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On the radical classes determined by regularities 

TRAN TRONG HUE and FERENC SZASZ 

1. Introduction 

All rings considered in this paper are associative. For a given class of rings 
each ring is called a <£-ring, and an ideal B of a ring A is called ideal if B 
(as ring) is a ^-ring. 

It is well known that a non-empty subclass # of rings is a radical class or briefly 
a radical (relative to the class of all associative rings) in the sense of K U R O S [ 1 3 ] 

and AMITSUR [1] if it satisfies the following conditions: 
(i) (<H is homomorphically closed, that is, every homomorphic image of a 

'Sf-ring is a #-ring. 
(ii) The sum of all "ii-ideas of a ring A is a #-ideal. 
(iii) is closed under extensions, that is, if both B and A/B are br ings , then 

A is also a #-ring. 
In ring theory many so-called regularities determine radical classes, for instance 

the von Neumann regularity [17], quasi-regularity [18], (/-regularity [6], strong reg-
ularity [3], and so on. 

The aim of this paper is to give the definition of regularity of associative rings 
in the common terminology of polynomials and formal power serieses, and to show 
the radical characteristic of regularities in this sense. At the same time we shall 
get a diagram to define radicals by regularities. In view of our results it become 
clear that well known regularities and ring properties considered in [14], [17], [22] 
and [25], are radicals. 
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2. Regularities determined by polynomials 

Z[x0, x\, ..., x„] denotes the set of polynomials in non-commutative indeter-
minates x0, x1, x2, ..., xn with integer coefficients. 

D e f i n i t i o n 1. Suppose / ( x 0 , x1 ; ..., x„) is in Z[x0, xlt ..., x j . An element 
a0 of a ring A is said to be/regular if there exist elements at, a2„..., an in A such 
that the equality 

/ ( a 0 , a i , . - , a n ) = 0 
is valid in A. 

A ring A is said to be /-regular if every element of A is /-regular. An ideal B 
of a ring A is an /-regular ideal if B is an /-regular ring. 

The following theorem characterizes the radical property for /-regularities. 

T h e o r e m 1. Suppose f{x0,xi, ..., xn)£Z[x0, xx , ..., xn], then the class of all 
f-regular rings is a radical class if and only if the following conditions are satisfied: 

1) / (x 0 , xlt ..., x„) has no constant term. 
2) I f B is an f-regular ideal of a ring A, and for every aa£A there exist elements 

tfi,iz2, ..., an in A such that f(a0, a1, ..., a„)£B, then A is an f-regular ring. 

P r o o f . Assume that the class % of all /-regular rings is a Tadical class. Since 
the zero ideal is a ^-ideal in every ring, the first condition is always satisfied. 

Now suppose that B is an/-regular ideal of a ring and for every a0£A there 
exist elements ai,ai, ...,a„ such that / ( a 0 , a1, ...,a„)£B. We have to show that 
the ring A is /-regular. Let us consider the factor ring A/B. Take any element 
a^AjB. Let an element a0 be in the coset a. By hypothesis there exist elements 
alt a2, ..., a„ such that / (o 0 , alt ..., an)£B. So in the factor ring A/B the equality 

f(a,a1,...,an)= 0 .. 

holds. Hence the element a is /-regular. This implies the /•regularity of A/B. Since 
radicals are closed under extensions, A is /-regular. Thus the second condition te 
valid. • - ' 

Conversely, assume that / (x 0 , x1 ; ..., xn) satisfies the conditions of the theo-
rem. Clearly, 'if is homomorphically closed. Now, suppose that for an ideal J of 
a ring A, both / and A/J are br ings . Since A/J is /-regular, therefore for every 
element a0£A there exist elements ai,ai,...,an in A such that the cosets 
a 0 , a1} ..., a„ satisfy the equality 

/(ao,«!,^, ...,an) = 0 

in the factor ring A/J. This implies f{a0, a1, ..., a„)£J. By the second condition 
of the theorem, the ring A is /-regular. Hence the class is closed; under extensions. 
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Suppose both Bx and B2 be ^-ideals of a ring A. By the second isomorphism 
theorem we have 

B i + B 2 ^ B± 

B2 B1C\B2 

Since the class is homomorphically closed and closed under extensions the above 
isomorphism implies that B1+B2 is a "^-ring. By a simple induction we can prove 
that the sum of any finite number of ^-ideals of a ring A is again a ^-ideal. 

Finally, it is easy to see that the sum @(A) of all ^-ideals of a ring A is a 'g'-ideal. 
This completes the proof of the theorem. 

As a radical criterion of /-regularities we have the following 

. C o r o l l a r y 1. For a polynomial f(x0, xx, ..., x„) in Z[xQ, xl, ..., xn] without 
constant term, the class of all f-regular rings is a radical class if one of the following 
two conditions is satisfied. 

