The hyperbolic M. Riesz theorem

 SHINJI YAMASHITA1. Introduction. We shall prove the non-Euclidean hyperbolic versions of the theorems of M. Riesz [7] and of L. Fejér and F. Riesz [4] (see [8, Theorem VIII.45, p. 339 and Theorem VIII.46, p. 340], [3, p. 46]) and show a property of conformal mappings in terms of the non-Euclidean geometry in the unit disk.

Let $D=\{|z|<1\}, T=[0,2 \pi)$, and $K=\left\{e^{i t} \mid t \in T\right\}$. Let

$$
\sigma(z, w)=\tanh ^{-1}(|z-w| /|1-\bar{z} w|)
$$

be the non-Euclidean hyperbolic distance between z and w in D, and let

$$
\sigma(z) \equiv \sigma(z, 0)=(1 / 2) \log [(1+|z|) /(1-|z|)], \quad z \in D
$$

Let B be the family of functions f, holomorphic and bounded, $|f|<1$, in D. Then $\sigma(f)$ for $f \in B$, like $|f|$, has the property that $\log \sigma(f)$ is subharmonic in D, so that $\sigma(f)^{p}=\exp [p \log \sigma(f)]$ is subharmonic in D for all $p>0$; see [10]. Let H_{σ}^{p} be the family of $f \in B$ such that

$$
\int_{T} \sigma(f)^{p}\left(r e^{i t}\right) d t
$$

is bounded for $0 \leqq r<1(0<p<\infty)$. The class H_{σ}^{p} is the hyperbolic counterpart of the (parabolic) Hardy class H^{p} in D [3, p. 2], and is called the hyperbolic Hardy class. (Recently, it is observed that an "elliptic" analogue of $H^{p}(0<p<\infty)$, namely, a meromorphic Hardy class yields no new family [11, Theorem 1].) Each $f \in B$ has the radial limit $f^{*}(t)=\lim _{r \rightarrow 1-0} f\left(r e^{i t}\right)$ at $e^{i t}$ for a.e: $t \in T$, and as will be seen, $\sigma\left(f^{*}\right)$ is of class $L^{p}(T)$ for all $f \in \dot{H}_{\sigma}^{p}(0<p<\infty)$. The hyperbolic M. Riesz theorem is

Theorem 1. Let C be a rectifiable curve with the initial point a and the terminal point b (possibly, $a=b$) in the complex plane. Suppose that

$$
C \subset D \cup K \text { and } \dot{C} \cap K \subset\{a, b\}
$$

Received October 23, 1980.

Set for $t \in T$, with $e^{i t} \ddagger C \cap K$,

$$
V(t)=\int_{\boldsymbol{C}}\left|d \arg \left(e^{i t}-w\right)\right| \quad(w \in C) .
$$

Then, for each $f \in H_{\sigma}^{p}(0<p<\infty)$,

$$
\int_{C} \sigma(f)^{p}(z)|d z| \leqq \pi^{-1} \int_{T} \sigma\left(f^{*}\right)^{p}(t) V(t) d t .
$$

If C is the diameter $\left\{x e^{i s} \mid-1 \leqq x \leqq 1\right\}(s \in T)$, then $V(t) \equiv \pi / 2$, so that the hyperbolic Fejér and F. Riesz theorem is

Theorem 2. For each $f \in H_{\sigma}^{p}(0<p<\infty)$ and each $s \in T$,

$$
\int_{-1}^{1} \sigma(f)^{p}\left(x e^{i s}\right) d x \leqq(1 / 2) \int_{T} \sigma\left(f^{*}\right)^{p}(t) d t .
$$

The Fejér and F. Riesz theorem has the obvious application to conformal mappings from D onto a Jordan domain with the rectifiable boundary [4, Satz IV]; see [8, Corollary, p. 341] and [3, Corollary, p. 47]. The hyperbolic version is not so apparent as in the cited case; namely, the following theorem does not appear to be a direct consequence of Theorem 2. There is no relation between $\sigma(f)$ and $\left|f^{\prime}\right| /\left(1-|f|^{2}\right)$ like that between $|f|$ and $\left|f^{\prime}\right|$.

Theorem 3. Let γ be a Jordan curve in D with finite non-Euclidean length L. Let f be a one-to-one conformal mapping from D onto the interior of γ. Then the nonEuclidean length of the image of each diameter by f is not greater than L/2. The constant 2 in L/2 cannot be replaced by any larger constant.

