Acta Sci. Math., 43 (1981), 131—139

I

*'On the radical classes determined by regularities

TRAN TRONG HUE and FERENC SZASZ

1. Introduction

All rings considered in this paper are associative. For a given class € of rings
each ring A€% is called a ¥-ring, and an ideal B of a ring A is called ideal if B
(as ring) is a %-ring. '

It is well known that a non-empty subclass % of rings is a radical class or briefly
a radical (relative to the class of all associative rings) in the sense of KUROS [13]
and AMITSUR [1] if it satisfies the following conditions:

(1) ¥ is homomorphically closed, that is, every homomorphic image of a
%-ring is a ¥-ring.

(i) The sum of all ¥-ideas of a ring A is a %-ideal.

(iii) ¥ is closed under extensions, that is, if both B and A/B are #-rings, then
A is also a ¥-ring, :

In ring theory many so-called regularities determine radical classes, for instance
the von Neumann regularity [17}, quasi-regularity [18], G-regularity [6], strong reg-
ularity [3], and so on.

The aim of this paper is to give the definition of regularity of associative rings
in the common terminology of polynomials and formal power serieses, and to show
the radical characteristic of regularities in this sense. At the same time we shall
get a diagram to define radicals by regularities. In view of our results it become
clear that well known regularities and ring properties considered in [14], {17], [22]
and [25}, are radicals.
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2. Regularities determined by polynomials

Z[Xgy Xy5 ooy ,,] denotes the set of polynomials in non-commutatwe indeter-
minates Xg, Xy, X, ..., X, With integer coefficients.

Definition 1. Suppose f(xg, X1, ..., X,) IS in Z[Xg, Xy, -y x,l] An element
a, of a ring A is said to be f regular if there exist elements dy, Ay, -5 Gy in A such
that the equahty '

f(a09a15 ...,a") = 0
is valid in A.

A ring A is said to be f-regular if every element of A is f-regular. An ideal B
of a ring A is an f-regular ideal if B is an f-regular ring.
The following theorem characterizes the radrcal property for f-regularities.

Theorem 1. Suppose f(xo, xl, cees ,,)EZ[xo, Xy, - ,x,,], then the class of all
[f-regular rings is ‘a radical class if and only if the followmg condttzons are satzsﬁed

1) f(x, X1, ..., X,) has no constant term.

2) If B is an f- regular ideal of a ring A and for évery aoeA there exist eIements
a,'dy, ..., a, in A such that f(a,, a, ..., d )EB then A is anfregular ring.

Proof. Assume that the class € of all f-regular rings is a radical class. Since
“the zero ideal is a $-ideal in every ring, the first condition is always satisfied.

Now suppose that B is an fregular ideal of a ring and for every a,cA4 there
exist elements’ a,, a,, ..., a, such that f(aq,, 4y, ..., a,)€B.-'We 'have to show that
the ring A4 is f-regular. Let us consider the factor ring A/B. Take any element
acA/B. Let an element 4, be in the coset 4. By hypothesis- there ‘exist elements
ay, 4, ..., a, such that f(ay, a,, ..., a,)¢B. So in the factor ring A/B ‘the equality

f(a 613 a4 n) -

holds Hence the element a is f-regular. This implies the f- regularlty of AfB. Since
radicals are closed under extensions, A is f regular Thus the second condltlon is
valid. - : : e : :
- Conversely, assume that f(x,, x;, :.., X,) satisfies the conditions of the the'o4
rem. Clearly, ¢ is homomorphically closed. Now, suppose that for an ideal J of
a ring A, both J and A/J are %-rings. Since A/J is f-regular, therefore for every
element a,¢ A there exist elements a,ds,...,a, in A such that the cosets
ag, ay, ..., a, satisfy the equality

f(a(h 6_71, ‘_12’ sy a-n) = 0

in the factor ring A4/J. This implies f(ao, ay, ..., a,)€J. By the second condition
of the theorem, the ring A is f-regular. Hence the class % is closed:under.extensions.
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Suppose both B, and B2 be ¥-ideals of a rmg A. By the second 1somorphlsm
theorem we have .
B1+B2 . B
B, ~ BNB,’

Since the class % is homomorphically closed and closed under extensions the above
isomorphism implies that B;+ B, is a #-ring. By a simple induction we can prove
that the sum of any finite number of #-ideals of a ring 4 is again a %-ideal.
Finally, it is easy to see that the sum %(4) of all ¢-ideals of a ring A4 is a #¥-ideal.
This completes the proof of the theorem.
As a radical criterion of f-regularities we have the following

Corollary 1. For a polynomial f(xy, Xy, ..., X,) in Zlxy, x1, ..., x,] without
constant term, the class of all f-regular rzngs is a radzcal class if one of the following
two conditions is satisfied.

