \in H^{2}(\mathcal{D})\right\} \subset \mathbf{K}_{+}
$$

For v and w in $H^{2}(\mathfrak{D})$ we have

$$
[\Theta v, \Theta w]+(\Delta v, \Delta w)=\left[\Theta^{*} \Theta v, w\right]+\left[\left(I-\Theta^{*} \Theta\right) v, w\right]=[v, w]
$$

Hence, since Θ and Δ are continuous, the operator $\Theta \oplus \Delta$, mapping v to $\Theta v \oplus \Delta v$, is an isometry from $H^{2}(\mathfrak{D})$ to K . Therefore G, which is the range of $\Theta \oplus \Delta$, is a regular subspace, of both \mathbf{K} and \mathbf{K}_{+}[12, Theorem 5.2].

If we define $\mathbf{H}=\mathbf{K}_{+} \ominus \mathbf{G}$, then \mathbf{H} is a regular subspace of both \mathbf{K} and \mathbf{K}_{+}.
Let \mathbf{U} be multiplication by $e^{i t}$ on \mathbf{K}. Then \mathbf{U} is a unitary operator and \mathbf{K}_{+}is invariant for \mathbf{U}; we define $\mathbf{U}_{+}=\mathbf{U} \mid \mathbf{K}_{+}$. Since $e^{i t} \Theta=\Theta e^{i t}$ and $e^{i t} \Delta=\Delta e^{i t}, \mathbf{G}$ is invariant for \mathbf{U}_{+}, and thus \mathbf{H} is invariant for \mathbf{U}_{+}^{*}. We can therefore define an operator \mathbf{T} on \mathbf{H} by $\mathbf{T}^{*}=\mathbf{U}_{+}^{*} \mid \mathbf{H}$. If we denote by P the projection of \mathbf{K} onto \mathbf{H} then we have, as in [15, Sec. VI.3.1],

$$
\begin{equation*}
\mathbf{T}^{n}=P \mathbf{U}^{n} \mid \mathbf{H} \quad(n \geqq 0) \tag{8.1}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\mathbf{T}^{*}(u \oplus v)=e^{-i t}\left(u-u_{0}\right) \oplus e^{-i t} v \quad(u \oplus v \in \mathbf{H}) \tag{8.2}
\end{equation*}
$$

It should be noted that, since the spectrum of \mathbf{U} is in the unit circle, \mathbf{T} has spectrum in the closed unit disk.
9. Basic properties of the model. A vector $u \oplus v\left(u \in H^{2}\left(\mathfrak{D}_{*}\right), v \in \overline{\Delta L^{2}(\mathcal{D})}\right)$ is in H if and only if $u \oplus v \perp \Theta w \oplus \Delta w$ for all $w \in H^{2}(\mathfrak{D})$. Since we have the equations

$$
[u \oplus v, \Theta w \oplus \Delta w]=[u, \Theta w]+(v, \Delta w)=\left[\Theta^{*} u, w\right]+(\Delta v, w)=\left[\Theta^{*} u+J \Delta v, w\right]
$$

we conclude that $u \oplus v \in \mathbf{H}$ if and only if $\Theta^{*} u+J \Delta v \perp H^{2}(\mathfrak{D})$. In this case

$$
\begin{equation*}
\Theta^{*} u+J \Delta v=\sum_{n=1}^{\infty} e^{-i n t} f_{n} \tag{9.1}
\end{equation*}
$$

with f_{n} given by

$$
\begin{equation*}
f_{n}=1 / 2 \pi \int_{0}^{2 \pi} e^{i n t}\left(\Theta^{*} u+J \Delta v\right)(t) d t . \tag{9.2}
\end{equation*}
$$

From (8.1) we deduce that, for $u \oplus v \in \mathbf{H}$,

$$
\begin{equation*}
\mathbf{T}(u \oplus v)=\left(e^{i t} u-\Theta f_{1}\right) \oplus\left(e^{i t} v-\Delta f_{1}\right) . \quad \text { (cf. [15, Sec. VI. 3.5]) } \tag{9.3}
\end{equation*}
$$

Proposition 9.1. For $u \oplus v \in H$ we have
and

$$
\left(I-\mathbf{T}^{*} \mathbf{T}\right)(u \oplus v)=e^{-i t}\left(\Theta-\Theta_{0}\right) f_{1} \oplus e^{-i t} \Delta f_{1}
$$

$$
\left(I-\mathbf{T T}^{*}\right)(u \oplus v)=\left(I-\Theta \Theta_{0}^{*}\right) u_{0} \oplus-\Delta \Theta_{0}^{*} u_{0}
$$

Proof. The first formula follows immediately from (9.3) and (8.2). For the second formula, we need to obtain the vector f_{1} corresponding to $\mathrm{T}^{*}(u \oplus v)$, which (by (8.2)) is done by considering

$$
\Theta^{*}\left[e^{-i t}\left(u-u_{0}\right)\right]+J \Delta\left[e^{-i t} v\right]=e^{-i t}\left(\Theta^{*} u+J \Delta v\right)-e^{-i t} \Theta^{*} u_{0}
$$

Since $\Theta^{*} u+J \Delta v \perp H^{2}(\mathfrak{D})$, we deduce that the required vector is $-\Theta_{0}^{*} u_{0}$ and hence, applying (9.3), we obtain
$\mathbf{T T}^{*}(u \oplus v)=\left(\left(u-u_{0}\right)+\Theta \Theta_{0}^{*} u_{0}\right) \oplus\left(v+\Delta \Theta_{0}^{*} u_{0}\right)=u \oplus v-\left[\left(I-\Theta \Theta_{0}^{*}\right) u_{0} \oplus-\Delta \Theta_{0}^{*} u_{0}\right]$.
Lemma 9.2. If $u \oplus v$ is given by

$$
u \oplus v=e^{-i t}\left(\Theta-\Theta_{0}\right) f \oplus e^{-i t} \Delta f
$$

where $f \in \mathfrak{D}$, then $u \oplus v \in \mathbf{H}$, and the vector f_{1} defined by (9.2) is $f_{1}=\left(I-\Theta_{0}^{*} \Theta_{0}\right) f$.
Proof. (Cf. [15, Sec. VI.3.5].) Since $J \Delta^{2}=I-\Theta^{*} \Theta$, we have

$$
\Theta^{*} u+J \Delta v=e^{-i t} \Theta^{*}\left(\Theta-\Theta_{0}\right) f+e^{-i t}\left(I-\Theta^{*} \Theta\right) f=e^{-i t}\left(I-\Theta^{*} \Theta_{0}\right) f
$$

Therefore, $\Theta^{*} u+J \Delta v \perp H^{2}(\mathfrak{D})$, and so $u \oplus v \in \mathbf{H}$. We also have

$$
f_{1}=1 / 2 \pi \int_{0}^{2 \pi}\left(I-\Theta\left(e^{i t}\right)^{*} \Theta_{0}\right) f d t=\left(I-\Theta_{0}^{*} \Theta_{0}\right) f
$$

