Acta Sci. Math., 43 (1981), 141-146

The hyperbolic M. Riesz theorem

ale and the second s

1. Introduction. We shall prove the non-Euclidean hyperbolic versions of the theorems of M. RIESZ [7] and of L. FEJÉR and F. RIESZ [4] (see [8, Theorem VIII.45, p. 339 and Theorem VIII.46, p. 340], [3, p. 46]) and show a property of conformal mappings in terms of the non-Euclidean geometry in the unit disk.

Let
$$D = \{|z| < 1\}$$
, $T = [0, 2\pi)$, and $K = \{e^{it}|t \in T\}$. Let
 $\sigma(z, w) = \tanh^{-1}(|z - w|/|1 - \bar{z}w|)$

be the non-Euclidean hyperbolic distance between z and w in D, and let

$$\sigma(z) \equiv \sigma(z,0) = (1/2) \log [(1+|z|)/(1-|z|)], \quad z \in D.$$

Let B be the family of functions f, holomorphic and bounded, |f| < 1, in D. Then $\sigma(f)$ for $f \in B$, like |f|, has the property that $\log \sigma(f)$ is subharmonic in D, so that $\sigma(f)^p = \exp [p \log \sigma(f)]$ is subharmonic in D for all p > 0; see [10]. Let H_{σ}^p be the family of $f \in B$ such that

$$\int_T \sigma(f)^p (re^{it}) dt$$

is bounded for $0 \le r < 1$ $(0 . The class <math>H^p_{\sigma}$ is the hyperbolic counterpart of the (parabolic) Hardy class H^p in D [3, p. 2], and is called the hyperbolic Hardy class. (Recently, it is observed that an "elliptic" analogue of H^p (0 , namely, $a meromorphic Hardy class yields no new family [11, Theorem 1].) Each <math>f \in B$ has the radial limit $f^*(t) = \lim_{r \to 1^-0} f(re^{it})$ at e^{it} for a.e. $t \in T$, and as will be seen, $\sigma(f^*)$ is of class $L^p(T)$ for all $f \in H^p_{\sigma}$ (0 . The hyperbolic M. Riesz theorem is

Theorem 1. Let C be a rectifiable curve with the initial point a and the terminal point b (possibly, a=b) in the complex plane. Suppose that

 $C \subset D \cup K$ and $C \cap K \subset \{a, b\}$.

Received October 23, 1980.

Set for $t \in T$, with $e^{it} \notin C \cap K$,

$$V(t) = \int_{C} |d \arg(e^{it} - w)| \quad (w \in C).$$

Then, for each $f \in H^p_{\sigma}$ (0 ,

$$\int_C \sigma(f)^p(z) |dz| \leq \pi^{-1} \int_T \sigma(f^*)^p(t) V(t) dt.$$

If C is the diameter $\{xe^{is}|-1 \le x \le 1\}$ $(s \in T)$, then $V(t) = \pi/2$, so that the hyperbolic Fejér and F. Riesz theorem is

Theorem 2. For each $f \in H^p_{\sigma}$ $(0 and each <math>s \in T$,

$$\int_{-1}^1 \sigma(f)^p(xe^{is}) dx \leq (1/2) \int_T \sigma(f^*)^p(t) dt.$$

The Fejér and F. Riesz theorem has the obvious application to conformal mappings from D onto a Jordan domain with the rectifiable boundary [4, Satz IV]; see [8, Corollary, p. 341] and [3, Corollary, p. 47]. The hyperbolic version is not so apparent as in the cited case; namely, the following theorem does not appear to be a direct consequence of Theorem 2. There is no relation between $\sigma(f)$ and $|f'|/(1-|f|^2)$ like that between |f| and |f'|.

Theorem 3. Let γ be a Jordan curve in D with finite non-Euclidean length L. Let f be a one-to-one conformal mapping from D onto the interior of γ . Then the non-Euclidean length of the image of each diameter by f is not greater than L/2. The constant 2 in L/2 cannot be replaced by any larger constant.

For the proofs of Theorems 1 and 3, the principal idea is to obtain the M. Riesz theorem for subharmonic functions of class PL in the sense of E. F. BECKENBACH and T. RADÓ [2] (see also [6, p. 9]); see Theorem 4 in Section 2.