For the proofs of Theorems 1 and 3, the principal idea is to obtain the M. Riesz theorem for subharmonic functions of class $P L$ in the sense of E. F. Beckeniaich and T. Radó [2] (see also [6, p. 9]); see Theorem 4 in Section 2.
2. Subharmonic functions of class $P L$. A function u defined in D is called of class $P L$ in D if $u \geqq 0$ (possibly, $u \equiv 0$) and $\log u$ is subharmonic in D; we regard. $-\infty$ as a subharmonic function. The family of all functions of class $P L$ in D is denoted by $P L$ again. All members of $P L$ are subharmonic in D, and if $u \in P L$, then $u^{p} \in P L$ for each $p>0$. If f is holomorphic in D, then $|f| \in P L$, and further, if $f \in B$, then $\sigma(f) \in P L$. Let $P L^{p}$ be the family of all $u \in P L$ such that u^{p} has a harmonic majorant in $D(0<p<\infty)$. Here, a function v subharmonic in D is said to have a harmonic majorant h in D if h is harmonic and $v \leqq h$ in D. The class H^{p} is the family of f holomorphic in D such that $|f| \in P L^{p}$, while H_{σ}^{P} is the family of $f \in B$ such that $\sigma(f) \in P L^{p}(0<p<\infty)$.

Theorem 4. Let C and V be as in Theorem 1. Then, each $u \in P L^{p}(0<p<\infty)$ has the radial limit $u^{*}(t)$ at $e^{i t}$ for a.e. $t \in T$, and

$$
\int_{C} u^{p}(z)|d z| \leqq \pi^{-1} \int_{T}\left(u^{*}\right)^{p}(t) V(t) d t .
$$

Earlier, a special case of Theorem 4, where $p=1, C$ is an arbitrary diameter, u is continuous on $D \cup K$, and $u \in P L$, was established by Beckenbach [1, Theorem 2]. It is now an easy exercise to extend a geometric theorem of Beckenbach [1, Theorem 3] with the aid of Theorem 4.

Theorem 1 (and consequently, Theorem 2) now follows from Theorem 4, applied to $\sigma(f) \in P L^{p}$; note that $\sigma(f)^{*}=\sigma\left(f^{*}\right)$. The theory of subharmonic functions of class $P L$ thus serves for the differential geometry, as originated by Beckenbach and Radó, as well as for the hyperbolic Hardy classes.

For the proof of Theorem 4 we shall make use of
Lemma 1 [5, Theorem]. Let $\varphi \geqq 0$ be a function convex and increasing on $(-\infty,+\infty)$, and suppose that

$$
\varphi(t) / t \rightarrow+\infty \quad \text { as } \quad t \rightarrow+\infty .
$$

Set $\varphi(-\infty)=\lim _{t \rightarrow-\infty} \varphi(t)$, and let v be a subharmonic function in D such that $\varphi(v)$, again subharmonic, has a harmonic majorant in D. Then the radial limit $v^{*}(t)$ exists at $e^{i t}$ for a.e. $t \in T$, and is of $L^{1}(T)$, such that

$$
v(z) \leqq(2 \pi)^{-1} \int_{T} \frac{1-|z|^{2}}{\left|e^{t t}-z\right|^{2}} v^{*}(t) d t
$$

Furthermore, $\varphi\left(v^{*}\right) \in L^{1}(T)$.
In effect, v admits a positive harmonic majorant in D (see [9, p. 65]), so that $v=v^{\wedge}-q$, where $q \geqq 0$ is a Green's potential and v^{\wedge} is the least harmonic majorant of v in D, expressed by the Poisson integral of a signed measure

$$
d \mu(t)=v^{*}(t) d t+d \mu_{S}(t) \quad \text { on } T
$$

where $d \mu_{S}$ is singular with respect to $d t$. Now, [5, Theorem] asserts that $d \mu_{s}(t) \leqq 0$ on T and $\varphi\left(v^{*}\right) \in L^{1}(T)$.

Proof of Theorem 4. Since $u^{p} \in P L^{1}$ with $\left(u^{p}\right)^{*}=\left(u^{*}\right)^{p}$, it suffices to prove the theorem in the case $p=1$. Set $\varphi(t)=e^{t}$ and $v=\log u$ and consider Lemma 1. Since $\varphi(v)$ has a harmonic majorant, v has the harmonic majorant

$$
h(z)=(2 \pi)^{-1} \int_{\boldsymbol{T}} \frac{1-|z|^{2}}{\left|e^{i t}-z\right|^{2}} v^{*}(t) d t \quad(z \in D)
$$

