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Cp-minimal positive approximants 

DONALD D. ROGERS and JOSEPH D. WARD 

§ 1. Introduction 

In [8], P. R. HALMOS initiated the study of positive operator approximation. 
Among other things he established the proximinality of the convex set of positive 
operators on Hilbert space by producing a canonical best positive approximant. 
This approximant, hereafter referred to as the Halmos approximant was later shown 
by R. H. BOULDIN [2] to be maximal, in the sense of order, among all positive approxi-
mants to a given operator. 

This paper originated in the attempt to find a canonical minimal approximant 
since canonical approximants shed much light on the structure of the set of best 
approximants [3], [4], [5]. As will be shown in 4, there need not be a positive approxi-
mant minimal in the sense of order. Nevertheless, we construct a positive approxi-
mant Pm that is minimal in a sense given by the following theorem, in which || • ||p 

denotes the usual Cp norm on finite matrices. 

. . T h e o r e m 1.1. Each operator A=£+iC on a finite dimensional complex Hil-
bert space § has a positive approximant Pm such that A~Pm is a normal operator and 
such that for each positive operator Q^Pm it follows that \\A — Q\\P>\\A —Pm\\p 

for all finite p sufficiently large. This operator Pm will be referred to as the C p-minimal 
positive approximant of A. 

In section 2, relevant background information is given along with needed nota-
tion. Section 3 contains the proof of the main theorem, the heart of which involves 
an inductive construction. There are many open questions related to our result, and 
these questions along with some examples comprise section 4, 

Received February 28, 1980. 



110 D. D. Rogers, J. D. Ward 

§ 2. Preliminaries 

The term operator shall mean a bounded linear operator on a complex Hilbert 
space, and the operator norm of an operator X i s denoted by H^H =sup {[|A/||: 
| | / | | = 1}. If 2K is a set of operators, then an operator y0€2)t is an 9Ji-approximant 
of X if \\X— 7 J =inf {||X— Y||: y^iDl}; approximants using other norms are defined 
similarly. We shall follow Halmos's convention of using "positive operator" as 
synonymous with "nonnegative operator" and "approximant" in place of "best 
approximant". For the reader's convenience we restate the following results proved 
by Halmos in [8]. 

T h e o r e m 2.1. If B+iC is the usual Cartesian representation for the operator 
A, then 

\nS{A-P: P ^ 0 } = inf{r: r ^ | | C | | , 5 + ( r 2 - C 2 ) 1 / 2 S 0}. 

The first infimum shall henceforth be denoted 5(A). 

T h e o r e m 2.2. If B+iC is the usual Cartesian representation for the operator 
A and if PH = B+((5(A)Y-C*y\ then PH is a positive approximant of A. 

The operator Pu is the Halmos approximant referred to in the introduction. 

T h e o r e m 2.3. Any operator A has a representation of the form P+U5(A) 
where PS0 and U is unitary with negative real part. If A is not a positive operator, 
then the above representation is unique. 

In another direction, the notion of a strict approximant was introduced by 
J. R . R I C E [10] in the course of his investigations into /„ approximation as a method 
of selecting one approximant among many. A full discussion of strict approximants 
would lead us too far astray but, roughly speaking, to find a strict approximant 
onfi minimizes as much as one can. The following example will serve to illustrate. 

E x a m p l e . Consider the vector v=(2i, i, 0) viewed as an element of /„(3). 
The distance of v to the set of positive functions is 2, and there are clearly an infinite 
number of positive approximants. The vector (0, 0, 0), however, is the unique strict 
approximant since 0 is the nearest nonnegative number to 2i, i and 0. 

It was later shown by B . M I T I A G I N [9] and J . D E S C L O U X [6] that the strict approxi-
mants have an additional approximation property. 

T h e o r e m 2.4. Let lp(n) denote n-dimensional complex Cartesian space endowed 
with the lp norm and M a subspace of lp(n). If x£lp(n)\M, let yp denote an approxi-
mant from M. Then v = lim yp exists, and y is the strict approximant of x in /„ (n). 