2. Subharmonic functions of class PL. A function u defined in D is called of class PL in D if $u \ge 0$ (possibly, $u \equiv 0$) and $\log u$ is subharmonic in D; we regard $-\infty$ as a subharmonic function. The family of all functions of class PL in D is denoted by PL again. All members of PL are subharmonic in D, and if $u \in PL$, then $u^p \in PL$ for each p > 0. If f is holomorphic in D, then $|f| \in PL$, and further, if $f \in B$, then $\sigma(f) \in PL$. Let PL^p be the family of all $u \in PL$ such that u^p has a harmonic majorant in D $(0 . Here, a function v subharmonic in D is said to have a harmonic majorant h in D if h is harmonic and <math>v \le h$ in D. The class H^p is the family of f holomorphic in D such that $|f| \in PL^p$, while H^p_{σ} is the family of $f \in B$ such that $\sigma(f) \in PL^p(0 .$

Theorem 4. Let C and V be as in Theorem 1. Then, each $u \in PL^p$ $(0 has the radial limit <math>u^*(t)$ at e^{it} for a.e. $t \in T$, and

$$\int_C u^p(z) |dz| \leq \pi^{-1} \int_T (u^*)^p(t) V(t) dt.$$

Earlier, a special case of Theorem 4, where p=1, C is an arbitrary diameter, u is continuous on $D \cup K$, and $u \in PL$, was established by BECKENBACH [1, Theorem 2]. It is now an easy exercise to extend a geometric theorem of BECKENBACH [1, Theorem 3] with the aid of Theorem 4.

Theorem 1 (and consequently, Theorem 2) now follows from Theorem 4, applied to $\sigma(f) \in PL^p$; note that $\sigma(f)^* = \sigma(f^*)$. The theory of subharmonic functions of class *PL* thus serves for the differential geometry, as originated by Beckenbach and Radó, as well as for the hyperbolic Hardy classes.

For the proof of Theorem 4 we shall make use of

Lemma 1 [5, Theorem]. Let $\varphi \ge 0$ be a function convex and increasing on $(-\infty, +\infty)$, and suppose that

$$\varphi(t)/t \to +\infty$$
 as $t \to +\infty$.

Set $\varphi(-\infty) = \lim_{t \to -\infty} \varphi(t)$, and let v be a subharmonic function in D such that $\varphi(v)$, again subharmonic, has a harmonic majorant in D. Then the radial limit $v^*(t)$ exists at e^{it} for a.e. $t \in T$, and is of $L^1(T)$, such that

$$v(z) \leq (2\pi)^{-1} \int_{T} \frac{1-|z|^2}{|e^{tt}-z|^2} v^*(t) dt.$$

Furthermore, $\varphi(v^*) \in L^1(T)$.

In effect, v admits a positive harmonic majorant in D (see [9, p. 65]), so that $v=v^{\wedge}-q$, where $q \ge 0$ is a Green's potential and v^{\wedge} is the least harmonic majorant of v in D, expressed by the Poisson integral of a signed measure

$$d\mu(t) = v^*(t)dt + d\mu_S(t) \quad \text{on } T,$$

where $d\mu_s$ is singular with respect to dt. Now, [5, Theorem] asserts that $d\mu_s(t) \leq 0$ on T and $\varphi(v^*) \in L^1(T)$.

Proof of Theorem 4. Since $u^{p} \in PL^{1}$ with $(u^{p})^{*} = (u^{*})^{p}$, it suffices to prove the theorem in the case p=1. Set $\varphi(t)=e^{t}$ and $v=\log u$ and consider Lemma 1. Since $\varphi(v)$ has a harmonic majorant, v has the harmonic majorant

$$h(z) = (2\pi)^{-1} \int_{T} \frac{1-|z|^2}{|e^{it}-z|^2} v^*(t) dt \quad (z \in D).$$

Furthermore, $h^* = v^* = \log u^*$. Since $u^* = \varphi(v^*) \in L^1(T)$ by Lemma 1, it follows

