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The ideal lattice of a distributive lattice with 0
is the congruence lattice of a lattice

E. THOMAS SCHMIDT

The congruence lattice of an arbitrary lattice is a distributive algebraic lattice,
i.e. the ideal lattice of a distributive semilattice with 0. The converse of this state-
ment is a long-standing conjecture of lattice theory. We prove the following:

Theorem. Let L be the lattice of all ideals of a distributive lattice with Q. Then
there exists a lattice K such that L is isomorphic to the congruence lattice of K.

The conjecture was first established for finite distributive lattices by R. P. Dil-
worth. Later, it was solved for the ideal lattice of relatively pseudo-complemented
join-semilattices (E. T. SceMipT [4], [S]).

The first section of this paper reviews the definitions and gives the outline of
the proof. The basic notion is the so-called distributive homomorphism of a semi-
lattice (see [4]). The second section proves that for every distributive lattice F with
0 there exists a generalized Boolean algebra B — considered as a semilattice — and
a distributive homomorphism of B onto F. In the third section we prove the main
result and in the last section we give some ‘generalizations.

1. Preliminaries

Semilattice always means a join-semilattice in this paper. The compact elements
of an algebraic lattice L form a semilattice L¢ with 0, and L is isomorphic to the
ideal lattice of L°. We denote by Con (K) the congruence lattice of the lattice K.
The compact elements of Con (K) are called compact congruence relations, these
form the semilattice Con® (K).

Let B be a sublattice of a lattice K. The connection between Con° (B) and
Con° (K) is of course very loose. Let 8 be a congruence relation of B.
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Then there exists a smallest congruence relation §°¢ Con (X) such that 6°|,=4.
It is easy to see that 69V03=(0,V0,)°, ie. the correspondence #-0° is a homo-
morphism of Con® (B) into the semilattice Con® (K). If this homomorphism is onto
we call X a strong extension of B [l]; or we say that B is a strongly large sublattice.
It is an important case if 6°|;=60 holds, then we write 8 instead of 6°. 8 is called the
extension of 6.

It is well known that in generalized Boolean lattices (i.e. relatively complemented
distributive lattices with zero) there is a one-to-one correspondence between con-
gruence relations and ideals and therefore if B denotes a generalized Boolean lattice
then Con®(B)=B. Let F be a distributive semilattice with 0. We would like to get
a lattice K such that Con¢(K)=F holds. Therefore we start with a generalized
Boolean lattice B which has a join-homomorphism onto F and we construct a strong
extension K of B such that 8--8° is the given join-homomorphism. The construc-
tion of a strong extension of this kind was developed in [4].

We will make a further assumption that B is a convex sublattice of K. In thlS
case the homomorphism 6—6° has an additional property, formulated in the next
proposition.

Proposition 1. Let B be a convex sublattice of K and let 0°= PO ¥° where
0, ¢, WeCon® (B). Then there exist &,,¥,€Con®(B) such that &,V¥,=6 and
Y= 0, YI= PO,

Proof. 6 is a compact congruence relation of B, hence 0= \/ 0(a;, b,) where

a;<b;, a;b,€B. From 6°=¢°V¥° we get a;=b,(P°VYP?), i=1, 2 ,n. We have
therefore for every i a finite chain a;=c¢y;<¢; ;<...<c, ;=b; such that ¢; ;=
=¢j41,i{(P°) or c¢; ;=c;.1,;(¥°). By the assumption, B is a convex sublattice, i.e
¢;€B. Let &, be the join of all principal congruences 6(c; ;, ¢;.,,;)€Con®(B)
with ¢; ;=¢;44,:(®%. In a similar way we get ¥,. Then a,=b,(P,V¥,) for every
i,ie. 0=d,V¥,, and H|=P°, YIi=Po

This Proposition suggests the following

Definition 1. Let S, T be two distributive semilattices. A homomorphism
@ of S into T is called weak-distributive if @(u)=¢(xVy) implies the existence of
x1, €S such that x,Vy,=u, o(x)=0(x), ¢(»):=¢(») (see Figure 1).

¢(u)

Figure 1.
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- The congruence relation induced by a weak-distributive homomorphism is
called a weak-distributive congruence.
Let ¢ be a homomorphism of the semilattice S into the semilattice T The
congruence relation of S induced by ¢ is denoted by 0,,.

Proposition 2. Let S be a distributive semilattice. ¢: S—T is a weak-
distributive homomorphism if and only if a=bVc (8,), a=bVc imply the existence
of elements b,=b, ¢,=c such that b=b; (0,), c=c, (0,) and b,V c,=a (Figure 2).