(A) For arbitrary elements a0, a1, ..., a„ in a ring A, if the element f(a0, a1, ..., a„) 
is f-regular then the element a0 is also f-regular. 

(B) Let B be an f-regular ideal of a ring A; if the coset a0 containing a0£ A is 
f-regular in the factor ring A/B, then the element a0 is f-regular in the ring A. 

P r o o f . The assertion is an immediate consequence of Theorem 1. It is easy 
to check that the conditions of Theorem 1 are satisfied. 

R e m a r k . By Corollary 1, the conditions (A) and (B) are sufficient for an 
/-regularity to be a radical. It is not known whether the converse is true. 

3: Regularities determined by formal power serieses 

We shall use the following notations: Xi=(xil, xi2, ..., xik, ...) for /=1 , 2, . . . , « ; 
Z{X1,X2, ..., Xn} denotes the set of all formal power series in infinite number 
of non-commutative indeterminates xa, xi2, ...; z '=l ,2 , . . . ,«, and with integer 
coefficients; that is, every f [ X x , X2, ..., Xn\£Z{X1, X2, ...,X„} may be written in 
the form -

fiX1,Xt,...,XJ = 2m.nx'fyt>* 
a k=l kk 

where m a6Z, and x^x^x^x^ if (i, k)^(j,l). 
For arbitrary natural numbers ah /'= 1, 2 , . . . , n, f\^i<CL denotes the 

expression which is obtained from / [Xx, X2,...,Xn] by putting xik=0 for 
/=1,2,..., n. - •.-..,<•. . j 
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D e f i n i t i o n 2. The formal power series f [ X l , X2, X„]iZ{Xl,X2, ..., Xn} 
is said to be admissible if for arbitrary natural numbers a.h i=1 , 2, ..., n, we 
always have 

•••>xl<iI' •••>xnl> 

E x a m p l e s . Let us consider the simple case n = 2 . Let 

= X = {x0, xlt ...), X2 = Y = (y0,yi,yz, ...). 

a) Consider 

f1(X,Y)= ¿ ( a ^ + b^xd. 
f = 0 

For arbitrary natural numbers a,, /=1 , 2, we have 

(Z 

ZikaW = 2 QiXiyi + biyiXi 
i=0 

where a = m i n {a1; a2}. Therefore, is in Z[x0, ..., xai, y0, . . . , y j and 
MX, Y] is admissible. 

b) Let 

M*,Y]= 24+yko+xkyk. k = 0 

For any natural numbers a, , /=1 , 2, we have 

OO A 

/2l<«1.«1>= 2 ' 4 + > ' o + 2 x i y i 
fc=0 i=0 

where a = m i n {a^ a2}. Clearly, /2|<c,i>cis> is not in Z[x0, ..., xXi, y0, ..., y^]. There-
fore, / 2 [X, Y] is not admissible. 

D e f i n i t i o n 3. Suppose that the formal power series 

f[X1,X2,...,Xn]£Z{X1,X2,...,Xtt\ 

is admissible. An element a0 of a ring A is called f-regular in A if there exist natural 
numbers a i , a 2 , •••,«„ such that the polynomial f\(a i ,a i *n) has at least one 
solution in A with x a = a 0 . 

A ring A is said to be /-regular if every element of A is /-regular. An ideal B 
of a ring A is /-regular if B is an /-regular ring. 

The following assertions are analogous to the corresponding assertions in sec-
t ion?. The proof of the following theorem is a minor modification of the above 
proof of Theorem 1 therefore, we omit it. 
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T h e o r e m 1'. Suppose that the formal power series 

f [ X l , •••> -^nli^ {-^1) Xg, • ••, X„} 

is admissible. Then the class of all f-regular rings is a radical class if and only if the 
following conditions are satisfied. 

1)' f[Xx, X2, ..., Xn] has no constant term. 
2)' I f B is an f-regular ideal of A, and for every element an£A there exist natural 

numbers a1; a2, ..., a„ and elements aa, ..., aiX{, ¡ = 1 , 2 , . . . ,«, in A such that 
fko1,at,...,a„)(all> •••>anX)£B> then the rinS A is f-regular. 

C o r o l l a r y V. Suppose that the formal power series 

f [ X t , X2, ..., X„]£Z{X1, X2, ..., Xn} 

without constant terms is admissible. Then the class of all f-regular rings is a radical 
class if one of the following two conditions is satisfied. 

(A)' For arbitrary elements aa, ai2, ..., aix, i = l , 2, ..., n, in a ring A, if the 
element f an>(aii> an*) ,s f-regular, then the element au is also f-regular. 