S. Yamashita

from Jensen's inequality that $e^h \leq g$, where g is the Poisson integral of $\varphi(v^*) = u^*$. Thus,

$$f \equiv e^{h+ik} \in H^1,$$

where k is a harmonic conjugate of h in D. Therefore $|f^*| = |f|^* = e^{h^*} = u^*$ and

$$u=e^{\nu}\leq e^{h}=|f|\quad \text{in }D.$$

We now apply M. Riesz's cited theorem to f of Hardy class H^1 to obtain the following chain of estimates:

$$\int_{C} u(z) |dz| \leq \int_{C} |f(z)| |dz| \leq \pi^{-1} \int_{T} |f^{*}(t)| V(t) dt =$$
$$= \pi^{-1} \int_{T} u^{*}(t) V(t) dt,$$

whence follows Theorem 4.

3. Conformal mappings. We remember that if f is holomorphic in D and if $f' \in H^1$, then f is continuous on $D \cup K$ and $f(e^{it})$ is absolutely continuous as a function of $t \in T$ with

(3.1)
$$\frac{d}{dt}f(e^{it}) = ie^{it}(f')^*(t) \text{ for a.e. } t \in T,$$

where $(f')^*(t)$ is again the radial limit of f' at e^{it} ; see [3, Theorem 3.11, p. 42]. For $f \in B$ we denote

 $f^{*}(z) = |f'(z)|/(1-|f(z)|^2), \quad z \in D,$

and for the proof of Theorem 3 we shall make use of

Lemma 2. Let $f \in B$ and $f' \in H^1$, and assume that $|f(e^{it})| < 1$ for all $t \in T$. Then $f^{\#} \in PL^1$ and

$$(f^{*})^{*}(t) = \left| \frac{d}{dt} f(e^{it}) \right| / (1 - |f(e^{it})|^2)$$

for a.e. $t \in T$.

Proof. A calculation yields that $\Delta \log f^{\#} = 4(f^{\#})^2 > 0$ except for the zeros of f', so that $f^{\#} \in PL$. Since |f| is bounded by a constant c < 1 in D, it follows from $f^{\#} \leq |f'|/(1-c^2)$ in D with $f' \in H^1$ that $f^{\#} \in PL^1$. Since $(f^{\#})^* = |(f')^*|/(1-|f|^2)$ a.e. on T, the second assertion follows from (3.1).

Proof of Theorem 3. Since γ is rectifiable (in the Euclidean sense), it follows from [3, Theorem 3.12, p. 44] that $f' \in H^1$. By Lemma 2, $f^{\pm} \in PL^1$. Since

$$L = \int_{T} \frac{|df(e^{it})|}{1 - |f(e^{it})|^2} = \int_{T} \frac{\left|\frac{d}{dt}f(e^{it})\right|}{1 - |f(e^{it})|^2|} dt,$$

144

it further follows from Lemma 2 that

$$L=\int_T (f^*)^*(t)\,dt.$$

The first assertion in Theorem 3 now follows from Theorem 4 applied to each diameter C and $f^{\pm} \in PL^{1}$.

It remains to prove the sharpness of 2 in L/2. For simplicity we consider the half-plane $R = \{w | \text{Re } w > 0\}$ with the non-Euclidean metric |dw|/[2 Re w] in the differential form. The non-Euclidean length of a curve Γ in R is denoted by $\lambda(\Gamma)$. Let $\varepsilon > 0$ and let 0 < a < b. Consider the Euclidean rectangle Q with the vertices $z_1 = a + \varepsilon i$, $z_2 = a - \varepsilon i$, $z_3 = b - \varepsilon i$, and $z_4 = b + \varepsilon i$. Let f_{ε} be a one-to-one conformal mapping from D onto Q such that f_{ε} maps the diameter [-1, 1] onto the segment ab on the real axis. If we show that

(3.2)
$$\lambda(f_{\varepsilon}(K))/\lambda(ab) \to 2 \text{ as } \varepsilon \to 0,$$

then the function $(f_{\epsilon}-1)/(f_{\epsilon}+1)$ serves as an example for the sharpness. Let z_1z_2 , z_2z_3 , z_3z_4 , and z_4z_1 be the four sides of $f_{\epsilon}(K)$. A calculation yields that

$$\lambda(z_4 z_1) = \lambda(z_2 z_3) = (1/2) \log (b/a) = \lambda(ab),$$

$$\epsilon \to 0,$$

$$\lambda(z_1 z_2) = \epsilon/a \to 0 \text{ and } \lambda(z_3 z_4) = \epsilon/b \to 0.$$

and as

Therefore (3.2) holds.