Proof. Let us assume that ¢ is a weak-distributive homomorphism and Ilet
az=bVe, o@=pBV)=0®)Ve(c), i.e. a=bVc(0,). ¢ is weak-distributive, hence
we have elements by, c€S such that byVco=a, @(b)=¢(b), ¢(c)=p(c). Let
b,=bV by, c;=cV ¢, then b Ve, =bVcVbVeg=bVcVa=a and ¢(b)=¢(bVby)=
=BV @ by)=¢(b), ie. b=b (0,). Similarly we get ¢;=c (0,) which proves
that 0, satisfies the given property.

Let 8, be a congruence relation with the property formulated in the Proposi-
tion. Let a[0,]=x[0,]Vy[0,], ie. a=xVy (0,). Then aVxVy=xVy (0, and
there exist x;, y,€ S satisfying x,Vy,=xVyVa, x=x,(0,), y=y, (0,). Therefore
X,V =a, hence by the distributivity of S we get elements x,, y, for which x,=x,;
.=y, and x,Vy,=a. These elements satisfy @(x)=p(x)=¢(x), ie. ¢ is weak-
distributive.

Figure 2.

It is easy to give an example for a semilattice S and @, b€ S such that there is.
no. smallest weak-distributive’ congruence satisfying a=b (), ie. the principal
weak-distributive congruence does not exist. We follow another way to define a
special weak-distributive congruence which plays the role of the principal congruence.
The vprincipal congruences of a semilattice have the property that every congruence
class contains a maximal element.

.Definition 2. [4] A congruence relation 8 of a semllattlce is called monomial
if every 0-class has a maximal element.
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The monomial congruence are special meet-representable congruences. Every
congruence relation of a semilattice is the join of principal congruence relations
therefore it is natural to introduce the following notion.

Definition 3. [4] A congruence relation 8 of a semilattice is called distributive
if 0 is the join of weak-distributive monomial congruences. A homomorphism
¢: S—T is distributive iff the congruence relation 8 induced by ¢ is distributive.

Remark. It is easy to prove that the join of weak-distributive congruences
is weak-distributive. The basic properties of distributive congruences are listed
in [6].

If (B;V, A) is a generalized Boolean lattice, then the semilattice (B; V) w1ll
be called a generalized Boolean semilattice.

 For the solution of the characterization problem of congruence lattlces of
attices it is enough to solve the following two problems.

Problem 1. Let B be a generalized Boolean semilattice and let 8 be a distribu-
tive congruence of B. Does there exist a lattice K satisfying Con® (K)=:B/0? Does
there exist a strong extension of B satisfying the same property?

This problem was solved positively in [4]. In section 3 we give the sketch of
the proof.

Problem 2. Let F be a distributive semilattice with 0. Does there exist a gen-
eralized Boolean semilattice B and a distributive congruence 8 of B such that F is
isomorphic to B[§?

This problem is open. We solve this problem if F is a latt1ce i.c. we prove the
following. :

Theosem 1. Let F be a distributive lattice with O. Then there exist a generalized
Boolean semilattice B and a distributive congruence 6 of B such that F=BJ6.

The proof of this theorem will be given in the next sections. We present here
the basic idea of the proof.

Let F be a semilattice, a, be F. The pseudocomplement axb of a relative to b
is an element axb€ F satisfying aVx=b iff x=axb. If axb exists for all a, beF
then F is a relatively pseudocomplemented semilattice. (In the literature the pseudo-
complement is usually defined in meet-semilattices.) . B

Let F be a relatively pseudocomplemented lattice (i.e. the join-semilattice FV
is relatively pseudocomplemented). The proof of Theorem 1 in this case is quite easy.
Let B be the Boolean lattice R-generated by F. (See [2], p. 87.) Then for every x€B
there exists a smallest X€F satisfying x=x. The mapping x-X is a distributive
homomorphism of B onto F. The congruence relation induced by this mapping is
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monomial. The converse of this statement is true: if 8 is a monomial distributive
congruence of B then B/ is a relatively pseudocomplemented lattice.