The construction in the next section is modelled after the construction of the 
strict approximant, although the fact that the space of nXn matrices is not a com-
mutative algebra introduces some new twists into the construction. 
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§ 3. The Main Result 

In this section the proof of Theorem 1.1 is given. The first lemma is stated in 
more generality than is needed, but it seems of interest in its own right. 

L e m m a 3.1. Let £ be a norm-closed convex set of compact operators on a 
uniformly convex Banach space ©=¡¿0. Define d=\nf {||A'||: A^G} and 

D = {X£d: 11*11 = d}. 

If D is separable, then there exist unit vectors y, z£ © such that for every X£ I) it 
follows that Xy = dz. In particular, if D is in D, then 

D ker(X-D)^ {0}. 
x'mTt 

P r o o f . Let {X±, X2, ...} be dense in D; define operators r„£X) to be the 
corresponding Cesaro means, i.e. Y„=(A\ + . . . -f X„)ln. Because each Y„ is a com-
pact operator, there exists a unit vector yn£S such that §Yny„\\=d; define the 
unit vector z„=Y„y„/d. Since S is reflexive, the sequences {j„} and {z„} have weak 
cluster points in the unit ball of ©. Thus it is possible to find vectors y, z and sub-
sequences {^„ j} and {znj} that converge weakly to y and to z. Fix k^ 1. Because 
Xk is compact it follows that Xk(ynJ) converges to Xk(y) in norm, as j - » . But 
Xk(y„j)=dz„ j for all j sufficiently large, by the definition of Yn j and the fact 
that © is uniformly convex. Thus dzn J converges to Xk(y) in norm. Hence 
[¡Xk(v)|| =d, which implies ||j| | = l since =d. Also, Xky = dz since dzn j con-
verges weakly to dz; thus ||z|| = 1. Since {Xk} is dense in T>, it follows that Xy — dz 
for each A^X). 

The next lemma is crucial in what follows. It is a slight generalization of a 
lemma appearing in [2]. 

L e m m a 3.2. If X = X*, Y=Y\ P=P*, and d=\\X+iY-P\\, then P^X+ 
+ |ld2I-Y2. 

P r o o f . As in [1], [8] it follows that (P-X)2+Y2^d2I. Because the square 
root function is order-preserving, it follows that P—A"S j/(P— X ) 2 ^ ] /d ' l — Y2. 

P r o o f of T h e o r e m 1.1. We proceed with constructing the operator Pm by 
defining numbers {<5t} and subspaces [Mk\ that reduce C. If C(k) denotes the part 
of C on Mk and I(k) denotes the orthogonal projection from H onto Mk, then 
Pm=B+ X V5ll(k) — C2(k). The construction of the sequences {<3k} and {Mk\ is by 
induction. 

Define (recall the definition immediately following Theorem 2.1) 
and Mx—f] ker (B+ |/<5f — C2—Q) where this intersection is taken over all positive 

Q 
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approximants Q. Lemma 3.1 can be applied to the convex sets (i1={A—P: P s O } 
and = {A — Q: Q is a positive approximant of A} using d=51 and D=A — 
- ( B + y d i - C 2 ) to show 0}. 

The fact that M1 reduces C is shown in [1, proof of Lemma 4.1]; a different 
proof is given here. Let / be a unit vector in My and let Q be a positive approximant 
of A. Then (B-Q)f— -id\-C2f by the definition of My, thus both A-Q and 
(A-Q)* attain their norm at / . Hence \A-Q\2f =\(A-Q)*\2f, and this implies 
that (B—Q)Cf—C(B—Q)f. Thus (B - Q) Cf= C(B- Q)f= C ( - ^ ¿ f - C 2 ) / = 
= - Ul-C2(Cf). Hence ( 5 + ( / < 5 2 - C 2 - Q ) ( C / ) = 0 , so that Cf£My. 

Thus My reduces C, and it also reduces A — Q for each approximant Q. Clearly 
A has a unique approximant if and only if My = H. Define the subspace H1=H 
and the projection Ey=I. 

Let H1, Ey, by, D, , My be as defined above. Define H2—HQM1 with 
orthogonal projection E2: H—H2. Put (i2={(A-Q)E2: Q^O and (A-0E1£2>J; 
this set (S2 is convex because is convex. Define <52 = min {|| A'H: X£(E2} and 
T),= || =¿2}; this set T>2 is convex because G2 is convex. 

