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C,-minimal positive approximants

DONALD D. ROGERS and JOSEPH D. WARD

§ 1. Introduction

~ In [8], P. R. HALMOs initiated the study of positive operator approximation.
Among other things he established the proximinality of the convex set of positive
operators on Hilbert space by producing a canonical best positive approximant.
This approximant, hereafter referred to as the Halmos approximant was later shown
by R. H. BouLDIN [2] to be maximal, in the sense of order, among all positive approxi-
mants to a given operator. :

This paper originated in the attempt to find a canonical minimal approximant
since canonical approximants shed much light on the structure of the set of best
approximants [3], [4], [5]. As will be shown in 4, there need not be a positive approxi-
mant minimal in the sense of order. Nevertheless, we construct a positive approxi-
mant P, that is minimal in a sense given by the following theorem, in which
denotes the usual C, norm on finite matrices.

p

.Theorem 1.1. Each operator A=B+iC on a finite dimensional complex Hil-
bert space $ has a positive approximant P,, such that A— P,, is a normal operator and
such that for each positive operator Q#P, it follows that |A—Ql,>|A—P,l,
Jor all finite p sufficiently large. This operator P, will be referred to as the C,-minimal
positive approximant of A.

In section 2, relevant background information is given along with needed nota-
tion. Section 3 contains theé proof of the main theorem, the heart of which involves
an inductive construction. There are many open questions related to our result, and
these questions along with some examples comprise section 4.
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§ 2. Preliminaries

The term operator shall mean a bounded linear operator on a complex Hilbert
space, and the operator norm of an operator X is denoted by | X|=sup {[|Xf||: f€ 9,
I fll=1}. If M is a set of operators, then an operator Y,cM is an PM-approximant
of X if | X—Y,|=inf {IX—Y||: YeM}; approximants using other norms are defined
similarly. We shall follow Halmos’s convention of using “positive operator” as
synonymous with “nonnegative operator’” and *“‘approximant” in place of ‘“best
approximant”. For the reader’s convenience we restate the following results proved
by Halmos in [8].

Theorem 2.1. If B+iC is the usual Cartesian representation for the operator
A, then
inf{dA—P: P=0}=inf {r: r = |C|, B+(r*—C?2 = 0}.
The first infimum shall henceforth be denoted 6(4).

Theorem 2.2. If B+iC is the usual Cartesian representation for the operator
A and if P,,=B+((5(A))2—C2)1/2, then Py is a positive approximant of A.

The operator P, is the Halmos approximant referred to in the introduction.

Theorem 2.3. Any operator A has a representation of the form P+ Us(A)
where P=0 and U is unitary with negative real part. If A is not a positive operator,
then the above representation is unique.

In another direction, the notion of a strict approximant was introduced by
J. R. Rick [10] in the course of his investigations into /_ approximation as a method
of selecting one approximant among many. A full discussion of strict approximants
would lead us too far astray but, roughly speaking, to find a strict approximant
one minimizes as much as one can. The following example will serve to illustrate.

Example. Consider the vector v=(2i,i,0) viewed as an element of 1:(3).
The distance of v to the set of positive functions is 2, and there are clearly an infinite
number of positive approximants. The vector (0, 0, 0), however, is the unique strict
approximant since 0 is the nearest nonnegative number to 2i, i and 0.

It was later shown by B. MITIAGIN [9] and J. DescLouX [6] that the strict approxi-
mants have an additional approximation property.

Theorem 2.4. Let I,(n) denote n-dimensional complex Cartesian space endowed
with the I, norm and M a subspace of lp(h). If xel,(n)\M, let y, denote an approxi-
mant from M. Then y=3im y, exists, and y is the strict approximant of x in I_ (n).

The construction in the next section is modelled after the construction of the
strict approximant, although the fact that the space of nXn matrices is not a com-
mutative algebra introduces some new twists into the construction.
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§ 3. The Main Result

In this section the proof of Theorem 1.1 is given. The: first lemma is stated in
more generality than is needed, but it seems of interest in its own right..