Let us define the subset \mathfrak{D}_{1} in \mathfrak{D} by

$$
\mathfrak{D}_{1}=\left\{f_{1}=1 / 2 \pi \int_{0}^{2 \pi} e^{i t}\left(\Theta^{*} u+J \Delta v\right)(t) d t: u \oplus v \in \mathbf{H}\right\}
$$

Proposition 9.3. \mathfrak{D}_{1} is dense in \mathfrak{D}.
Proof. Since Θ is purely contractive, the set $\left\{\left(I-\Theta_{0}^{*} \Theta_{0}\right) g: g \in \mathcal{D}\right\}$ is dense in \mathfrak{D}. But Lemma 9.2 shows that $\left(I-\Theta_{0}^{*} \Theta_{0}\right) g$ is the vector f_{1} for $u \oplus v=e^{-i t}\left(\Theta-\Theta_{0}\right) g \oplus$ $\oplus e^{-i t} \Delta g$, and therefore $\left(I-\Theta_{0}^{*} \Theta_{0}\right) g \in \mathcal{D}_{1}$ for all $g \in \mathfrak{D}$.

Proposition 9.4. The set $\left\{u_{0}: u \oplus v \in \mathbf{H}\right\}$ is dense in \mathfrak{D}_{*}.
Proof. Since Θ is purely contractive, the set $\left\{\left(1-\Theta_{0} \Theta_{0}^{*}\right) g: g \in \mathfrak{D}_{*}\right\}$ is dense in \mathfrak{D}_{*}. If $u \oplus v=\left(I-\Theta \Theta_{0}^{*}\right) g \oplus-\Delta \Theta_{0}^{*} g$, where $g \in \mathfrak{D}_{*}$, then we have

$$
\Theta^{*} u+J \Delta v=\Theta^{*}\left(I-\Theta \Theta_{0}^{*}\right) g-\left(I-\Theta^{*} \Theta\right) \Theta_{0}^{*} g=\left(\Theta^{*}-\Theta_{0}^{*}\right) g .
$$

Hence, $\Theta^{*} u+J \Delta v \perp H^{2}(\mathfrak{D})$, and so $u \oplus v \in \mathbf{H}$. The proof is completed by noting that $u_{0}=\left(I-\Theta_{0} \Theta_{0}^{*}\right) g$.
10. The spaces \mathfrak{D}_{T} and $\mathfrak{D}_{T *}$. Since Θ is a purely contractive analytic function, the operators Q and Q_{*} (defined in Sec. 8) are injective. Thus, for $f \in \mathcal{D}_{1}$ and $u \oplus v \in \mathbf{H}$, we can define

$$
\varphi(J Q f)=e^{-i t}\left(\Theta-\Theta_{0}\right) f \oplus e^{-i t} \Delta f \quad \text { and } \quad \varphi_{*}\left(Q_{*} u_{0}\right)=\left(I-\Theta \Theta_{0}^{*}\right) u_{0} \oplus-\Delta \Theta_{0}^{*} u_{0}
$$

$J Q$ and Q_{*} have dense range, and hence (by Propositions 9.3 and 9.4) φ and φ_{*} are densely defined on \mathfrak{D} and \mathfrak{D}_{*}, respectively. If we define

$$
\mathfrak{D}_{T}=\overline{\left(I-\mathbf{T}^{*} \mathbf{T}\right) \mathbf{H}} \quad \text { and } \cdot \mathfrak{D}_{T^{*}}=\overline{\left(I-\mathbf{T T}^{*}\right) \mathbf{H}}
$$

then Proposition 9.1 shows that the range of φ is dense in \mathcal{D}_{T} and the range of φ_{*} is dense in $\mathfrak{D}_{T^{*}}$.

Using the fact that $\left[\Theta f, \Theta_{0} f\right]=\left[\Theta_{0} f, \Theta_{0} f\right]$ for $f \in \mathcal{D}_{1}$, we have

$$
\begin{gather*}
{[\varphi J Q f, \varphi J Q f]=\left[\left(\Theta-\Theta_{0}\right) f,\left(\Theta-\Theta_{0}\right) f\right]+\|\Delta f\|^{2}=} \tag{10.1}\\
=[\Theta f, \Theta f]-\left[\Theta_{0} f, \Theta_{0} f\right]+\left[\left(I-\Theta^{*} \Theta\right) f, f\right]=\left[\left(I-\Theta_{0}^{*} \Theta_{0}\right) f, f\right]=\|J Q f\|^{2} .
\end{gather*}
$$

Also, since $\left[\Theta^{*} u_{0}, \Theta_{0}^{*} u_{0}\right]=\left[\Theta_{0}^{*} u_{0}, \Theta_{0}^{*} u_{0}\right]$, we have

$$
\begin{gather*}
{\left[\varphi_{*} Q_{*} u_{0}, \varphi_{*} Q_{*} u_{0}\right]=\left[\left(I-\Theta \Theta_{0}^{*}\right) u_{0},\left(I-\Theta \Theta_{0}^{*}\right) u_{0}\right]+\left\|\Delta \Theta_{0}^{*} u_{0}\right\|^{2}=} \tag{10.2}\\
=\left[u_{0}, u_{0}\right]-2\left[\Theta_{0}^{*} u_{0}, \Theta_{0}^{*} u_{0}\right]+\left[\Theta \Theta_{0}^{*} u_{0}, \Theta \Theta_{0}^{*} u_{0}\right]+\left[\left(I-\Theta^{*} \Theta\right) \Theta_{0}^{*} u_{0}, \Theta_{0}^{*} u_{0}\right]= \\
=\left[\left(I-\Theta_{0} \Theta_{0}^{*}\right) u_{0}, u_{0}\right]=\left\|Q_{*} u_{0}\right\|^{2}
\end{gather*}
$$

If we put on K the norm obtained from the fundamental symmetry $J_{*} \oplus I$, then we have, using the Cauchy-Schwarz inequality [2, Lemma II.11.4],

$$
\|J Q f\|^{2}=[\varphi J Q f, \varphi J Q f] \leqq\|\varphi J Q f\|^{2} \quad\left(f \in \mathfrak{D}_{1}\right)
$$

and

$$
\left\|Q_{*} u_{0}\right\|^{2}=\left[\varphi_{*} Q_{*} u_{0}, \varphi_{*} Q_{*} u_{0}\right] \leqq\left\|\varphi_{*} Q_{*} u_{0}\right\|^{2} \quad(u \oplus v \in \mathbf{H})
$$

Therefore φ^{-1}, defined on a dense subset of \mathfrak{D}_{T}, is continuous and has a unique continuous extension to all of \mathfrak{D}_{T}. Similarly, φ_{*}^{-1} has a unique continuous extension to all of $\mathfrak{D}_{T^{*}}$. By (10.1) and (10.2), these extensions are unitary, with \mathfrak{D} and \mathfrak{D}_{*} being considered as Hilbert spaces with the J - and J_{*}-inner products. The adjoints of these unitary maps are then unitary extensions of φ and φ_{*}, and these extensions will also be denoted by φ and φ_{*}.