(B)' Let J be an f-regular ideal of a ring A; if the coset a0 containing a0£A 
is f-regular in the factor ring A/J, then the element a0 is f-regular in A. 

4. Applications 

For the sake of brevity we shall call a polynomial or an admissible formal 
power series / a radical expression if the class of all /-regular rings is a radical class. 
Next we shall give some radical expressions. 

P r o p o s i t i o n 2. The following formal power series are radical expressions. 
CO 

a) G(m1, m2, ms, m4) = x0+m1x1+m2x0x1+ 2 ^y^Z^m^y^Zi 
¡=i 

where mt, i= 1, . . . , 4, are integers satisfying the condition ffj1Tw3=/n2/n4. 
eo b) F{ml, m2, m3) = x0+m1x1x0+m2x0x2+ 2 m^^Zi 

•=i 
where mh i= 1 ,2 ,3 , are integers satisfying the condition m1m2=0 or m1m2=m3. 

oo 
c) H(n, 1c) = x0+ 2 kyux0y2i...x0yni 

¡=0 
OO . . . 

d) Pn[Pi(x0),p2(x0)] = x0+2pi(x0)yiipi(x^..:ynip2(x0) i=l 
where i = l , 2. 
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P r o o f . In order to prove that G(mu m2,m3, twJ, 

Fim^ m2,m3), P^ÎXo), p2(x0)] and H(n,k) 

are radical expressions, we shall show that each of them satisfies one of the condi-
tions of Corollary 1'. 

First we prove that Git»!, m2 , m3 , m4) satisfies condition (A)' of Corollary 1'. 
Suppose a Q , a , b0, ... ,b , c0, ...,ca> are elements of a ring A such that the 
element * 

a 
G(ml5 m2, m3, m^.«»,«,)^ — ,caJ = a0+m1a1+m2a0a1+ 2 WaMoC. + wAci, 

where a = m i n {al5 a2}, is G(m1, m2,ms, w4)-regular. By Definition 3, there exist 
V' Jai> ~0> ~1> '••> "aa elements a[, b'0, b[, ..., b'^, c'Q, c\, ..., in A such that the following equality is 

satisfied: 

+ 2 j= i 
m. 

|a0+m1a1+m2a0a1+ 2i
m3bia0ci+mibic^ + m1a,

1+ 

+ m2^a0 + m1a1 + m2a0a1+ jg m 3 b i a 0 c i + w4fe Ic ij + 

¡fc^do + m i f l i + 7712 00 0 ! + ^msbiaoCi+mibiC^ Cj + mibjC'^ = 0 

where a.'=min {cc2, a'3}. 
A straightforward calculation shows that 

where 

K={ 

ck 

a0 + m1aî + m2a0a'i+ 2  m3bkaock+™iKck =0 
• - *=i 

a" = 2(a + a')+aa', 

a"' = a1+a'1+mza1a'1, 

bk if 0 < fc a, 
bt if a < fe = a + i ^ 2a, 
i>i if. 2a < fc = 2a + i S 2 a + a ' , 

m2bi if 2 a + a ' < = 2 a + a ' + i ë 2 ( a + a 0 , 
if 2 ( a + a ' ) + 0 ' - l ) a < fc = 2 ( a + a ' ) + 0 - l ) a + i s 

S 2 ( a + a ' ) + j a for j = 1, 2 , . . . , a' , 
c t if 0 -<= k ^ a, 
c£ai if a < f c = a + i s 2 a , 
ci if 2a < A: = 2 a + i s 2 a + a ' , 
aj^c'i if 2 a + a ' < k = 2 a + a ' + i s 2 ( a + a 0 , 
ctc'j if 2 ( a + a O + 0 ' - l ) a < f e = T 2 ( a + a 0 + 0 ' - l ) a + i ^ 2 ( a + a 0 + j ' a 

for 7 = 1 , 2 , . . . , a ' . 
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Hence the element aQ is G(m1, m2,m3, /M4)-regular, and condition (A)' is satisfied. 
Thus G(m1, m2,m3, m4) is a radical expression. The remaining assertions are proved 
similarly. 

Now let us survey some well-known regularities and ring properties which have 
already been shown to be radicals. 

.,1) An element a0 of a ring A is said to be regular in the sense of VON NEU-
MANN [ 1 7 ] , if a0da0Aa0. If in a) in Proposition 2 we take « = 1 , pi(xQ)=x0, i= 1, 2, 
then, clearly, Pi(x0 , x0)-regularity coincides with the regularity in the sense of 
von Neumann. Therefore, the class of all von Neumann regular rings is a radical class. 

2) An element a0 of a ring A is said to be right quasi-regular, as defined by 
PERLIS [ 1 8 ] and later studied by B A E R [4] and JACOBSON [ 1 1 ] , if A 0 + A 1 + A 0 A I = 0 , 

for some element ax of A. By a) and d) in Proposition 2 we havs 

G(l, 1,0,0) = Xo+Xj+Xo*!. 