If F is a relatively pseudocomplemented semilattice then this construction does
not work. In this case we consider for every acF, a=0 the skeleton of (a], i.e.
S(@={xxa; x=a} (2], p. 112). S(a) is a Boolean lattice. Consider the lower
discrete direct product {] (S(a); ac F, a0), i.e. the sublattice of the direct product

JI S(a) of those sequences ¢t for which #(a)=0 for all but finitely many acF.
This is a generalized Boolean lattice B, and it is easy to show that B has a distribu-
tive congruence 0 satisfying B/0=F (see [4]).
~ To prove Theorem 1 we generalize the notion of the skeleton. Let ¢ be the
identity ¢: S(1)—~F. If B denotes S(1) and O, I¢B then this ¢ obviously has
the following properties:
(1) ¢ is a {0, 1}-homomorphism of the Boolean semilattice B into the semi-
lattice F,
“(2) if o(I)=xVy in Fthen there exist x,;, y;€B such that x,Vy,=1, ¢(x)=x,
o(y)=y.
(1) follows from the property that S(a) is a subsemilattice of F, and (2) is obvi-
ous if we take x;=y*1, yy=x;%1.

Definition 4. Let F be a distributive semilattice with 0, 1¢F and ler’:m}
be a Boolean semilattice with unit element 7 and zero element 0. B is called a pre-
skeleton of F if there exists a mapping ¢ of B into F such that conditions (1) and (2)
are satisfied.

Condition (2) is related to the distributivity of ¢; if (2) is satisfied for every
a€ B (instead of I) and ¢ is onto then we get that ¢ is distributive.

2. The pre-skeleton

To prove Theorem 1 we shall show that every bounded distributive lattice has
a pre-skeleton. First we verify some simple well-known properties of free Boolean
algebras. The free Boolean algebra B generated by the set G is denoted by F(G). If
|G|=m we shall write F(m) for F(G). 1 denotes the unit element of F(G). Let G'=
={x’|x€G} (x’ denotes the complement of x) and G,=GUG’. For g¢G, g°is
either g or g’. Let k be a natural number. We consider the subset G, of B defined
by Gy={1} and G,={x|x€B, x=0, x=g3A.. /\g,i, where g, ..., g, are different

elements of G}. From these sets G, we get # = U G;. If |G|=n is a natural

number then G, is the set of atoms of F(n) and each a€ F(n), a0 has a unique
representation as a join of elements of G,. If G is infinite we have no atoms, there-
fore we must take the whole set J#, which is of course a relative sublattice of B.
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The most important properties of # are collected in the following definition,

Definition 5. A relative sublattice s# of a Boolean algebra B is called a
join-base iff the following conditions are satisfied:

(1) 0¢5# and les?.

(ii) Each a€B, a0 has a representation as a join of elements of 7.

(iii) There is a dimension function § from 5 onto an ideal of the chain of
non-negative integers such that 6(1)=0 and x—<y in 4 if and only if
x=y and 6(x)=06(y)+1. The set of all x€3#¥ with d(x)=i is denoted
by ;.

(iv) For every finite subset U={u,, ..., u,} of B there exists an i€N such that
each #, (k=i) has a finite subset A, (U) with the property that each
u€U has a unique join representation as a join of elements of A, (U).

(v) If apb0 in B,a, b€ then aAbes#; if aVb exists in # and a, b
are incomparable then a, bes#;, aVbe#,_, for some i€N. Assume,
that there exists an a,€3f;_,, a,#aV b, ay>a, then there is a b€ H#,_,
such that a,Vb, exists and a,A(aVb)=a, byA\(aVb)=b.

Let s# be a join-base of a Boolean semilattice B and let f: s#—~L be a homo-
morphism into a distributive lattice (i.e. f(aAb)=f(a)Af(b) whenever apb exists,
and the same for V). We want to extend f to a homomorphism ¢: B—~L (ie.,
¢ will be a join-homomorphism of the Boolean algebra B). Let a=hV...Vh,
where h,c3#. The only way to define ¢ is the following: ¢(a)=f()V...VL(h,).
Condition (iv) yields that this definition is unique and (ii) implies that ¢ maps B
into L.

Definition 6. The homomorphism ¢ of the Boolean semilattice into L is
called an L-valued homomorphism of B induced by f.

To prove Theorem 1 we need the definition of free {0, 1}-distributive product
(see G. GRATZER [2}, p. 106). v

Definition 7. Let D be the class of all bounded distributive lattices and let
L,, icI be lattices in D. A lattice L in D is called a free {0, 1}-distributive product
of the L;, icl, iff every L; has an embedding & into L such that

(i) L is generated by U(e,L; i€l).

(i) If K is any lattice in .D and ¢; is a {0, 1}-homomorphlsrn of L; into K for
iel, then there exists a {0, 1}-homomorph1sm ¢ of L into K satisfying ¢;= = 0¢;
for all i.