We can now assert that

$$
\begin{equation*}
\varphi(J Q f)=e^{-i t}\left(\Theta-\Theta_{0}\right) f \oplus e^{-i t} \Delta f \quad \text { for all } \quad f \in \mathfrak{D} \tag{10.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{*}\left(Q_{*} g\right)=\left(I-\Theta \Theta_{0}^{*}\right) g \oplus-\Delta \Theta_{0}^{*} g \quad \text { for all } \quad g \in \mathcal{D}_{*} \tag{10.4}
\end{equation*}
$$

Note that φ and φ_{*} are unitary with the inner product [., .] on \mathcal{D}_{T} and $\mathcal{D}_{T *}$; and with the Hilbert space J - and J_{*}-inner products on \mathfrak{D} and \mathfrak{D}_{*}, respectively: We conclude from this that \mathfrak{D}_{T} and $\mathfrak{D}_{T^{*}}$ are Hilbert spaces. Since they are the ranges of isometries, \mathfrak{D}_{T} and $\mathfrak{D}_{T^{*}}$ are regular subspaces of K [12, Theorem 5.2], and hence, by [2, Theorem V.5.2], the intrinsic topologies on \mathfrak{D}_{T} and $\mathfrak{D}_{T^{*}}$ (i.e., the topologies obtained from the norms $[h, h]^{1 / 2}$ on \mathfrak{D}_{T} and $\mathfrak{D}_{T *}$) coincide with the strong topologies inherited from K.

Theorem 10.1. $\left(I-\mathbf{T}^{*} \mathbf{T}\right) \varphi=\varphi\left(I-\Theta_{0}^{*} \Theta_{0}\right) \quad$ and $\quad\left(I-\mathbf{T T}^{*}\right) \varphi_{*}=\varphi_{*}\left(I-\Theta_{0} \Theta_{0}^{*}\right)$.
Proof. If f is in \mathcal{D}, then the vector f_{1} corresponding to $u \oplus v=\varphi J Q f$ (given by (9.2)) is $f_{1}=\left(I-\Theta_{0}^{*} \Theta_{0}\right) f$. (This follows immediately from (10.3) and Lemma 9.2.) Hence by Proposition 9.1,

$$
\begin{gathered}
\left(I-\mathrm{T}^{*} \mathbf{T}\right) \varphi J Q f=e^{-i t}\left(\Theta-\Theta_{0}\right) f_{1} \oplus e^{-i t} \Delta f_{1}=\varphi J Q f_{1}=\varphi J Q\left(I-\Theta_{0}^{*} \Theta_{0}\right) f= \\
=\varphi\left(I-\Theta_{0}^{*} \Theta_{0}\right) J Q f .
\end{gathered}
$$

The first assertion of the theorem then follows.
If g is in \mathfrak{D}_{*}, and if $u \oplus v=\varphi_{*} Q_{*} g$, then (10.4) shows that $u_{0}=\left(I-\Theta_{0} \Theta_{0}^{*}\right) g$. Hence, by Proposition 9.1,

$$
\begin{gathered}
\left(I-\mathbf{T T}^{*}\right) \varphi_{*} Q_{*} g=\left(I-\Theta \Theta_{0}^{*}\right) u_{0} \oplus-\Delta \Theta_{0}^{*} u_{0}=\varphi_{*} Q_{*} u_{0}= \\
=\varphi_{*} Q_{*}\left(I-\Theta_{0} \Theta_{0}^{*}\right) g=\varphi_{*}\left(I-\Theta_{0} \Theta_{0}^{*}\right) Q_{*} g
\end{gathered}
$$

and the second assertion follows.
Since \mathfrak{D}_{T} and $\mathfrak{D}_{T *}$ are Hilbert spaces, we can define $J_{T}=\operatorname{sgn}\left(I-T^{*} T\right)$ and $Q_{T}=\left|I-\mathbf{T}^{*} \mathbf{T}\right|^{1 / 2}$ as operators on \mathfrak{D}_{T}, and $J_{\mathbf{T}^{*}}=\operatorname{sgn}\left(I-\mathbf{T T}^{*}\right)$ and $Q_{T^{*}}=\left|I-\mathbf{T T}^{*}\right|^{1 / 2}$ as operators on $\mathfrak{D}_{T^{*}}$.

Corollary 10.2. $J_{T} \varphi=\varphi J, Q_{T} \varphi=\varphi Q, J_{T *} \varphi_{*}=\varphi_{*} J_{*}$, and $Q_{T *} \varphi_{*}=\varphi_{*} Q_{*}$.
We have shown that the inner product [., .] is positive definite on \mathfrak{D}_{T} and $\mathfrak{D}_{T *}$. With the inner products $\left[J_{T .},.\right]$ and $\left[J_{T_{*},}\right.$,], \mathfrak{D}_{T} and $\mathfrak{D}_{T^{*}}$ are Krein spaces having fundamental symmetries J_{T} and $J_{T *}$, respectively. Corollary 10.2 shows that φ and φ_{*} are Krein space isomorphisms intertwining the fundamental symmetries J and J_{T}, and J_{*} and $J_{T^{*}}$.
11. The characteristic function. \mathcal{D}_{T} is regular, and so we can extend J_{T} and Q_{T} to operators on \mathbf{H} by defining them to be zero on $\mathbf{H} \ominus \mathcal{D}_{T}$. We similarly extend $J_{T *}$ and $Q_{T^{*}}$ to operators defined on \mathbf{H}. It is clear that these extensions are selfadjoint, and that $J_{T} Q_{T}^{2}=I-\mathbf{T}^{*} \mathbf{T}$ and $J_{T^{*}} Q_{T^{*}}^{2}=I-\mathbf{T T}^{*}$. We define

$$
\Theta_{T}(\lambda)=-\mathbf{T} J_{T}+\lambda J_{T^{*}} Q_{T^{*}}\left(I-\lambda \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \mid \mathfrak{D}_{T}
$$

for those complex numbers λ.for which $\left(I-\lambda T^{*}\right)^{-1}$ exists. It will be shown in
the next section that \mathbf{H} is a Hilbert space, so that Θ_{T} is in fact the characteristic function of \mathbf{T}.