Hence right quasi-regularity is nothing else than G(l, 1, 0, 0)-regularity. Thus, right 
quasi-regularity is a radical property, namely, the Jacobson radical. 

3 ) B R O W N and M C C O Y [6] have introduced the notion of G-regularity. An 
element a0 of a ring A is said to be G-regular if the element a0 is in G(a0), where 

G(a0) = A(l+a0)+A(l+a0)A. 

By a) in Proposition 2 it is clear that G( 1, 1, 1, Irregularity coincides with G-reg-
ularity. Thus the Brown—McCoy radical may be determined by the radical expres-
sion G(l, 1, 1, 1). 

4 ) The notion of strongly regular rings had been introduced by A R E N S and 
K A P L A N S K Y [3] and was later studied by K A N D Ó [12] , LAJOS and SzÁsz [ 1 4 ] and 
others. A ring A is strongly regular if ad a2 A for every ad A. If in d) in Proposi-
tion 2 we take n—1, p1(x^=x2

0i p2(x0)=1,. then it is clear that /^ (x 2 , l)-regularity 
is the same as strong regularity. Thus, strong regularity is a radical property. 

5) D E LA R O S E [19] has introduced the notion of ¿-regularity. An element a0 

of a ring A is A-regular if a0dAa0A. By a) and d) in Proposition 2 we have 

G(0, 0,1, 0) = F(0, 0,1) = x 0 + ZyiXiZi-
•=i 

Clearly, A-regularity can be defined by the radical expression G(0, 0, 1, 0). Thus the 
class of A-regular rings is a radical class. 

6) D I V I N S K Y [8] has introduced left pseudo-regularity. An element a0 of a ring 
A is left pseudo-regular if aQ+a^+a^l^Q for some element axdA. If in d) in 



138 T.. T. Hue, F. Szàsz 

Proposition 2 we take n= 1, px(x0) = 1, />2(*o)=*o+*o> t h e n it is easy to see that 
^ i ( l ) x 0 +^- r egu l a r i t y coincides with left pseudo-regularity. Therefore left pseudo-
regularity is a radical property. 

7) Following SzAsz [22] a ring A is called an £5-ring if every homomorphic 
image of A has no non-zero left annihilators. As is proved in [22], a ring A is an 
£--ring if and only if a£Aa+AaA holds for every ad A. By b) in Proposition 2, 
the class of £6-rings is the class of all F( l , 0, l)-regular rings, so it is a radical class. 

8) Following SzAsz [25] a ring A is called an £"6-ring if every homomorphic 
image of A has no non-zero two-sided annihilators. A ring A is an .E^-ring if and 
only if adaA + Aa+AaA holds for every ad A. By b) in Proposition 2 the class of 
£ 6 -rings coincides with the class of £(1, 1, l)-regular rings. Thus, it is a radical class. 

9) B L A I R [5] introduced the notion of /-regularity, which was later studied by 
A N D R U N A K I E V I C [2]. An element a of a ring A is said to be /-regular (in the sense 
of Blair) if ad (a)2, where (a) denotes the principal ideal of A generated by a. Blah-
has shown that an element a in a ring A is /-regular if and only if there exist elements 

71 
tii, Vi and w, in A such that a — £ «1iJ0

t'iaHV Hence, by c) in Proposition 2, f-reg-
i = l 

ularity in the sense of Blair is the same as H(3, l)-regularity. Thus it is a radical 
property. 

10) By b) in Proposition 2 we have 

F(1,0 ,0) = Xq+XJXO. 

Therefore F ( l , 0, 0)-regularity is D-regularity of D I V I N S K Y [9] . 

11) If in d) in Proposition 2 we take n=1, p1(xQ)=q(x0), p2(x0)=q(x0), then 
we see that P1(p(x0), #(;c0))-regularity is nothing else than (p, ^-regularity, intro-
duced by M C K N I G H T [ 1 5 ] and also studied by others [ 1 0 ] , [ 1 6 ] . 

R e m a r k . By means of Proposition 2, we can get a great variety of radical 
classes. In order to show that consider for instance the radical expressions 
G(p, —p,k, —k), where p is a prime number. Denote by S^^ the class of 
G(p, —p,k, —/c)-regular rings. Take a fixed set of symbols M= {a, ft, ...}. Let 
Ap be the (associative and noncommutative) ring on the set M over the field Zp of 
integers modulo p with the relation: af}=a, rt, fidM. 

One can prove easily that Ap is not in S^ k) but it belongs to S^>(t) for every 
prime p'^-p. Hence S^ ^ S ^ if p^p . 
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