Furthermore, $h^{*}=v^{*}=\log u^{*}$. Since $u^{*}=\varphi\left(v^{*}\right) \in L^{1}(T)$ by Lemma 1, it follows
from Jensen's inequality that $e^{k} \leqq g$, where g is the Poisson integral of $\varphi\left(v^{*}\right)=u^{*}$. Thus,

$$
f \equiv e^{h+i k} \in H^{1}
$$

where k is a harmonic conjugate of h in D. Therefore $\left|f^{*}\right|=|f|^{*}=e^{h^{*}}=u^{*}$ and

$$
u=e^{v} \leqq e^{h}=|f| \text { in } D .
$$

We now apply M. Riesz's cited theorem to f of Hardy class H^{1} to obtain the following chain of estimates:

$$
\begin{gathered}
\int_{C} u(z)|d z| \leqq \int_{C}|f(z)||d z| \leqq \pi^{-1} \int_{T}\left|f^{*}(t)\right| V(t) d t= \\
=\pi^{-1} \int_{T} u^{*}(t) V(t) d t
\end{gathered}
$$

whence follows Theorem 4.
3. Conformal mappings. We remember that if f is holomorphic in D and if $f^{\prime} \in \boldsymbol{H}^{1}$, then f is continuous on $D \cup K$ and $f\left(e^{i t}\right)$ is absolutely continuous as a function of $t \in T$ with

$$
\begin{equation*}
\frac{d}{d t} f\left(e^{i t}\right)=i e^{i t}\left(f^{\prime}\right)^{*}(t) \text {. for a.e. } \quad t \in T, \tag{3.1}
\end{equation*}
$$

where $\left(f^{\prime}\right)^{*}(t)$ is again the radial limit of f^{\prime} at $e^{i t}$; see [3, Theorem 3.11, p. 42]. For $f \in B$ we denote

$$
f^{\#}(z)=\left|f^{\prime}(z)\right| /\left(1-|f(z)|^{2}\right), \quad z \in D,
$$

and for the proof of Theorem 3 we shall make use of
Lemma 2. Let $f \in B$ and $f^{\prime} \in H^{1}$, and assume that $\left|f\left(e^{i t}\right)\right|<1$ for all $t \in T$. Then $f^{\#} \in P L^{1}$ and

$$
\left(f^{*}\right)^{*}(t)=\left|\frac{d}{d t} f\left(e^{i t}\right)\right| /\left(1-\left|f\left(e^{i t}\right)\right|^{2}\right)
$$

for a.e. $t \in T$.
Proof. A calculation yields that $\Delta \log f^{\#}=4\left(f^{\#}\right)^{2}>0$ except for the zeros of f^{\prime}, so that $f^{\#} \in P L$. Since $|f|$ is bounded by a constant $c<1 \cdot$ in D, it follows from $f^{\#} \leqq\left|f^{\prime}\right| /\left(1-c^{2}\right)$ in D with $f^{\prime} \in H^{1}$ that $f^{\#} \in P L^{1}$. Since $\left(f^{\#}\right)^{*}=\left|\left(f^{\prime}\right)^{*}\right| /\left(1-|f|^{2}\right)$ a.e. on T, the second assertion follows from (3.1).

Proof of Theorem 3. Since γ is rectifiable (in the Euclidean sense), it follows from [3, Theorem 3.12, p. 44] that $f^{\prime} \in H^{1}$. By Lemma 2, $f^{\#} \in P L^{1}$. Since

$$
L=\int_{T} \frac{\left|d f\left(e^{i t}\right)\right|}{1-\left.\left|f\left(e^{i}\right)\right|\right|^{2}}=\int_{T} \frac{\left|\frac{d}{d t} f\left(e^{i t}\right)\right|}{1-\left|f\left(e^{i t}\right)\right|^{2} \mid} d t,
$$

it further follows from Lemma 2 that

$$
L=\int_{T}\left(f^{\#}\right)^{*}(t) d t
$$

The first assertion in Theorem 3 now follows from Theorem 4 applied to each diameter C and $f^{\#} \in P L^{1}$.

It remains to prove the sharpness of 2 in $L / 2$. For simplicity we consider the half-plane $R=\{w \mid \operatorname{Re} w>0\}$ with the non-Euclidean metric $|d w| /[2 \operatorname{Re} w]$ in the differential form. The non-Euclidean length of a curve Γ in R is denoted by $\lambda(\Gamma)$. Let $\varepsilon>0$ and let $0<a<b$. Consider the Euclidean rectangle Q with the vertices $z_{1}=a+\varepsilon i, z_{2}=a-\varepsilon i, z_{3}=b-\varepsilon i$, and $z_{4}=b+\varepsilon i$. Let f_{ε} be a one-to-one conformal mapping from D onto Q such that f_{ε} maps the diameter $[-1,1]$ onto the segment $a b$ on the real axis. If we show that