The free {0, 1}-distributive product is denoted by II*(4;;i€]) or by AxB.
The lower discrete direct product is denoted by II,(4,; i€c]) and finally if 4,
are lattices with unit element then IT%(4;; i€I) is the upper discrete direct product,
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i.e. the sublattice of the direct product IT4; of those sequences ¢ for which ¢(a)=1
for all but finitely many a.

Lemma 1. Let L be a bounded distributive lattice and let A; (i€I) be Boolean
semilattices. If ¢,: A;~L (i€I) are L-valued {0, 1}-homomorphisms generated by
fii L then the free {0, 1}-distributive product IT*A; has a join-base # and a
homomorphism f: # —~L such that 3 N\A;=3#" for each icl. There exists an
L-valued homomorphism ¢ of II*A; generated by f satisfying ¢;=@e

Proof. Let o be the set of all those elements A0 of IT*4, which have a
finite meet-representation as a meet of elements from V. #*. (Then 4 is isomorphic
to the upper direct product IT°s#') Obviously #'C s, #'=# NA;. Let u=hN
AhgA ... Ah, where the h,€5#° belong to different components, then this represen-
tation is unique. We have by (iii) the functions §;: #'—~N. Now let &: # —~N
be defined by 6(w)=6;(h)+ ... +9,(h,). It is easy to verify (iv) and (v). Assume
that f;: s##'--L are homomorphisms, then we can extend them as follows: f(u)=
=fihDA...Afn(h,). Hence x=y (x, ycII*A4;) implies f(x)=f(y). Let us assume
that for incomparable b, c€3#, bV c exists, i.e. bVc€s. Then by (V) there exist
an i and by, cy€ 5% such that b=b,A(bVc) and c=cyA(bVc). Thus we get by the
distributivity of L that f(B)Vf(c)=Lf;(b) Af(bV IV [filea Af(BV )= (i (b)V fi(co)) A
Af(BV ). But f;: #*—~L is a homomorphism, hence f;(b,V co) =f:(bo)V.fi(cy). Obvi-
ously boVeo=bVe, ie. f(byVer=f(bVc). This yields fB)Vf(c)=f(bVc), ie. f
is a homomorphism of 5# into L.

The free Boolean algebra on m generators is the free {0, 1}-distributive product
of m copies of the free Boolean algebra on one generator, i.e. if B;==F(1), i€l then
F(m)=IT* B, :

Corollary. If each B;=F(1) has a {0, 1}-homomorphism ¢; into the distribu-
tive lattice L, then there exists an L-valued homomorphism ¢ of F(m) into L such
that (pi=(P8i'

Lemma: 2. Let L be a bounded distributive lattice. Then there exists a pre-
skeleton B of L.

Proof. First assume that B is a pre-skeleton and : B,—B is a lattice homo-
morphism of the Boolean lattice B, onto B. Then it is easy to see that B, is again
a pre-skeleton and the corresponding join-homomorphism is @y (x). Therefore to
prove our Lemma it is enough to take a free Boolean algebra generated by a
“big” set.

We start with the set G, of all pairs (q, b) satisfying a, b¢L, aVb=1, a, b1,
Let G be a subset of G, which is maximal with respect to the property: (g, b)€G
iff (b,a)4G.
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In the free Boolean algebra F(G) we define (a, b)Y =(b, a), i.e. the complement
of (a, b) is (b, @). The mapping ¢: F(G)—~L is defined as follows. For (a, b)€G,
we set ¢((a,b))=a and let ¢(0)=0. Then ¢((a, H))Ve((b, a))=aVb=1, ie. ¢
is a {0, 1}-homomorphism of the semilattice F((a, b)) into L. Then by the Corollary
to Lemma 1 there exists an extension ¢ of these homomorphisms. Let xVy=1=
=@(l), x,y#=1, where I denotes the unit element of F(G). Take x,=(x,y), y,=
=(y, x)E F(G). By the definition of ¢ we have @(x)=x, ¢(y)=y, ie. F(G) is
a pre-skeleton of L. .

Example 1. As an illustration consider the lattice L represented by Figure 3.

1

0

Figure 3.

The set G, contains the pairs (a, ¢), (b, ¢), (¢, @), (c,b) and for a generating
set we can choose G={(a, ¢), (b, ¢)}; then B is the free Boolean algebra generated
by two elements, i.e. B=22% Figure 4 gives the join-homomorphism ¢, in which
the wavy line indicates congruence modulo 6=XKer ¢.
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" Remark. The set G; can be made into a poset as follows: (x, »)=(,v) iff
x=u and y=v. We adjoin 0 and [ and we take the Boolean algebra B, freely gen-
erated by this poset. B, is of course the homomorphic image of B defined above.
Sometimes it is easier to work with this “smaller’ Boolean algebra (see Figure 5).