(A) For arbitrary elements ay, ay, ..., a,in aring A, lf the element f(ay, a,, ..., a,,)
is f-regular then the element a, is also f regular

(B) Let B be an J-regular ideal of a ring A; if the coset a, contamzng ay€ A is
f-regular in the factor ring A|B, then the element a, is f-regular in the ring A.

Proof. The assertion is an immediate consequence of Theorem 1. It is easy
to check that the conditions of Theorem 1 are satisfied.

Remark. By Corollary 1, the conditions (A) and (B) are si;ﬂicient for an
Jf-regularity to be a radical. It is not known whether the converse is true.

-3, Regularities determined by formal power serieses o

We shall use the following notations: X;=(x;, X, ..., Xz, -..) fori=1,2, ....n
Z{Xy, Xs, ..., X} denotes the set of all formal power series in infinite number
of non-commutative indeterminates x;, X, ...; i=1,2,...,n, and with integer
coefficients; that is, every f[Xl,Xz, o XJEZ{Xy, X, ..., X,} may be written in
the’ form : B

. na
X, Xo, o, X1 = 3 m, [T x5t
L ] k=1 k'K

Where mGEZ, and x,-kxﬂ¢xﬂxik if (i, k)#(j, I). . - B

For arbitrary natural numbers o;, i=1,2,..,n, f ey ag.p demotes  the
expression which: is obtained from f [Xl,Xz,»... ] by puttmg X5=0 for k>a,,
i=1,2,..,n - - I Loty
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Definition 2. The formal power series f[X;, Xa, ..., X,J€Z{X,, Xz, ..., X,}
is said to be admissible if for arbitrary natural numbers «;, i=1,2,...,n, we
always have

fl(dl,ag,...,d,)EZ[xll’ coey Xiggs ores Xpys o0 xna,,]‘

Examples. Let us consider the simple case n=2. Let

=X=(x09x1’x27"')’ X2=Y=(}’o,)’1,}’z,---)-

a) Consider

AXY)= g(aixiyx"*'bi)’ixi)-
i=0

For arbitrary natural numbers «;, i=1,2, we have

.fll(al,aa) = %‘) a;x;y;+b;yix;

where a=min {o;, a;}. Therefore, fil, ., is in Z[x, ...,x,l; Yos «+5 Vo] and
AfIX, Y] is admissible.
b) Let

fLlX,Y]= kg(;xf)‘l"y’(;'*'xkyk'

For any natural numbers «;, i=1,2, we have

Seltay.a = kg(')x’Hy’é-l— '_Zl;xi.Vi'

where a=min {o,, a}. Clearly, f2|<a sy 18 MOtin Z[x, ..., Xops Yos --os y%]. There-
fore, f,[X, Y] is not admissible.

‘ Defih'ition 3. Suppose that the formal power series
Xy, X, o, XJEZ (X4, X, ..y X,

is admissible. An element a, of a ring A is called f-regular in A if there exist natural
numbers o, &, ..., &%, such that the polynomial ff@va:’._.,a ) has at least one
solution in 4 with x;=a,.

A ring A is said to be f-regular if every element of A4 is f- regular An ideal B
of a ring A is f-regular if B is an f-regular ring.

The following assertions are analogous to the correspondmg assertlons in sec-
tion:2. The proof of the following theorem is a minor modification of the above
proof of Theorem 1 therefore. we omit it.
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Theorem 1°. Suppose that the formal power series
f[Xl, Xz’ esry X,I]EZ{XI’ Xz’ csey Xn}

is admissible. Then the class of all f-regular rings is a radical class if and only if the
Jollowing conditions are satisfied.
Y fIX, X, . X,] has no constant term.

2)" If B is an f-regular ideal of A, and for every element a,,€ A there exist natural
numbers oy, o5, ..., o, and elements a, ..., @y, I= 1,2, ..,n, in A such that
Slayag..ay(@irs s @y JEB, then the ring A is f- regu_lar.