Theorem 11.1. For $\lambda \in D, \Theta_{T}(\lambda) \varphi=\varphi_{*} \Theta(\lambda)$.
Proof. It suffices to show that $-\mathrm{T} J_{T} \varphi=\varphi_{*} \Theta_{0}$ and, for $n=1,2,3, \ldots$, $J_{T *} Q_{T^{*}} \mathrm{~T}^{* n-1} J_{T} Q_{T} \varphi=\varphi_{*} \Theta_{n}$. By (10.3) and Corollary 10.2, we have for all $\dot{f} \in \mathcal{D}$,

$$
-\mathbf{T} J_{T} \varphi(Q f)=-\mathbf{T} \varphi(J Q f)=-\mathbf{T}\left\{e^{-i t}\left(\Theta-\Theta_{0}\right) f \oplus e^{-i t} \Delta f\right\}
$$

Lemma 9.2 and (9.3) then give us

$$
\begin{gathered}
-\mathbf{T} J_{T} \varphi(Q f)=-\left\{\left[\left(\Theta-\Theta_{0}\right) f-\Theta\left(I-\Theta_{0}^{*} \Theta_{0}\right) f\right] \oplus\left[\Delta f-\Delta\left(I-\Theta_{0}^{*} \Theta_{0}\right) f\right]\right\}= \\
=\left(I-\Theta \Theta_{0}^{*}\right) \Theta_{0} f \oplus-\Delta \Theta_{0}^{*} \Theta_{0} f=\varphi_{*}\left(Q_{*} \Theta_{0} f\right)=\varphi_{*} \Theta_{0}(Q f)
\end{gathered}
$$

Since vectors of the form $Q f$, with $f \in \mathfrak{D}$, are dense in \mathfrak{D}, we conclude that $-\mathbf{T} J_{T} \varphi=$ $=\varphi_{*} \Theta_{0}$.

Now let us assume that for all $f \in \mathfrak{D}$ and for some $n \geqq 1$ we have

$$
\begin{equation*}
\mathbf{T}^{* n-1} J_{T} Q_{T} \varphi f=e^{-i n t}\left(\Theta-\sum_{k=0}^{n-1} e^{i k t} \Theta_{k}\right) f \oplus e^{-i n t} \Delta f \tag{11.1}
\end{equation*}
$$

By (10.3) and Corollary 10.2, (11.1) is true for $n=1$. If we let

$$
u=e^{-i n t}\left(\Theta-\sum_{k=0}^{n-1} e^{i k t} \Theta_{k}\right) f
$$

then $u_{0}=\Theta_{n} f$, and we obtain from (8.2) (assuming (11.1))

$$
\begin{aligned}
\mathbf{T}^{* n} J_{\mathbf{T}} Q_{\mathbf{T}} \varphi f & =e^{-i t}\left[e^{-i n t}\left(\Theta-\sum_{k=0}^{n-1} e^{i k t} \Theta_{k}\right) f-\Theta_{n} f\right] \oplus e^{-i(n+1) t} \Delta f= \\
& =e^{-i(n+1) t}\left(\Theta-\sum_{k=0}^{n} e^{i k t} \Theta_{k}\right) f \oplus e^{-i(n+1) t} \Delta f
\end{aligned}
$$

Hence, by induction, (11.1) is true for all $n \geqq 1$.
It follows from (11.1) and Proposition 9.1 that, for $n=1,2,3, \ldots$ and $f \in \mathfrak{D}$,

$$
\begin{gathered}
Q_{T^{*}}\left(J_{T^{*}} Q_{T^{*}} \mathbf{T}^{* n-1} J_{T} Q_{T} \varphi f\right)=\left(I-\mathbf{T T}^{*}\right)\left[e^{-i n t}\left(\Theta-\sum_{k=0}^{n-1} e^{i k t} \Theta_{k}\right) f \oplus e^{-i n t} \Delta f\right]= \\
\vdots=\left(I-\Theta \Theta_{0}^{*}\right) \Theta_{n} f \oplus-\Delta \Theta_{0}^{*} \Theta_{n} f=\varphi_{*}\left(Q_{*} \Theta_{n} f\right)=Q_{T^{*}} \varphi_{*} \Theta_{n} f
\end{gathered}
$$

(The last two steps used (10.4) and Corollary 10.2.) Since $Q_{T^{*}}$ is injective on $\mathfrak{D}_{T *}$, we conclude that $J_{T *} Q_{T *} \mathrm{~T}^{* n-1} J_{T} Q_{T} \varphi=\varphi_{*} \Theta_{n}$ for $n=1,2,3, \ldots$ and the theorem is proved.
12. Positivity of H. In this section we prove that, with the inner product [., .], \mathbf{H} is a Hilbert space. We will need the following results.

Lemma 12.1. (cf. [15, Sec. VI.3.2]) Suppose that the vector $h \in \mathbf{H}$ satisfies

$$
\begin{equation*}
\left(I-\mathbf{T}^{*} \mathbf{T}\right) \mathbf{T}^{n} h=0=\left(I-\mathbf{T}^{*}\right) \mathbf{T}^{* n} h \tag{12.1}
\end{equation*}
$$

for all $n=0,1,2, \ldots$. Then $h=0$.
Proof. We can write h in the form $h=u \oplus v$. Take $n \geqq 0$, and assume that $u_{k}=0$ for all $k<n$; when $n=0$, this is assuming nothing about u. Then (8.2) shows that

$$
\mathbf{T}^{* n} h=e^{-i n t} u \oplus e^{-i n t} v .
$$

By (12.1) and Proposition 9.1, we deduce

$$
0=\left(I-\mathbf{T T}^{*}\right) \mathbf{T}^{* n} h=\left(I-\Theta \Theta_{0}^{*}\right) u_{n} \oplus-\Delta \Theta_{0}^{*} u_{n}
$$

In particular, $\left(I-\Theta_{0} \Theta_{0}^{*}\right) u_{n}=0$, and since Θ is purely contractive, we have $u_{n}=0$. Therefore, by induction, $u=0$ and $h=0 \oplus v$.

Since $h \in \mathbf{H}, v$ must satisfy $J \Delta v=\sum_{k=1}^{\infty} e^{-i k t} f_{k}$ for some vectors $f_{k} \in \mathfrak{D}(k=1,2, \ldots)$. Take $n \geqq 0$, and assume that $f_{k}=0$ for all $k \leqq n$; again, this is a null assumption when $n=0$. Then clearly we have, using (9.3), $\mathrm{T}^{n} h=0 \oplus e^{i n t} v$, and also

$$
J \Delta\left(e^{i m t} v\right)=\sum_{k=1}^{\infty} e^{-i k t} f_{n+k}
$$

By (12.1) and Proposition 9.1, we deduce

$$
0=\left(I-\mathbf{T}^{*} \mathbf{T}\right) \mathbf{T}^{n} h=e^{-i t}\left(\Theta-\Theta_{0}\right) f_{n+1} \oplus e^{-i t} \Delta f_{n+1}
$$

Therefore we have $\left(\Theta-\Theta_{0}\right) f_{n+1}=0=\Delta f_{n+1}$ and hence

$$
0=\Theta^{*}\left(\Theta-\Theta_{0}\right) f_{n+1}+J \Delta^{2} f_{n+1}=\left(I-\Theta^{*} \Theta_{0}\right) f_{n+1}
$$

In particular, $\left(I-\Theta_{0}^{*} \Theta_{0}\right) f_{n+1}=0$, and since Θ is purely contractive, we have $f_{n+1}=0$. We conclude (by induction) that $J \Delta v=0$, and thus $v=0\left(v \in \overline{\left.\Delta L^{2} \mathfrak{i}\right)}\right)$. Therefore $h=0$.