The construction of M 2 is as follows. For an arbitrary operator X on H let 
X.2=EoXE2; clearly M ^ k e r X2 and My reduces X2. Choose Q=0 such that 
(A-Q)E2eT>2. Then 0 S Q 2 mB 2 + V - C | because My reduces A-Q; this 
inequality follows from Lemma 3.2 with X=B2, Y—C2, P—Q2 and d=b2. Notice 
that for each such Q it follows that Q|My= (B+ / < 5 2 / ( l ) - C ( l ) 2 ) | M x by the defini-
tion of My. Hence the operator Z = £ + / < 5 ? / ( l j - C ( l ) 2 + i b \ E 2 - C \ satisfies 
Z ^ Q ^ O for each such Q. Thus the operator D2 = iC2~ib\E2—C\ is £.£>2 because 
the operator Z=B+ /(1) — C 2 i l j + ~ib\E2 — Cf is a positive operator such that 
(A-Z)E2€<i2. Define M2 = (\ ker (X— D , )HH 2 where the intersection is over all 

x 
From Lemma 3.1 with <£=(£2, d-d2, £> = £)2 and D= D2, considered as 

operators from H2 to itself, it follows that M2^{0} if H,^{0}. If / / 2 = {0}, then 
M2={ 0}. 

The fact that M2 reduces the operator C2=C\H2 is shown by a proof similar 
to that used for My. Let / be a unit vector in M 2 and let Q ^ O be such that 
(A-Q)E2^2. Then H2 reduces (A-Q)E2 and (B-Q)f= - YblE.-Clf by the 
definition of M2; thus both (A —Q)E2 and (A — Q)* E2 attain their norm at / . 
Hence \A2-Q2\2f=\(A2-Q2f\2f=5lf-, this implies {B2+ ib\E2-C\-Q)(C2f)=0 
as before. In other words, C2fdM2, and thus M2 reduces C2 . 

In general, once Hk, Ek, Sk, T>k, Mk have been defined, put Hk+1=HQ 
Q (My ©... ffi Mk) with orthogonal projection Ek+1: H-»Hk+1. Let G fc+1 = 
— {(A — Q)Ek+1\ Q^O and (A — Q)Ek£T)k}; this set (£k+1 is convex because T>k is 
convex. Define <5fc+1=min {¡Al : and X>k+1 = \\X\\ =bk+1}; this 
set T)k+1 is convex because (Et+1 is convex. 
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To define Mk+1, write Xk+1=Ek+1XEk+1 for each X; clearly MjCksr Xt+l 

for l ^ j ^ k . The operator Dk+1=iCk+1 — ]fdk+1Ek+1 — Cl+1 is in £>k+1 because 
the operator Z=B+ V<5?/(1)-C(l)2+... + \5ll(k) - C(kf+V5l+iEk+1-C%+1 is a 
positive operator such that (A—Z)Ek+1 is in &k + 1 . Define the subspace Mk+1 by 
Mk+1=0 ker (X—Dk+1)(~)Hk+1; this intersection is taken over all 

x 
Lemma 3.1 shows that {0} if Hk+1?±{Q}, and the operator D k + 1 can be 
used to show Mk+1 reduces Ck+1. This completes the inductive definition. 

Thus for each integer k it is possible to define Mk and dk. Because H is finite-
dimensional, the subspaces Hk+1 will be {0} for all k sufficiently large. Thus it is 
possible to define the positive operator Pm by 

Pm = B+I]/5lI(k)-C(kf. 