Example 2. Let L be the lattice shown in Figure 6.

Let N={0, 1, 2, ...} be the set of all natural numbers. B is the Boolean-algebra
containing all finite and cofinite subsets of N. We define (a;, b)={x;; x=i}, (b, a))=
={0, 1, ...,i—1}. Then G={(a;, b), (b,a); i=0,1, ...} is a generating set. The
corresponding join homomorphism is the following. Let 4 be a subset of N with
the smallest element f(A4). If 4 is finite then ¢(A4) is b if f(4)=0 and @(4)=c,,
if f(4)=0. For an infinite 4 we have @(4)=1 if f(4)=0 and @(4)=a,,, if
F(A)=0. Tt is easy to see that ¢ is a distributive homomorphism of B onto L, which
proves that I(L)=~L is the congruence lattice of a lattice. This is the simplest
example to show that Con®(K) need not to be relatively pseudocomplemented.

Lemma 3. Let A;, A, be Boolean semilattices and let ¢;: A;~L be L-valued
{0}-homomorphisms generated by the homomorphisms f;: 3¢,~L of the join-bases
HCA; (i=1,2). Then H#=s#,UU{l} is a join-base of A, XA, and if ¢ is
the homomorphism generated by f: # —~L then ¢;=qs;

Proof. The proof is obvious.

Remark. Lemma 3 is true for lower discrete direct product. In the infinite
case this is a generalized Boolean algebra.

The basic idea of the proof of Theorem 1 can be illustrated by the following
lattice (Figure 7).

11
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Let a be an element of L. Then (a] is a bounded distributive lattice. If B is a
pre-skeleton of (a] then we write B=B8(a); B(l) is a pre-skeleton of L.

By Lemma 2 we have a homomorphism ¢, of the pre-skeleton B(1) onto the
semilattice containing the elements {1, a, b, ¢, d, 0}. Applying again Lemma 2 for
the principal ideal (a] we get the mapping ¢, of the pre-skeleton B(a) of (a] onto
{a, d, e, b, £, 0}. Let x be an element of B(1) for which ¢,(x)=a. B(l) is the direct
product (x]X(x’] where x’ denotes the complement of x. Take the free {0, 1}-
distributive product C of (x] and B(a). Let B be the Boolean semilattice CX(x']
then by Lemmas 1 and 3 ¢, and ¢, can be extended to a homomorphism ¢: B—L
which is a distributive homomorphism onto L.

We need the following

Definition 8. Let B be a Boolean semilattice and let L be a distributive
lattice with 0. Let ¢@: B-L be a O-preserving distributive homomorphism. (B, ¢, L)
is called a saturated triple if @(u)=xVy implies the existence of x,, y,€B such
that x,Vy,=u, (x)=x, o(yD=y.

Lemma 4. If (C,f, L), (D, g, L) are saturated triples then there exists a dis-
tributive homomorphism h: CXD—»L such that h\.=f, h|p=g and (CXD,h, L)
is saturated.

Proof. For (c,d)¢eCXD §ve deﬁne' h((c, D))=f(c)Vg(d). Then h((c,0))=
=f(c)V0=f(c), hic=f Similarly h|,=g. Now

h((@, )V(c, d) = h((@Ve, bVd) = flaVe)V g (bVd) = (f(a)Vf(c))V
V(g®V g(@) = (fla)V gV (f(©)V g (@) = h((a, D)V h((c;d)) -

which means that / is a homomorphism. We prove that % is distributive.

Let h(c,d)=f(c)Vg(d)=xVy in L. By the distributivity of L we get elements
X1, X2, Y1, Y2€L such that x,Vy,=f(c), x,Vy.=g(d), x1, xa=x, y;,yo=y. Since
(G, f, L) is saturated, therefore we have ¢, c,€C such that ¢;Ve,=c and f(c)=x,,
flez)=y,. Similarly we get elements d,, d.€D with d,\Vd,=d, g(d)=x,, g(d)=y,.
Set x=(c;, d), §=(cs, dz). Then XV y=(c;,Vez, diVdy)=(c, d), h((cy, d))=f(c)V
Vg(d)=x, h(,, dy)=y. This proves that s is weak-distributive. Let =Kerf,
®=Kerg;Then §=V0;, =V &;; 6;, @; are monomial distributive congruences.
0; resp. ®; can be extended to CXD, §;U®; which are again monomial. It is easy.
to see that Kerh=V(0\V &)).