Appendix. Tsuji's proof of M. Riesz's theorem contains an obscure point. There is a gap between (5) and (6) in [8, p. 341]; the meanings of $\partial/\partial x$ in (5) and (6) are different. Since M. Riesz did not raise his result explicitly as in [8, Theorem VIII.46, p. 340], we must avoid this difficulty. The principal point is to prove that, for f holomorphic on $D \cup K$,

(A)
$$\int_{C} |f(w)| \, |dw| \leq \pi^{-1} \int_{T} |f(e^{it})| \, V(t) \, dt,$$

where C and V are the same as in Theorem 1. Choose points $w_0=a, w_1, ..., w_{n-1}, w_n=b$ on C in this order. Then

$$V(t) = \lim \sum_{k=1}^{n} |\arg(e^{it} - w_k) - \arg(e^{it} - w_{k-1})|$$

as $\max_{1 \le k \le n} |w_k - w_{k-1}| \to 0$, where $\arg(e^{it} - w)$ is a fixed branch in D; V(t) is Lebesgue measurable on T. Now it follows from [7, (3), p. 54] (a careful reading shows that the cited point is true even if A or B lies on K) that the following estimate of the integral

on the rectilinear segment $w_{k-1}w_k$ holds:

$$\int_{w_{k-1}w_k} |f(w)| \, |dw| \leq \pi^{-1} \int_T |f(e^{it})| \, |\arg(e^{it} - w_k) - \arg(e^{it} - w_{k-1})| \, dt,$$

 $1 \le k \le n$. Summing up both sides from k=1 to n, and letting $\max_{1\le k\le n} |w_k - w_{k-1}| = 0$, we obtain (A).

Remark. It might be more appropriate to call [8, Theorem VIII.46] the F. Carlson and M. Riesz theorem.

References

- [1] E. F. BECKENBACH, On a theorem of Fejér and Riesz, J. London Math. Soc., 13 (1938), 82-86.
- [2] E. F. BECKENBACH and T. RADÓ, Subharmonic functions and minimal surfaces, Trans. Amer. Math. Soc., 35 (1933), 648-661.
- [3] P. L. DUREN, Theory of H^p spaces, Pure and Applied Mathematics, vol. 38, Academic Press (New York and London, 1970).
- [4] L. FEJER and F. RIESZ, Über einige funktionentheoretische Ungleichungen, Math. Z., 11 (1921), 305-314.
- [5] L. GÅRDING and L. HÖRMANDER, Strongly subharmonic functions. Math. Scand., 15 (1964), 93-96; Correction, ibid., 18 (1966), 183.
- [6] T. RADÓ, Subharmonic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5. Band, Springer-Verlag (Berlin-Göttingen-Heidelberg, 1937).
- [7] M. RIESZ, Remarque sur les fonctions holomorphes, Acta Sci. Math. 12 (1950), 53-56.
- [8] M. TSUJI, Potential theory in modern function theory, Maruzen Co., Ltd., (Tokyo, 1959).
- [9] S. YAMASHITA, On some families of analytic functions on Riemann surfaces, Nagoya Math. J., 31 (1968), 57-68.
- [10] S. YAMASHITA, Hyperbolic Hardy class H¹, Math. Scand., 45 (1979), 261-266.
- [11] S. YAMASHITA, The meromorphic Hardy class is the Nevanlinna class, J. Math. Anal. Appl., to be published.

DEPARTMENT OF MATHEMATICS TOKYO METROPOLITAN UNIVERSITY FUKAZAWA, SETAGAYA-KU, TOKYO, 158 JAPAN

n tha a that the

e grand og en inder 11 october - Standard october 11 october - Standard october - Sta

1

· · · ·

:.