Theorem 12.2. Let \mathfrak{U} be a neighborhood of zero contained in the unit disk D. Then H is the closed linear span of vectors of the form $\left(I-\mu \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f$ and $(I-\mu \mathbf{T})^{-1} Q_{T^{*}} \varphi_{*} g$, where $\mu \in \mathfrak{U}, f \in \mathfrak{D}$, and $g \in \mathfrak{D}_{*}$.

Proof. Since Thas spectrum in the closed unit disk (Sec. 8), both $\left(I-\mu \mathbf{T}^{*}\right)^{-1}$ and $(I-\mu \mathbf{T})^{-1}$ are defined for $\mu \in \mathbb{H}$.

Suppose that the vector $h \in \mathbf{H}$ is orthogonal to $\left(I-\mu \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f$ and $(I-\mu \mathbf{T})^{-1} Q_{T *} \varphi_{*} g$, for all $\mu \in \mathfrak{H}, f \in \mathfrak{D}$. and $g \in \mathfrak{D}_{*}$. The theorem will be proved once we show that $h=0$.

We have, for all $f \in \mathfrak{D}$ and $\mu \in \mathfrak{U}$,

$$
0=\left[h,\left(I-\mu \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f\right]=\left[J_{T} Q_{T}(I-\bar{\mu} \mathbf{T})^{-1} h, \varphi f\right],
$$

and thus, since \mathfrak{D}_{T} is a Hilbert space, $J_{T} Q_{T}(I-\bar{\mu})^{-1} h=0$ for all $\mu \in \mathcal{U}$. This is true only if $J_{T} Q_{T} \mathbf{T}^{\mu} h=0$ for $n=0,1,2, \ldots$, and hence

$$
\begin{equation*}
\left(I-\mathbf{T}^{*} \mathbf{T}\right) \mathbf{T}^{n} h=0 \quad \text { for } \quad n=0,1,2, \ldots \tag{12.2}
\end{equation*}
$$

Also, for $g \in \mathfrak{D}_{*}$ and $\mu \in \mathfrak{U}$, we have

$$
0=\left[h,(I-\mu \mathbf{T})^{-1} Q_{T^{*}} \varphi_{*} g\right]=\left[Q_{T^{*}}\left(I-\bar{\mu} \mathbf{T}^{*}\right)^{-1} h, \varphi_{*} g\right]
$$

and so it follows, as above, that

$$
\begin{equation*}
\left(I-\mathrm{TT}^{*}\right) \mathrm{T}^{* n} h=0 \text { for } n=0,1,2, \ldots \tag{12.3}
\end{equation*}
$$

(12.2) and (12.3), together with Lemma 12.1, imply that $h=0$.
\mathbf{H} is known to be regular, and thus (by [2, Theorem V.3.4]) \mathbf{H} is a Krein space. Therefore, in order to prove \mathbf{H} is a Hilbert space it suffices to show that it is positive. Obviously we need only show that $[h, h] \geqq 0$ for a set of vectors h dense in \mathbf{H}, and in particular (by Theorem 12.2) for vectors of the form

$$
\begin{equation*}
h=\sum_{i=1}^{n}\left\{\left(I-\mu_{i} \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f_{i}+\left(I-\mu_{i} \mathbf{T}\right)^{-1} Q_{T^{*}} \varphi_{*} g_{i}\right\} \tag{12.4}
\end{equation*}
$$

where $n \geqq 1$ and, for $i=1,2, \ldots, n, f_{i} \in \mathfrak{D}, g_{i} \in \mathfrak{D}_{*}$, and $\mu_{i} \in \mathfrak{U}$, some neighborhood of zero in the unit disk.

For the vector h defined by (12.4) we have

$$
\begin{aligned}
{[h, h]=} & \sum_{i=1}^{n} \sum_{j=1}^{n}\left\{\left[\left(I-\mu_{i} \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f_{i},\left(I-\mu_{j} \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f_{j}\right]+\right. \\
& +\left[\left(I-\mu_{i} \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f_{i},\left(I-\mu_{j} \mathbf{T}\right)^{-1} Q_{T^{*}} \varphi_{*} g_{j}\right]+ \\
& +\left[\left(I-\mu_{i} \mathbf{T}\right)^{-1} Q_{T^{*}} \varphi_{*} g_{i},\left(I-\mu_{j} \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f_{j}\right]+ \\
& \left.+\left[\left(I-\mu_{i} \mathbf{T}\right)^{-1} Q_{T^{*}} \varphi_{*} g_{i},\left(I-\mu_{j} \mathbf{T}\right)^{-1} Q_{T^{*}} \varphi_{*} g_{j}\right]\right\}= \\
= & \sum_{i=1}^{n} \sum_{j=1}^{n}\left\{\left[\varphi^{-1} Q_{T}\left(I-\bar{\mu}_{j} \mathbf{T}\right)^{-1}\left(I-\mu_{i} \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f_{i}, f_{j}\right]+\right. \\
& +\left[\varphi_{*}^{-1} J_{T^{*}} Q_{T^{*}}\left(I-\bar{\mu}_{j} \mathbf{T}^{*}\right)^{-1}\left(I-\mu_{i} \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f_{i}, g_{j}\right]+ \\
& +\left[\varphi^{-1} Q_{T}\left(I-\bar{\mu}_{j} \mathbf{T}\right)^{-1}\left(I-\mu_{i} \mathbf{T}\right)^{-1} Q_{T^{*}} \varphi_{*} g_{i}, f_{j}\right]+ \\
& \left.+\left[\varphi_{*}^{-1} J_{T} Q_{T^{*}}\left(I-\bar{\mu}_{j} \mathbf{T}^{*}\right)^{-1}\left(I-\mu_{i} \mathbf{T}\right)^{-1} Q_{T^{*}} \varphi_{*} g_{i}, g_{j}\right]\right\}
\end{aligned}
$$

In the above calculation it should be recalled that φ is unitary from the Krein space D to the Krein space \mathfrak{D}_{T}, with the inner product [$J_{T} .$, .]. A similar observation applies to φ_{*} :