Corollary. Let C, D be two Boolean semilattices and f resp. g distributive
homomorphisms of these Boolean semilattices into the distributive lattice L. If f(C)
resp. g(D) are ideals of L then there exists a distributive homomorphism h: CXD-~L
such that h|.=f, hlp,=g.
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‘Remark.’ In Lemma 4 f and g are not necessarily L-valuations induced by
some join-basés. -

Let L be an arbitrary distributive lattice with 0. If a¢€L, a=0 the principal
ideal (a] is a bounded distributive lattice. Assume that for every (a] we have a Boolean
semilattice B, and a distributive homomorphism ¢, of B, onto (a]. Consider the
lower discrete direct product B=II (B |a€L, a=0). B is a generalized Boolean
semilattice. By Lemma 4 we have a distributive homomorphism ¢: B—~L which
is onto. Consequently to prove Theorem 1 we can assume that L is a bounded dis-
tributive lattice. By Lemma 2 we have a pre-skeleton B(1) with a homomorphism

1: B(1)~L which satisfies (2). Let u be an arbitrary non-zero element of the
join-basis -HE B(1), a=¢,(#). The principal ideal (a] of L is a bounded distributive
lattice, therefore we can apply again Lemma 2 to get a pre-skeleton B(q) and a
homomorphism ¢,: B(a)—~(a] into (q]. If 4’ denotes the complement of u in B(1)
then B=B(1) is the direct product (u/]X(u]. Take the free {0, 1}-dlstr1but1ve
product (u]akB(a) and finally the Boolean semilattice

B[Lu] = ((u]* B(a))X(u 1.

By Lemmasl and 3 we have a homomorphism ¢: B[], u]~L, satlsfymg the fol-
lowing condition:

(*) if rET-{I u} (p(r) xVy then there exist X, y,€Bll, u] w1th x1Vy1—r
cp(x1)<x,<p(y1) =y

- Using the same method for an element vEBcB[I u] we get from B[I u]
4 Boolean algebrda B[/, u, v] satlsfymg (%) for the set T= {I u, v}

Lemma 5 Let u, vEB, then BII, u, v]= B[I v, u].

- Proof.: If H denotes a join-base of B and x€ H then we shall write H(x)
for - HN(x). -Itiis easy to show that H(x)U H(x") is again a join-base and L-valua-
tions generated: by -these join-bases coincide. If 4, v€ B then we have therefore-a
join-base “H(uAv)V HuAv )V H@ Av)V H(u' \v"). Hence we get for B[, u, v] resp:
B[I; v, u] the following..Let H, resp. H, be a join.base of B(¢p,(u)) resp.: B((ol(v))
then (HlX‘HIXHl(u/\v))U(HIXHI(u/\v ))U(HIXHl(u /\v))UHl(u /\v) wh1ch
proves the:isomorphism.

Continuing this construction we get- for arbltrary Uy, Upy oy Uy EB a Boolean
semilattice B[l u,, ..., 4,] and a homomorphism of this Boolean semilattice 1nto
L such that condition () is satisfied for T={I, u,, ..., u,}.

All these Boolean semilattices form a direct famlly Let C, be the direct limit
Then B(1)=C, is a Boolean subalgebra of C; and we have ¢: C;—~L which sat-
isfies (%) for all x€ T=B(1). Then we start with C, and in the same way we get
a Boolean semilattice C,. Then C, is a Boolean subalgebra of C,. Similarly, we get

11*
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C; (i=3,4,..). These algebras C; form again a direct family.- Let: B -be the direct
limit. Let ¢@: B—~L be the corresponding homomorphism. Then (B, (p, L) is. sat-
urated, hence ¢ is a weak-distributive homomorphism into L.

Lemma 6. B has a join-base.
Proof. This is a trivial consequence of Lemmas | and 3. .

Lemma 7. Let @: B—~L be a weak-distributive homomorphism of a Boolean
semilattice B generated by a homomorphism f: H—L of a join-base H. Then ¢ is
distributive. '

Proof. Let 0 be the congruence relation induced by ¢. H, denotes the set of
all x¢H of dimension k. Take two elements a, b¢B, a=b satisfying a=b (6).
Then a and b have join-representations as joins of elements from some H,, say
a=hV. . VhiVh, , and b=hV. . Vh, If c=hV..Vh, k<n and d=hV..Vh,,
i=k then cVd=b. By condition (iv) of Definition 5 we can assume that these
representations of a, b, ¢, d are unique. By the weak distributivity of 6 we have
elements é=c, d=d such that ¢Vd=a and c=¢(6), d=d (6). For ¢, d we have
the following possibilities: (i) e=cV A, ;,, d=d; (i) c=c, d=dV h,,; (i) e=cV h,,,
d=dVh,,,.