Lemma 3.1. Let € be a norm-closed convex set of compact operators on a
uniformly convex Banach space B0. Define d=inf {|X|: XcC} and

D = {X€C: |X| =d}.

If © is separable, then there exist unit vectors y,z€®B such that for every X €D it
Jollows that Xy=dz. In particular, if D is in D, then

M ker(X—D) > {0}.
xin®D
Proof. Let {X;, X;, ...} be dense in D; define operators Y,€D to be the
corresponding Cesaro means, i.e. Y,=(X;+...4+X,)/n. Because each Y, is a com-
pact operator, there exists a unit vector y,€%B such that {Y,y,|=d; define the
unit vector z,=Y,y,/d. Since B is reflexive, the sequences {y,} and {z,} have weak
cluster points in the unit ball of B. Thus it is possible to find vectors y, z and. sub-
sequences {y, ;} and {z, ;} that converge weakly to y and to z. Fix k=1. Because
X, is compact it follows that X,(y, ;) converges to X,(y) in norm, as j—co. But
X.(y., )=dz, ; for all j sufficiently large, by the definition of Y, ; and the fact
that B is uniformly convex. Thus dz,; converges to X,(») in norm. Hence
1X. (| =d, which implies | y|=1 since |X;||=d. Also, X,y=dz since dz, ; con-
verges weakly to dz; thus |z||=1. Since {X;} is dense in D, it follows that Xy=dz
for each X¢®.
The next lemma is crucial in what follows. It is a slight generalization of a
lemma appearing in [2].

Lemma 32. If X=X* Y=Y* P=P*, and d=||X+iY—P|, then P=X+
+VdI—Yx _

Proof. As in [1], [8] it follows that (P—X)*+Y?=d?]. Because the square
root function is order-preserving, it follows that P—X=}(P— X)?= Vd*I-Y>2

Proof of Theorem 1.1. We proceed with constructing the operator P, by
defining numbers {5,} and subspaces {M,} that reduce C. If C(k) denotes the part
of C on M, and I(k) denotes the orthogonal projection from H onto M,, then
P,=B+XV53I(k)—C*(k). The construction of the sequences {5,} and {Mk} is by
induction.

_ Define 0,=06(A4) (recall the deﬁmtlon immediately following ,Theorem 2.1)_
and M1=(Q] ker (B+ V&f—Cz—Q) where this intersection is taken over all positive
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approximants Q. Lemma 3.1 can be applied to the convex sets €, ={4—P: P=0}
and D,={4—Q: Q is a positive approximant of A} using d=6, and D=A-
—(B+V82—C?) to show M, {0}.

The fact that M, reduces C is shown in [1, proof of Lemma 4.1]; a different
proof is given here. Let f be a unit vector in M, and let Q be a positive approximant
of 4. Then (B—Q)f=—Vé2—C%f by the definition of M,; thus both A—Q and
(A—Q)* attain their norm at f. Hence |A—Qf=|(4—Q)*|*f, and this implies
that (B—Q)Cf=C(B—Q)f. Thus (B—Q)Cf=C(B—Q)f=C(-V3i—-C*)f=

—V82—C?(Cf). Hence (B+Vd:—C*—Q)(Cf)=0, so that CfeM,.

Thus M, reduces C, and it also reduces 4—Q for each approximant Q. Clearly
A has a unique approximant if and only if M;=H. Define the subspace H,=H
and the projection E,=1.

Let H,, E;, §,, §,, D,, M, be as defined above. Define Hy,=Ho M, with
orthogonal projection E,:-H—~H,. Put €,={(4—Q)E,: Q=0 and (A—Q)E,£D,};
this set €, is convex because D, is convex. Define d,=min {|X|: X¢C,} and
D,={X€C,: | X[[=3d,}; this set D, is convex because §, is convex.