It can be shown ([10, Sec. IV.5]; cf. [11, Sec. 4] and [15, Sec.VI.1.1]) that, for خ. $\mu \in D$,

$$
\begin{gathered}
I-\Theta_{T}(\mu)^{*} \Theta_{T}(\lambda)=(1-\lambda \bar{\mu}) Q_{T}(I-\bar{\mu} \mathbf{T})^{-1}\left(I-\lambda \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \\
I-\Theta_{T}(\bar{\mu}) \Theta_{T}(\bar{\lambda})^{*}=(1-\lambda \bar{\mu}) J_{T^{*}} Q_{T^{*}}\left(I-\bar{\mu} \mathbf{T}^{*}\right)^{-1}(I-\lambda \mathbf{T})^{-1} Q_{T^{*}} \\
\Theta_{T}(\lambda)-\Theta_{T}(\bar{\mu})=(\lambda-\bar{\mu}) J_{T^{*}} Q_{T^{*}}\left(I-\bar{\mu} \mathbf{T}^{*}\right)^{-1}\left(I-\lambda \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T}
\end{gathered}
$$

and

$$
\Theta_{T}(\bar{\lambda})^{*}-\Theta_{T}(\mu)^{*}=(\lambda-\bar{\mu}) Q_{T}(I-\bar{\mu} \mathbf{T})^{-1}(I-\lambda \mathbf{T})^{-1} Q_{T^{*}}
$$

Hence, using Theorem 11.1, we have

$$
\begin{align*}
{[h, h] } & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left\{\left[\left(1-\mu_{i} \bar{\mu}_{j}\right)^{-1}\left(I-\Theta\left(\mu_{j}\right)^{*} \Theta\left(\mu_{i}\right)\right) f_{i}, f_{i}\right]+\right. \tag{12.5}\\
& +\left[\left(\mu_{i}-\bar{\mu}_{j}\right)^{-1}\left(\Theta\left(\mu_{i}\right)-\Theta\left(\bar{\mu}_{j}\right)\right) f_{i}, g_{j}\right]+ \\
& +\left[\left(\mu_{i}-\bar{\mu}_{j}\right)^{-1}\left(\Theta\left(\bar{\mu}_{i}\right)^{*}-\Theta\left(\mu_{j}\right)^{*}\right) g_{i}, f_{j}\right]+ \\
& \left.+\left[\left(1-\mu_{i} \bar{\mu}_{j}\right)^{-1}\left(I-\Theta\left(\bar{\mu}_{j}\right) \Theta\left(\bar{\mu}_{i}\right)^{*}\right) g_{i}, g_{j}\right]\right\}
\end{align*}
$$

Equation (12.5) can be rewritten in the form

$$
\begin{equation*}
[h, h]=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[k\left(\mu_{j}, \mu_{j}\right)\left(f_{i} \oplus g_{i}\right),\left(f_{j} \oplus g_{j}\right)\right] \tag{12.6}
\end{equation*}
$$

where $k(\mu, \lambda)$ is the operator matrix given by [11, Equation (6.1)]. By [11, Theorem 3], $k(\mu, \lambda)$ is positive definite when Θ is purely contractive and fundamentally reducible, and it therefore follows that $[h, h] \geqq 0$. Thus \mathbf{H} is a Hilbert space.
13. The functional model for a bounded purely contractive analytic function: the main theorem.

Theorem 13.1. Let $\Theta(\lambda): \mathfrak{D} \rightarrow \mathfrak{D}_{*}$ be a bounded purely contractive fundamentally reducible analytic function. Then the Krein space •

$$
\mathbf{H}=\left[H^{2}\left(\mathcal{D}_{*}\right) \oplus \overline{\Delta L^{2}(\mathcal{D})}\right] \ominus\left\{\Theta w \oplus \Delta w: w \in H^{2}(\mathfrak{D})\right\}
$$

$i s_{\mathbf{4}}^{\boldsymbol{\bullet}}$ a Hilbert space and the operator \mathbf{T} on H defined by

$$
\mathbf{T}^{*}(u \oplus v)=e^{-i t}\left(u-u_{0}\right) \oplus e^{-i t} v \quad(u \oplus v \in \mathbf{H})
$$

is completely non-unitary. The function Θ coincides with the characteristic function of \mathbf{T}. The operator \mathbf{U} on the Krein space $\mathbf{K}=L^{2}\left(\mathfrak{D}_{\star}\right) \oplus \overline{\Delta L^{2}(\mathfrak{D})}$ defined by $\mathbf{U}(u \oplus v)=$ $=e^{i t} u \bar{\oplus} e^{i t} v(u \oplus v \in \mathbf{K})$ is unitarily equivalent to the unitary dilation of \mathbf{T} given by the construction in [7].

Proof. It was shown in Sec. 12 that \mathbf{H} is a Hilbert space, and Lemma 12.1 shows that T is completely non-unitary. Θ coincides with Θ_{T} by virtue of

Theorem 11.1. Finally, Theorem 5.1 shows that \mathbf{U} is unitarily equivalent to the dilation of \mathbf{T} given in [7].

The construction of the dilation in [7] defines, in a natural way, a fundamental symmetry on the dilation space (referred to in Sec. 4 of this paper). For the space K above, this fundamental symmetry is not the obvious one $\left(J_{*} \oplus I\right)$, but the one defined as follows:

Let $\mathbf{M}=\left\{u \oplus 0: u \perp H^{2}\left(\mathfrak{D}_{*}\right)\right\}$. Then we have

$$
\mathbf{K}=\mathbf{M} \oplus \mathbf{K}_{+}=\mathbf{M} \oplus \mathbf{H} \oplus \mathbf{G}
$$

(see Sec. 8). We can therefore define a fundamental symmetry \mathbf{J} on \mathbf{K} by

$$
\begin{gathered}
\mathbf{J}(u \oplus 0)=J_{*} u \oplus 0 \quad(u \oplus 0 \in \mathbf{M}), \quad \mathbf{J}(u \oplus v)=u \oplus v \quad(u \oplus v \in \mathbf{H}), \\
\mathbf{J}(\Theta w \oplus \Delta w)=\Theta J w \oplus \Delta J w \quad(\Theta w \oplus \Delta w \in \mathbf{G}) .
\end{gathered}
$$

\mathbf{J} is a fundamental symmetry since \mathbf{H} is a Hilbert space and, for $w \in H^{2}(\mathfrak{D})$, we have

$$
[\Theta J w \oplus \Delta J w, \Theta w \oplus \Delta w]=\left[\Theta^{*} \Theta J w+\left(I-\Theta^{*} \Theta\right) J w, w\right]=[J w, w] \geqq 0
$$

14. Comparison with the model of Ball. In this section we determine the relationship between the model of Ball [1] and the model described in Theorem 13.1.

Assume that Θ satisfies the conditions of Theorem 13.1 and let $k(\mu, \lambda)$ be the operator matrix given by [11, Equation (6.1)]. Then the matrix

$$
\begin{equation*}
k^{\prime}(\mu, \lambda)=\left(I \oplus J_{*}\right) k(\lambda, \bar{\mu})(J \oplus I) \tag{14.1}
\end{equation*}
$$

coincides with the kernel matrix defined in [1, Theorem 2] (cf. [11, Sec. 6]). Also, as in [11], we will define $\bar{\Theta}(\lambda)=\Theta(\bar{\lambda})^{*}$.