We define a binary relation 0, on B as follows: x=y (0,,), x>y iff x=y (0)
and y=b, xVb=a. Then the assumption that 0 is induced by the join-base H
we get that each 6,,-class contains a maximal element. Let 8), be the smallest join
congruence of B satlsfymg 0Y,=6,,. Then u=v (6),), u=v iff there exist x=y,
x=y (0,) such that y=v and xVv=u. Obviously 6),=6, vV0),=0. The first
part of the proof yields that 6}, is distributive.

An element a€L is of finite order if there exists a sequence a=x,, x;, x,, ..., X,
such that a<aVx;<aVx,Vxs<aVx,V..Vx,_;<aVxV..Vx,=1l and aVx,V
Vx,V...VX;_; is incomparable with x; (i=1, ..., n). By the construction of ¢: B—~L
the image of each u¢€ B, u#0 is the meet of elements of finite order. Now we have
for every a€L a Boolean semilattice B(a) and a distributive homomorphism
¢,: B(a)—(a] which maps B(a) onto the set of all elements having a meet representa-
tion of elements of finite order in the lattice (a]. Then the triple (B(a), @,, (a]) is
saturated. The lower discrete product of these Boolean semilattices B has by Lemma 4
a distributive homomorphism onto L which proves Theorem 1.
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# 3, Construction of a-strong extension

In this section we give the outline of the proof of the following theorem, which
was proved in [4). Combining Theorems 1 and 2 we get our main theorem.

Theorem 2. Let 0 be a dtstrzbutzve congruence of a generahzea' Boolean semi-
Iattzce B. T he Iattzce of all ideals of B|6 is the congruence lattice of a lattice.

We denote the five element modular non-distributive lattice by Ma, M, with
an additional atom'is called M, etc. If « is an arbitrary cardinal number then M,
is the modular lattice of length 2 with a atoms. ,

Let M={0<a, b, c<1} be a lattice isomorphic to M, and let D be a bounded
distributive lattice with zero element o, and unit element i. Identifying a with i
and O with o, we get a partial lattice \M;=DUM,; (Fig. 8), DNM,;={0, a} and
D, M are sublattices; dV b resp. dVc (d€D) is defined iff de {0, a} (see MITSCHKE
& WILLE [3]). There exists a modular lattice M;[D] generated by ,M; such that
pMs is a relative sublattice of M,[D]. In [3] it was proved that there exists only
one modular lattice with these properties, the modular lattice FM (,M,) freely gen-
erated by p,M;. This lattice was introduced in [4] and has the following description.

Figure 8.

An element (x,y,2)EDXDXD is called normal if xAy=xAz=yAz. Let
M;,[D] be the poset of all normal elements, then M,[D] is a modular lattice. Let
a=(,0,0), b=(0,1,0), ¢=(0,0, i), 1=(, i,i), 0=(0,0,0). Then these elements
form a sublattice isomorphic to M;. The set of all elements (x, 0, 0), (x¢D) form
a sublattice isomorphic to D. D is a strongly large sublattice of M,[D], and every
congruence relation € Con (D) can be extended to M,[D], i.e. Con (D)= Con (M,[D]).
We can use the same construction for distributive lattices without unit element.

We prove Theorem 2 first for monomial congruences of Boolean semilattices
i.e. for relatively pseudocomplemented lattices.

Lemma 8. Let 0 be a monomial distributive congruence of a generalized Boolean
semilattice B: Then there exists a lattice N such that Con®(N)=B/6.
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Sketch of the proof. Consider D=B and the corresponding lattice M,[B].
We define a subset N of M,y[B] as follows

(% %) (x, ¥ z)EMa[B] belongs to N iff x is a maximal element ofa 0—class

Then N is a lattice and (x, 0, 0)€N iff x is a maximal element of f-class, i.e.,
the ideal 7 generated by (i, 0, 0) is isomorphic to B/6. N is a strong extension of
I, a congruence relation of I has an extension to N iff it has the form 6(I"), where
I’ is an ideal of N. Thus - Con®(N)=B/60, i.e. Con (N)=I(B/6).-

The ideal J of N,. generated by (0, 0, i) is isomorphic to B. By the deﬁmtlon of I
and J we have INJ=0 (Fig.9).

Figure 9. - : : _Figure 10.