The construction of M, is as follows. For an arbitrary operator X on H let
X,=E,XE,; clearly M,CSker X, and M, reduces X,. Choose Q=0 such that
(A—Q)E,D,. Then 0=Q,=B,+V0:E,—C: because M, reduces A—Q; this
inequality follows from Lemma 3.2 with X=B8B,, Y=C,, P=0Q, and d=4,. Notice
that for each such Q it follows that Q|M,=(B+ VoiI (1)~ C(1)*)|M, by the defini-
tion ‘of M,. Hence the operator Z=B+)6:I(1)—C(1)*+V63E,—C? satisfies
Z=Q=0 for each such Q. Thus the operator D,=iC,— J03E,—C? is €D, because
the operator Z=B+ V82 I(1)—C3(1)+V82E,— C: is a positive operator such that
(A—Z)EyQ,. Define M2=Q ker (X—D,)(NH, where the intersection is over all

X€D,. From Lemma 3.1 with €=C,, d=§,, D=2, and D=D,, considered as
operators from H, to itself, it follows that M,={0} if H,{0}. If H,={0}, then
M,={0}.

The fact that M, reduces the operator C,=C|H, is shown by a proof similar
to that used for M;. Let f be a unit vector in M, and let Q=0 be such that
(A—Q)E,£D,. Then H, reduces (A—Q)E, and (B—Q)f=—V}E,—Cif by the
deﬁni}ion of M,; thus both (A—Q)E, and (4—Q)*F, attain their norm at f.
Hence |d;— Quf*f=|(4,— Qp)*[2f=5:f; this implies (By+V83E,—Ci—Q)(C,f)=0
as before. In other words, C,f€¢M,, and thus M, reduces C,.

In general, once Hy, E, €, &, D, M, have been defined, put H,,,=HO
o(M,®...&M,) with orthogonal projection E,,,: H~H.,,. Let €, ,=
-—{(A QVE, ;1: 9=0 and (4—Q)E;€D,}; this set €, is convex because D, is
convex. Define d,,,=min {|X|: XE(C,‘“} and 33,‘“—{X€(€,‘,rl X =041} this
set D, ,, is convex because €, ,, is convex.
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To define M, write X,,,=FE,;,XE,,, for each X; clearly M;Cker X,,,
for 1=j=k. The operator Dy, ,=iCy,,—V02,1Ex11—Ciyy is in Dy, because
thé operator Z=B+V6:I(1)—C(1)%+...+VoiI(k) — C(k)*+ Vi 11 Ex41—Casq is a
positive operator such that (4—2Z)E,,, is in €;,,. Define the subspace M,,, by
M;,H=Q ker (X—Dy,,)NH,,,; this intersection is taken over all X€D,,,.

Lemma 3.1 shows that M. = {0} if H,,,#{0}, and the operator D;,, can be
used ‘to show M, , reduces C,,,. This completes the inductive definition.

‘Thus for each integer k it is possible to define M, and J,. Because H is finite-
dimensional, the subspaces H; ., will be {0} for all k sufficiently large. Thus it is
possible to define the positive operator P,, by

P,, = B+X V33I(k)— C(K).

Clearly A—P, is a normal operator.

It remains to establish the minimality of P,. If Q is a positive operator dif-
ferent from P,,, then there exists a least integer k=1 such that (4—Q)E, ¢ D,.
If k=1, then |4 - Q| =0d,. Hence if /& denotes the dimension of H, then for all p
sufficiently large it follows that |[4— Q| =4 —Q|°>héi=l|A—P,|%. If k=1, then
let A4,=[(A—-Q)E,|. Then 4,>J, because (4—Q)E; is in D; for each j=k—-1.
For each j=k—1 the subspace M; reduces 4—Q, and the partof 4A—Q on M;is
equal to the part of A—P, on M;, which is iC(j)—Vd3/(j)—C(j)* and is §;
times a unitary operator. Thus for all p sufficiently large and m;=dimension of M,,
it follows that

I4—Qlf = m 65 +...+my_1 01 +4f > m 6§ +...+my_, 0f 1+
+th—my—...—my )62 = [|A—P,|5.
This proves Theorem 1.1.’