Let us now consider an element $u \oplus v$ in \mathbf{H}, so that $u \in H^{2}\left(\mathcal{D}_{*}\right)$ and $v \in \overline{\Delta L^{2}(\mathfrak{D})}$, with $\Theta^{*} u+J \Delta v \perp H^{2}(\mathfrak{D})$. Therefore, if w is defined by

$$
w\left(e^{i t}\right)=e^{-i t}\left[\Theta^{*} u+J \Delta v\right](-t)
$$

then $w \in H^{2}(\mathcal{D})$. Thus we can define a map Γ from H to $H^{2}(\mathcal{D}) \oplus H^{2}\left(\mathcal{D}_{*}\right)$ by

$$
\Gamma(u \oplus v)=w \oplus J_{*} u
$$

We will prove that $\Gamma \mathrm{H}$, normed so that Γ is unitary, is the Hilbert space $\mathcal{D}(B)$ considered by Ball [1, Sec. 3.1].

Let us take $f \in \mathfrak{D}$ and $\mu \in D$. We denote by f^{μ} and f_{μ} the functions $f^{\mu}(\lambda)=$ $=(1-\lambda \mu)^{-1} f(\lambda \in D) \quad$ (cf. [15, Sec. V.8]) and $f_{\mu}(t)=\left(e^{i t}-\mu\right)^{-1} f(t \in[0,2 \pi])$. It is clear that $f^{\mu} \in H^{2}(\mathfrak{D})$ and $f_{\mu} \in L^{2}(\mathfrak{D})$. From the boundedness of Θ, and the fact that $(\lambda-\mu)^{-1}(\Theta(\lambda)-\Theta(\mu)) f$ is analytic for $\lambda \in D$, we conclude that the function

$$
\begin{equation*}
u=(\Theta-\Theta(\mu)) f_{\mu} \tag{14.2}
\end{equation*}
$$

s in $H^{2}\left(\mathcal{D}_{*}\right)$, and the function

$$
\begin{equation*}
w=(I-\bar{\Theta} \Theta(\mu)) f^{\mu} \tag{14.3}
\end{equation*}
$$

is in $H^{2}(\mathcal{D})$. It is immediate from the definitions of $k, \boldsymbol{\theta}_{,}, f^{\mu}$, and f_{μ}, that $w(\lambda) \oplus$ $\oplus u(\lambda)=k(\lambda, \mu)(f \oplus 0)$, for all $\lambda \in D$.

Let us also consider the function

$$
\begin{equation*}
v=\Delta f_{\mu} \tag{14.4}
\end{equation*}
$$

in $\overline{\Delta L^{2}(\mathcal{D})}$. Then we have, using (14.2) and (14.4),

$$
\Theta^{*} u+J \Delta v=\Theta^{*}(\Theta-\Theta(\mu)) f_{\mu}+\left(I-\Theta^{*} \Theta\right) f_{\mu}=\left(I-\Theta^{*} \Theta(\mu)\right) f_{\mu}
$$

and hence

$$
\begin{aligned}
e^{-i t}\left[\Theta^{*} u+J \Delta v\right](-t) & =e^{-i t}\left(I-\Theta\left(e^{-i t}\right)^{*} \Theta(\mu)\right)\left(e^{-i t}-\mu\right)^{-1} f= \\
& =\left(I-\bar{\Theta}\left(e^{i t}\right) \Theta(\mu)\right)\left(1-e^{i t} \mu\right)^{-1} f=w\left(e^{i t}\right)
\end{aligned}
$$

where w is given by (14.3). Therefore $u \oplus v \in \mathbf{H}$ and $\Gamma(u \oplus v)=w \oplus J_{*} u$, i.e.,

$$
\Gamma(u \oplus v)(\lambda)=\left(I \oplus J_{*}\right) k(\lambda, \mu)(f \oplus 0)
$$

By using (8.2), (14.2), and (14.4), we obtain

$$
\begin{gathered}
\left(I-\mu \mathbf{T}^{*}\right)(u \oplus v)=\left[u-\mu e^{-i t}\left(u-u_{0}\right)\right] \oplus\left[v-\mu e^{-i t} v\right]= \\
=e^{-i t}\left[\left(e^{i t}-\mu\right) u+\mu u_{0}\right] \oplus e^{-i t}\left(e^{i t}-\mu\right) v=e^{-i t}\left[(\Theta-\Theta(\mu)) f-\left(\Theta_{0}-\Theta(\mu)\right) f\right] \oplus e^{-i t} \Delta f= \\
=e^{-i t}\left(\Theta-\Theta_{0}\right) f \oplus e^{-i t} \Delta f .
\end{gathered}
$$

It therefore follows, using (10.3) and Corollary 10.2, that

$$
\left(I-\mu \mathbf{T}^{*}\right)(u \oplus v)=\varphi J Q f=J_{T} Q_{T} \varphi f,
$$

and thus we obtain

$$
\begin{equation*}
\Gamma\left(\left(I-\mu \mathbf{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f\right)(\lambda)=\left(I \oplus J_{*}\right) k(\bar{\lambda}, \mu)(f \oplus 0) \tag{14.5}
\end{equation*}
$$

Let us take $g \in \mathcal{D}_{*}$ and $\mu \in D$, and consider the functions $u^{\prime}=\left(I-\Theta \Theta(\bar{\mu})^{*}\right) g^{\mu}$, $v^{\prime}=-\Delta \Theta(\bar{\mu})^{*} g^{\mu}$, and $w^{\prime}=(\bar{\Theta}-\bar{\Theta}(\mu)) g_{\mu}$. Then we obtain, in a manner similar to that used in deriving (14.5), the formula

$$
\begin{equation*}
\Gamma\left((I-\mu \mathbf{T})^{-1} Q_{T^{*}} \varphi_{*} g\right)(\lambda)=\left(I \oplus J_{*}\right) k(\lambda, \mu)(0 \oplus g) \tag{14.6}
\end{equation*}
$$

By Theorem 12.2, \mathbf{H} is the closed linear span of vectors of the form $\left(I-\mu \mathrm{T}^{*}\right)^{-1} J_{T} Q_{T} \varphi f$ and $(I-\mu \mathrm{T})^{-1} Q_{T *} \varphi_{*} g$, where $f \in \mathfrak{D}, g \in \mathcal{D}_{*}$, and $\mu \in D$. The space $\mathfrak{D}(B)$ in $[1]$ is defined so that a dense subset is that spanned by vectors which are pairs of functions (in λ) of the form $\left(I \oplus J_{*}\right) k(\bar{\lambda}, \mu)(f \oplus 0)$ and $\left(I \oplus J_{*}\right) k(\lambda, \mu)(0 \oplus g)$, where $f \in \mathcal{D}, g \in \mathfrak{D}_{*}$, and $\mu \in D$. (Recall that the kernel matrix in [1] is given by (14.1).) Thus we will have $\Gamma \mathrm{H}=\mathfrak{D}(B)$, with Γ unitary, once we have checked that the norm induced by Γ, on the dense subset of $D(B)$ described above, is the same as that defined in [1].