Corollary V. Suppose that the formal power series
SIX, Xa, o XJEZ{Xy, X,y oy X))

without constant terms is admissible. Then the class of all f-regular rings is a radical
class if one of the following two conditions is satisfied.
(A) For arbitrary elements a,,a,, ..., a,, 1=1,2,...,n, in a ring A, if the
element fl, o . .y(@us ..., 4, ) is f-regular, then the element ayy is also f-regular.
(B) Let J be an f- regular ideal of a ring A; if the coset @, containing a,CA
is f-regular in the factor ring A|J, then the element a, is f-regular in A.

4. Applications

For the sake of brevity we shall call a polynomial or an admissible formal
power series f a radical expression if the class of all fregular rings is a radical class
Next we shall give some radical expressions.

Proposition 2. The following formal power series are radical expressions.
a)  G(my,my, mg, my) = Xo+my Xy +MeXo Xy + 5 My y; %o Zy+my y, Z;
i=1
where m;, i=1, ..., 4, are integers satisfying the condition mymy=mym,.

b) o F(my, my, my) = xo+-my Xy Xg+maxoXe+ D moy %o Z;
i=1

where m;, i=1,2,3, are integers satisfying the condition m;my=0 or mymy=ms,.

© H(n, k) = xo+ Z khixo}’zin-xo'yni

d)_ P [Pl(xo) Pz(xo)] = Xo+ 2 Pl(xo)}"nh(xo) }’n,Pz(xo)
where pi(x)EZ[x], i=1,2.
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Proof. In order to prove that G(m,, my, my, m,),
F(my,my, my), P,[p,(xo), pz(x0)] and H(n, k)

are radical expressions, we shall show that each of them satisfies one of the condi-
tions of Corollary 1.

First we prove that G(m,, my, my, m,) satisfies condition (A)’ of Corollary 1’.
Suppose g, .- gy bg, ..., b,,, Cos --s €,y ATE elements of a ring 4 such that the
element

a
G(my, my, My, Me)(ay, as,25)(@os -5 €ap) = Ag+Mya;+myaga;+ 21' myb;agc;+myb;c;,
i=

where «=min {&,, o}, is G(m,, my, my, my)-regular. By Definition 3, there exist
elements ag, by, by, ..., by, ¢5, €1, ..., €y in A such that the following equality is
satisfied :

@
[a0+mlal+m2aoal+ 2> msbiaoci+m4bici] +mai+
i=1

+m, [ao+m1a1+m2a0a1+ 2 m3b,-aoc,-+m4b,~ci] ay+

+ Z’ myb [a0+mlal+mzaoa1+ 2m3b agc;+myb; c)c +myb; c;] =0

where o’=min {aj, o}.
A straightforward calculation shows that

a' .
- Ggtmay+myagal+ > mybjagc;+mybicy =0
: . - k=1

where

a” =2(+o)+ao’,
aj = a,+aj+mya,aj,
by if O<k=a,
b, if a=k=ati=2e
b= b; if 20a<k=20+i=2a+d,
T Ymeb!  if 2e4o’ < k=2a+o +i=2(+a),
mgbib, if 2(@+a)+(j—Da<k=2(a+a)+(—Da+i=
] =2(@+a)+joe for j=1,2,..,a
¢ if 0<k=a, ' ‘
ca; if a<k=oa+i=2a,
= ci if 200<k=2a+i=2ata,

aje; if 2u+o’ <k=2e+a'+i=2(a+a),
ccy - if '2(a+oz’)+(]—1)a<k 2(a+oz)+(1 l)a+z = 2(a+a’)+ja
for j=1,2,. '
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Hence the element a, is G(m,, m,, my, my)-regular, and condition (A)" is satisfied.
Thus G(m,, m,, m;, m,) is a radical expression. The remaining assertions are proved
similarly.

Now let us survey some well-known regularities and ring properties which have
alizady been shown to be radicals.

.1) An element a, of a ring A is said to be regular in the sense of vON NEU-
MANN [17], if ao€a,Aa,. If in a) in Proposition 2 we take n=1, p;(xo)=x,, i=1, 2,
then, clearly, P,(x,, xo)-regularity coincides with the regularity in the sense of
von Neumann. Therefore, the class of all von Neumann regular rings is a radical class.