Clearly A —Pm is a normal operator. 
It remains to establish the minimality of Pm. If Q is a positive operator dif-

ferent from Pm, then there exists a least integer k^l such that (A — Q)Ek$Tik. 
If k = 1, then \\A — Q\\^81. Hence if h denotes the dimension of H, then for all p 
sufficiently large it follows that \\A-Q\\l^\\A-Q\\p>h5{s:\\A-PmYp. If Jfc>l, then 
let Ak-\\(A-Q)Ek\\. Then Ak>8k because (A-Q)Ej is in T>j for each j^k-1. 
For each j^k—l the subspace Mj reduces A — Q, and the part of A — Q on My is 
equal to the part of A—Pm on Ms, which is iC(j) — V$)I(j)—C(j)2 and is dj 
times a unitary operator. Thus for all p sufficiently large and m-j=dimension of MJt 

it follows that 

This proves Theorem 1.1. j 

§ 4. Examples and Open Questions 

E x a m p l e 4.1. There does not always exist a positive approximant that is 
minimal in the sense of order. 

r - 1 0 0} 
Let A be the self-adjoint 3 x 3 matrix given by A = \ 0 0 01. It is easily 

1 0 0 2) 
seen that 5(A) = 1, and that no positive approximant is smaller than P0= 

0 0 0 ] 
0 0 0 . For if there were such an approximant Px, then P^—P^d and Pt 

10 0 1) 

8 
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a < l . But then P1 would no longer be 
(0 0 0 

necessarily would have the form 0 0 0 
• lO 0 a) 

an approximant of A, so P0 is the only candidate to be minimal. On the other hand, 
(0 0 0 

it is easily checked that P 2 = 0 1/8 1/2 
10 1/2 5/2) 

is an approximant of A and clearly 

Pt-P0$0. 
For a given matrix A=B+iC let denote the Cp norm of A. It is well 

known (and follows easily from [7, p. 94]) that B is a self-adjoint approximant of A 
in the C p norm for all p, and it is unique in case Thus if Sp denotes the 
self-adjoint Cp approximant to A, then SP=B so Jim HS^—2?|| =0 . Let Rp denote 
a positive approximant to A in the Cp norm which again is unique if 

Ql. For a given matrix A and corresponding Cp minimal positive approximant 
Pm, does Jim | | i ? p - P J | = 0 ? 

A weaker question is: 
Q2. For a given A, does the corresponding net {Rp} have a limit in the uniform 

norm as ? 
Note that the Cp-minimal positive approximant Pm seems to be the operator 

analogue of the strict approximant mentioned in section 2. Since the strict approxi-
mant of Rice is a limit of lp approximants by Theorem 2.4, the answer to Ql could 
likewise be yes. Moreover Ql and Q2 both have affirmative answers in the case A 
is a 2X2 matrix. This follows from the fact that for a given 2 x 2 matrix A and any 
positive approximant P, A—P is normal; each convergent subnet of {i?p} must 
converge to a uniform positive approximant, which can in this case be shown to be 
Pm by using;the minimality condition defining Pm. To establish that A—P is nor-
mal, note that one of two cases occurs: 

i) Pg is the unique approximant so that A—PH is a multiple of a unitary by 
Theorem 2.3. 

ii) The subspace Mx mentioned in the proof of Theorem 1.1 is 1-dimensional. 
In this case for any approximant P the errors A—P and A-Pg can differ 
only in the (2, 2) entry (when viewed as matrices with respect to the sub-
spaces M j and Mj). Thus A—P is normal. 

Questions analogous to Q l and Q2 may be asked fo r p~—1-: 
Q3. Does lim Rp exist? 
If the. answer to Q3 is yes, then. 
Q4. Can the limit in Q3 be identified by any characteristics? 
An affirmative answer to Q4 would yield a canonical approximant for positive 

approximation in the trace norm. 
/ Finally it seems ,as if Theorem 1.1 must have some extension at least to the 
compact operator case. Relevant to this problem is the following 
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E x a m p l e 4.2. There exists a compac t ope ra to r with no compac t positive 
ope ra to r approx imant . 

Indeed, let {ely e2, . . .} denote an o r thonorma l basis a n d let / be the vector 
f=Zek/k. Define Q to be the r a n k one or thogona l projection on to sp { /} , C the 
compac t opera tor given by C(ek)=ejk, B=(\ — Q)—— C2 , and finally set 
A=B+iC. Then A is a compac t opera to r and has a unique positive app rox iman t 
PB [1, p . 282]. N o w PB is n o t compac t since A—PH is a multiple of a uni tary . 

Q5. Which compac t opera tors a d m i t compac t positive app rox iman t s ; is there 
a " m i n i m a l " approximant in this case? 
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