Consider the vector $h \in H$ defined by (12.4). Then, by (14.5) and (14.6),

$$
(\Gamma h)(\lambda)=\left(I \oplus J_{*}\right) \sum_{i=1}^{n} k\left(\lambda_{1}, \mu_{i}\right)\left(f_{i} \oplus g_{i}\right)=\sum_{i=1}^{n} k^{\prime}\left(\bar{\mu}_{i}, \lambda\right)\left(J f_{i} \oplus g_{i}\right)
$$

(using (14.1)), and it follows from the definition of the inner product in [1] that

$$
\begin{aligned}
\|\Gamma h\|^{2} & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(k^{\prime}\left(\bar{\mu}_{i}, \bar{\mu}_{j}\right)\left(J f_{i} \oplus g_{i}\right),\left(J f_{j} \oplus g_{j}\right)\right)= \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left(I \oplus J_{*}\right) k\left(\mu_{j}, \mu_{i}\right)\left(f_{i} \oplus g_{i}\right),\left(J f_{j} \oplus g_{j}\right)\right)= \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\left(J \oplus J_{*}\right) k\left(\mu_{j}, \mu_{i}\right)\left(f_{i} \oplus g_{i}\right),\left(f_{j} \oplus g_{j}\right)\right) .
\end{aligned}
$$

But the inner product (.,.) on $\mathfrak{D} \oplus \mathfrak{D}_{*}$ is the $J \oplus J_{*}$-inner product, and hence

$$
\|\Gamma h\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[k\left(\mu_{j}, \mu_{i}\right)\left(f_{i} \oplus g_{i}\right),\left(f_{j} \oplus g_{j}\right)\right] .
$$

Consequently, we have (by (12.6)) $\|\Gamma h\|^{2}=[h, h]$, and so $\Gamma \mathbf{H}=\mathfrak{D}(B)$ with Γ unitary.

In [1] the characteristic function B of an operator T is taken to be $B=\bar{\Theta}_{T}$ (cf. [11, Sec. 6]), and so in comparing the two models we should take $B=\overline{\boldsymbol{\theta}}$. In Ball's model, B is shown to be the characteristic function of the operator R on $\mathfrak{D}(B)$ defined by

$$
R(w \oplus u)=e^{-i t}\left(w-w_{0}\right) \oplus\left(e^{i t} u-\bar{B} J w_{0}\right)
$$

We show now that $R \Gamma=\Gamma \mathbf{T}$.
For $u \oplus v \in \mathbf{H}$, we have defined $\Gamma(u \oplus v)=w \oplus J_{*} u$, where $w\left(e^{i t}\right)=$ $=e^{-i t}\left[\Theta^{*} u+J \Delta v\right](-t)$. Thus w_{0} is the vector f_{1} given by (9.2) and, using (9.3), we have

$$
\mathbf{T}(u \oplus v)=\left(e^{i t} u-\Theta w_{0}\right) \oplus\left(e^{i t} v-\Delta w_{0}\right)
$$

Note that

$$
\Theta^{*}\left(e^{i t} u-\Theta w_{0}\right)+J \Delta\left(e^{i t} v-\Delta w_{0}\right)=e^{i t}\left(\Theta^{*} u+J \Delta v\right)-w_{0}
$$

and hence

$$
\Gamma \mathrm{T}(u \oplus v)=e^{-i t}\left(w-w_{0}\right) \oplus J_{*}\left(e^{i t} u-\Theta w_{0}\right)
$$

Since $B=\bar{\Theta}$, we have $\bar{B}=J_{*} \Theta J$, and thus we conclude that

$$
R \Gamma(u \oplus v)=R\left(w \oplus J_{*} u\right)=e^{-i t}\left(w-w_{0}\right) \oplus\left(e^{i t} J_{*} u-J_{*} \Theta w_{0}\right)=\Gamma \mathbf{T}(u \oplus v)
$$

Theorem 14.1. Suppose Θ satisfies the conditions of Theorem 13.1, and let \mathbf{T} be the operator, defined in that theorem, having Θ as its characteristic function. Then
\mathbf{T} is unitarily equivalent to the operator R defined in [1], with $B=\bar{\Theta}$. The equivalence is implemented by the unitary operator $\Gamma: \mathbf{H} \rightarrow \mathcal{D}(B)$ given by $\Gamma(u \oplus v)=w \oplus J_{*} u$ ($u \oplus v \in \mathbf{H}$), where

$$
w\left(e^{i t}\right)=e^{-i t}\left[\Theta^{*} u+J \Delta v\right](-t) .
$$

References

[1] J. A. Ball, Models for noncontractions, J. Math. Anal. Appl., 52 (1975), 235-254.
[2] J. Bognár, Indefinite inner product spaces, Springer-Verlag (New York, 1974).
[3] V. M. Brodskil, On operator nodes and their characteristic functions, Soviet Math. Dokl., 12 (1971), 696-700. (Translated from Dokl. Akad. Nauk SSSR, 198 (1971), 16-19.)
[4] V. M. Brodskĭ́, I. C. Gohberg and M. G. Kreĭn, Determination and fundamental properties of the characteristic function of a J-node, Functional Anal. Appl., 4 (1970), 78-80. (Translated from Funkcional Anal. i Priložen., 4:1 (1970), 88-90.)
[5] V. M. Brodskĭ̀, I. C. Gohberg and M. G. Kreĭn, On characteristic functions of an invertible operator, Acta Sci. Math., 32 (1971), 141-164. (Russian).
[6] D. N. Clark, On models for noncontractions, Acta Sci. Math., 36 (1974), 5-16.
[7] Ch. Davis, J-unitary dilation of a general operator, Acta Sci. Math., 31 (1970), 75-86.
[8] Ch. Davis and C. Foias, Operators with bounded characteristic function and their J-unitary dilation, Acta Sci. Math., 32 (1971), 127-139.
[9] T. L. Kriete, Canonical models and the self-adjoint parts of dissipative operators, J. Funct. Anal., 23 (1976), 39-94.
[10] B. W. McEnns, Characteristic functions and the geometry of dilation spaces, Ph. D. thesis, University of Toronto (1977).
[11] B. W. McEnnis, Purely contractive analytic functions and characteristic functions of noncontractions, Acta Sci. Math., 41 (1979), 161-172.
[12] B. W. McEnnis, Shifts on indefinite inner product spaces, Pacific J. Math., 81 (1979), 113-130.
[13] B. W. McEnnis, Characteristic functions and dilations of noncontractions, J. Operator Theory, 3 (1980), 71-87.
[14] G. C. Rota, On models for linear operators, Comm. Pure Appl. Math., 13 (1960), 469-472.
[15] B. Sz.-NAGY and C. FoiAs, Harmonic analysis of operators on Hilbert space, Akadémiai Kiadó -North Holland (Budapest-Amsterdam-London, 1970).

DEPARTMENT OF MATHEMATICS

THE OHIO STATE UNIVERSITY
MARION, OHIO, USA