Let @ be an arbitrary distributive congruence relation of the generalized Boolean
semilattice B. Then 0 is the join of monomial distributive congruence relations, say
0=V (0,Ja€ Q). We take first for every a the lattice N, defined before. This N, has
two ideals I,~B/6, and J,=~B. Moreover Con‘(N,)=B/0,.

On the other hand we consider the direct product IT(B,lx€Q). M denotes
the sublattice of the direct product of those normal sequences ¢ for thch {t(a)|az€ Q}
is finite, i.e. the weak direct product is normal if a, B, y€Q, ap, a#y, By imply
t@At(B)=t(@)At(y)=t(B)At(y). Let J* be the ideal of M consisting of all ¢ for
which (B)=0 if f>a. Then J*=B. Mlsastrong extension of 7% and’ Con (M)~
2Con® (J*)= Con®(B). Let' M be the dual lattice of ‘M. Then J* is a dual of M.
J* is a Boolean algebra, therefore we have a natural 1somorphlsm J“NJ“ (x——x)
We use the Hall—Dilworth gluing’ constructlon for M and N, (ae Q), we identify
for-every d the dual ideal J* dnd- the 1deal J In thlS way we get a partlal lattice P
(see Figure 10).

.. M and. N, are sublattices of P, and P is a meet-semilattice. Let F(£) be the
free lattice generated by P. Then  Con®(F(P))=B/0. This proves :Theorem 2.
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4. Some remarks on the characterization problem

The key problem of the characterization of congruence lattices of lattices is
to prove the existence of a pre-skeleton of a bounded distributive semilattice. We
reformulate this problem.

Let L be a bounded distributive semilattice. Let F(G) be denote the free Boolean
algebra generated by the set G. If g,€G then the elements 0, g;, g;, I form a Boolean
subalgebra which is the free Boolean algebra F(g,) generated by g;. We have remarked
that F(G) is the free {0, 1}-distributive product of the Boolean algebras F(g),
2€G. Let us assume that every F(g) has a {0, 1}-homomorphism ¢; into L. Does
there exist a {0, 1}-homomorphism ¢: F(G)~L such that (p| F(g) (p," For ﬁmte‘
G the answer is yes, we have :

Proposition 3. Let B be a finite Boolean algebra. If ¢,: B—»L and @2 F(g) —»L
are {0, 1}-homomorphisms into L then there exists a {0, 1}-homomorphism ¢ of the
free {0, 1}-distributive product Bx F(g) into L such that @|B=@,, @|pgH=¢..

Proof. Let p,, p,, ..., p, denote the atoms of B. The atoms of the free product
are pAg, ...,p. g, DN, ...,p.ANg’. Then g<p,V..Vp,=I vyields ¢,(g)<
<@ (p)V...Vo,(p,)=1€F. But F is a distributive semilattice hence we have ele-
ments a,, d,, ..., a,6 F such that ¢.(g)=a,V...Va,, a;=0,(p) (i=1,2,...,n.
Similarly g’<p,V...Vp, therefore we have elements b, ..., b,€ L satisfying ¢,(g)=
=hV...Vb,, b;=¢,(p). On the other hand p,=gVg’ hence ¢,(p)=¢:(g)V
V¢.(g"). Thus we get elements u;, v; such that ¢,(p)=u,Vv,, u;=,(g), v;=¢,(g").
Define o(p;Ag)=a;Vu;, o(pNg)=bNv,. Every u of BxF(g) has a unique
representation as a join of atoms, say u=Vg;. We define o(u)=V ¢(g). This ¢ is
obviously a homomorphism. From p,=(p;,Ag)V(p;A\g) we get o(p)=(p;Ag)

(piNg)=(aVu)V(bVv)=a, VbV ¢,(p)=0:1(p). Similarly g£= '_\:/1 (riNg)=
=Y (@Vu)= i\="/1 aVv i\:/1 u;=0y(g). (Le. 9lz=0, (Plp(g) =@a).

1t is necessary to generalize Lemma 1 for distributive semilattice. Let B be the
free Boolean algebra F(G). Then the join-base is H= U HU{1}.

We have for every g,£G a {0, 1}-homomorphlsm (p, F(g)={0, g;, &}, I}~ L,
i.e. we have a mapping H,—~L and we want to get a {0, 1}-homomorphism ¢: B—~L
which is a common extension of each ¢;. To define such a ¢ it is natural to use
induction on k. If x¢ H, then x=g; or x=g; forsome g,€G and we have ¢(x)=
=e,(x). Using the method of Proposition 3 it is easy to define ¢(x) for all x€H,.
How can we define ¢(x) for x¢H,?
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