2)-An element g, of a ring A is said to be right quasi-regular, as defined by
Peruis [18] and later studied by BAER [4] and Jacosson [11}, if aq+a;+aea,=0,
for some element dl_of A. By a) and d) in Proposition 2 we havs

G(l, 1, 0, 0) = xO+x1+x0x1.

Hence right quasi-regularity is nothing else than G(1, 1, 0, 0)-regularity. Thus, right
quasi-regularity is a radical property, namely, the Jacobson radical.

3) BRownN and McCoy [6] have introduced the notion of G-regularity. An
element a, of a ring A is said to be G-regular if the element g, is in G(a,), where

G(ap)) = A(1+ag)+A4(1+ap) 4.

By a) in Proposition 2 it is clear that G(l, 1, 1, 1)-regularity coincides with G-reg-
ularity. Thus the Brown-—McCoy radical may be determined by the radical expres-
sion G(1,1,1,1). '

4) The notion of strongly regular rings had been introduced by ARENS and
KarLANSKY [3] and was later studied by KanD6 [12], LAjos and SzAsz [14] and
others. A ring A is strongly regular if aca®A for every acA. If in d) in Proposi-
tion 2 we take n=1, p;(x))=x2, po(xo)=1, then it is clear that P,(x2, 1)-regularity
is the same as strong regularity. Thus, strong regularity is a radical property.

5) DE LA RosE [19] has introduced the notion of A-regularity. An element a,
of a ring 4 is A-regular if a,€Aay4. By a) and d) in Proposition 2 we have

G(O’ 0: 1: 0)= F(O’ 05 1)= x0+ Zylxlzl
i=1

Clearly, A-regularity can be defined by the radical expression G(0, 0, 1, 0). Thus the
class of A-regular rings is a radical class.

6) Divinsky [8] has introduced left pseudo-regularity. An element a, of a ring
A is left pseudo-regular if a,+a,ay+a,a2=0 for some element a,€4. If in d) in
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Proposition 2 we take n=1, p;(x0)=1, p.(xo)=xo+ x5, then it is easy to see that
P, (1, x4+ xZ)-regularity coincides with left pseudo-regularity. Therefore left pseudo-
regularity is a radical property.

7) Following SzAsz [22] a ring A is called an F;-ring if every homomorphxc
image of A has no non-zero left annihilators. As is proved in [22], a ring A is an
E;-ring if and only if a€ Aa+ AaA holds for every a€ A. By b) in Proposition 2,
the class of E;-rings is the class of all F(1, 0, 1)-regular rings, so it is a radical class.

8) Following SzAsz [25] a ring A is called an E,-ring if every homomorphic
image of A has no non-zero two-sided annihilators. A ring 4 is an E,-ring if and
only if acad+ Aa+ AaA holds for every a€A. By b) in Proposition 2 the class of
E,-rings coincides with the class of F(1, 1, 1)-regular rings. Thus, it is a radical class.

9) BLaIr [5] introduced the notion of f-regularity, which was later studied by
ANDRUNAKIEVIC [2]. An element a of a ring A is said to be f-regular (in the sense
of Blair) if a€(a)?, where (a) denotes the principal ideal of A generated by a. Blair
has shown that an element a in a ring A is f-regular if and only if there exist elements

, v; and w; in 4 such that a= 2’ u;a,v;,aw;. Hence, by c) in Proposition 2, f-reg-

ulanty in the sense of Blair is the same as H(3, 1)-regularity. Thus it is a radical
property.
10) By .b) in Proposition 2 we have

F(1,0,0) = xy+x; x0.

Therefore F(1, 0, 0)-regularity is D-regularity of DIviNsKy [9].

11) If in d) in Proposition 2 we take n=1, p,(xg)=q(xo), p2(x)=q(x,), then
we see that P;(p(x,), g(xo))-regularity is nothing else than (p, g)-regularity, intro-
duced by McKniGHT [15] and also studied by others [10], [16].

Remark. By means of Proposition 2, we can get a great variety of radical
classes. In order to show that consider for instance the radical expressions
G(p, —p, k, —k), where p is a prime number. Denote by S,y the class of
G(p, —p, k, —k)-regular rings. Take a fixed set of symbols M={a, 8,...}. Let
A, be the (associative and noncommutative) ring on the set M over the field Z, of
integers modulo p with the relation: aff=«a, «, fe M.

One can prove easily that 4, is not in S, ,, but it belongs to S, ,, for every
prime p’=p. Hence S, ,,#S, , if p=p"
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