$$
\begin{equation*}
\lambda\left(f_{\varepsilon}(K)\right) / \lambda(a b) \rightarrow 2 \quad \text { as } \quad \varepsilon \rightarrow 0, \tag{3.2}
\end{equation*}
$$

then the function $\left(f_{\varepsilon}-1\right) /\left(f_{\varepsilon}+1\right)$ serves as an example for the sharpness. Let $z_{1} z_{2}, z_{2} z_{3}, z_{3} z_{4}$, and $z_{4} z_{1}$ be the four sides of $f_{\varepsilon}(K)$. A calculation yields that

$$
\lambda\left(z_{4} z_{1}\right)=\lambda\left(z_{2} z_{3}\right)=(1 / 2) \log (b / a)=\lambda(a b)
$$

and as $\varepsilon \rightarrow 0$,

$$
\lambda\left(z_{1} z_{2}\right)=\varepsilon / a \rightarrow 0 \quad \text { and } \quad \lambda\left(z_{3} z_{4}\right)=\varepsilon / b \rightarrow 0
$$

Therefore (3.2) holds.
Appendix. Tsuji's proof of M. Riesz's theorem contains an obscure point. There is a gap between (5) and (6) in [8, p. 341]; the meanings of $\partial / \partial x$ in (5) and (6) are different. Since M. Riesz did not raise his result explicitly as in [8, Theorem VIII.46, p. 340], we must avoid this difficulty. The principal point is to prove that, for f holomorphic on $D \cup K$,

$$
\begin{equation*}
\int_{\boldsymbol{C}}|f(w)||d w| \leqq \pi^{-1} \int_{\boldsymbol{T}}\left|f\left(e^{i t}\right)\right| V(t) d t, \tag{A}
\end{equation*}
$$

where C and V are the same as in Theorem 1. Choose points $w_{0}=a, w_{1}, \ldots, w_{n-1}$, $w_{n}=b$ on C in this order. Then

$$
V(t)=\lim \sum_{k=1}^{n}\left|\arg \left(e^{i t}-w_{k}\right)-\arg \left(e^{i t}-w_{k-1}\right)\right|
$$

as $\max _{1 \leq k \leqq n}\left|w_{k}-w_{k-1}\right| \rightarrow 0$, where $\arg \left(e^{i t}-w\right)$ is a fixed branch in $D ; V(t)$ is Lebesgue measurable on T. Now it follows from [7, (3), p. 54] (a careful reading shows that the cited point is true even if A or B lies on K) that the following estimate of the integral
on the rectilinear segment $w_{k-1} w_{k}$ holds:

$$
\int_{w_{k-1} w_{k}}|f(w)||d w| \leqq \pi^{-1} \int_{T}\left|f\left(e^{i t}\right)\right|\left|\arg \left(e^{i t}-w_{k}\right)-\arg \left(e^{i t}-w_{k-1}\right)\right| d t
$$

$1 \leqq k \leqq n$. Summing up both sides from $k=1$ to n, and letting $\max _{1 \leqq k \leqq n}\left|w_{k}-w_{k-1}\right| \rightarrow 0$, we obtain (A).

Remark. It might be more appropriate to call [8, Theorem VIII.46] the F. Carlson and M. Riesz theorem.

References

[1] E. F. Beckenbach, On a theorem of Fejér and Riesz, J. London Math. Soc., 13 (1938), 82-86.
[2] E. F. Beckenbach and T. Radó, Subbarmonic functions and minimal surfaces, Trans. Amer. Math. Soc., 35 (1933), 648-661.
[3] P. L. Duren, Theory of H^{p} spaces, Pure and Applied Mathematics, vol. 38, Academic Press (New York and London, 1970).
[4] L. Fefer and F. Riesz, Über einige funktionentheoretische Ungleichungen, Math. Z., 11 (1921), 305-314.
[5] L. GÅrding and L. Hörmander, Strongly subharmonic functions. Math. Scand., 15 (1964), 93-96; Correction, ibid., 18 (1966), 183.
[6] T. Radó, Subharmonic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5. Band, Springer-Verlag (Berlin-Göttingen-Heidelberg, 1937).
[7] M. Riesz, Remarque sur les fonctions holomorphes, Acta Sci. Math. 12 (1950), 53-56.
[8] M. Tsuis, Potential theory in modern function theory, Maruzen Co., Ltd., (Tokyo, 1959).
[9] S. Yamashita, On some families of analytic functions on Riemann surfaces, Nagoya Math. J., 31 (1968), $57-68$.
:[10] S. Yamashita, Hyperbolic. Hardy class H^{1}, Math. Scand., 45 (1979), 261-266.
[11] S. Yamashita, The meromorphic Hardy class is the Nevanlinna class, J. Math. Anal. Appl.. to be published.