§ 4. Examples and Open Questions

Example 4.1. There does not always exist a positive approximant that is
minimal in the sense of order.
-100
Let A be the self-adjoint 3 X3 matrix given by A=| 0 0 0]. It is easily
. 002
seen that 8(4)=1, and that no positive approximant is smaller than P,=
000
[O' o 0']. For if there were such an approximant P;, then P,—P,=0 and P,
001

8
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Moo
necessarily would have the form [O 0 0] , a=<<1. But then P, would no longer be
. * 00«

an approximant of 4, so P, is the only candidate to be minimal. On the other hand,
00 0
it 1s easily checked that Pz—[O 1/8 1 /2] i1 an approximant of 4 and clearly
0 1/2 5/2 :
—~ Py 0.

For a given matrix A=B+iC let |A|, denote the C, norm of 4. It is well
known (and follows easily from [7, p. 94]) that B is a self-adjoint approximant of A
in the C, norm for all p, and it is unique in case 1<p<eo. Thus if S, denotes the
self-adjoint C, approximant to A, then S,=B so ‘}1;12 |S,—B]|=0. Let R, denote
a positive approximant to 4 in the C, norm which again is unique if 1<p<co.

QI. For a given matrix 4 and corresponding C, minimal positive approximant
P,,, does lim IR,~P,l| =0?

A weaker question is:

Q2. For a given A, does the correspondmg net {R,} have a limit in the uniform
norm as p-roo?

Note that the C,-minimal positive approximant P, seems to be the operator
analogue of the strict approximant mentioned in section 2. Since the strict approxi-
mant of Rice is a limit of /, approximants by Theorem 2.4, the answer to QI could
likewise be yes. Moreover Q1 and Q2 both have affirmative answers in the case 4
is a 2?2 matrix. This follows from the fact that for a given 2X2 matrix 4 and any
positive approximant P, A—P is normal; each convergent subnet of {R,} must
converge to a uniform positive approximant, which can in this case be shown to be
P,_, by using:the minimality condition defining P,,. To establish that 4—P is nor-
mal, note that one of two cases occurs:

i) Py is the unique approximant so that 4 — Py is a multiple of a umtary by

Theorem 2.3.

ii) The subspace M, mentioned in the proof of Theorem 1.11is 1-dxmens1onal
In this case for any approximant P the errors A—P and A4 — Py can differ
only in the (2, 2) entry (when viewed as matrices with respect to the sub-
spaces M, and Mj). Thus A—P is normal.

-Questions analogous to Q1 and Q2 may be asked for- p-»l

Q3. Does hm R, exist?

, If the answer to Q3 is yes, then. X
"Q4 Can the hmJt in Q3 “be 1dent1ﬁed by any charactenstws"
- An aﬁixmatlve answer to Q4 would yield a canomcal approximant for positive
approx1mat10n in the trace norm.
.~ :Finally it seems as-if Theorem 1.1 must have some extension at least to the

compact operator case. Relevant to this problem is the following
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Example 4.2. There exists a compact operator with no compact positive
operator approximant.

Indeed, let {e,,e,, ...} denote an orthonormal basis and let f be the vector
f=Ze/k. Define @ to be the rank one orthogonal projection onto sp {f}, C the
compact operator given by C(e)=efk, B=(1-0)—}y1—C? and finally set
A=B+iC. Then A is a compact operator and has a unique positive approximant
Py 1, p. 282). Now Py is not compact since 4— Py is a multiple of a unitary.

Q5. Which compact operators admit compact positive approximants; is there
a “minimal” approximant in this case?
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