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The ideal lattice of a distributive lattice with 0 
is the congruence lattice of a lattice 

E. THOMAS SCHMIDT 

The congruence lattice of an arbitrary lattice is a distributive algebraic lattice, 
i.e. the ideal lattice of a distributive semilattice with 0. The converse of this state-
ment is a long-standing conjecture of lattice theory. We prove the following: 

T h e o r e m . Let L be the lattice of all ideals of a distributive lattice with 0. Then 
there exists a lattice K such that L is isomorphic to the congruence lattice of K. 

The conjecture was first established for finite distributive lattices by R. P. Dil-
worth. Later, it was solved for the ideal lattice of relatively pseudo-complemented 
join-semilattices (E. T. S C H M I D T [4], [5]). 

The first section of this paper reviews the definitions and gives the outline of 
the proof. The basic notion is the so-called distributive homomorphism of a semi-
lattice (see [4]). The second section proves that for every distributive lattice F with 
0 there exists a generalized Boolean algebra B — considered as a semilattice — and 
a distributive homomorphism of B onto F. In the third section we prove the main 
result and in the last section we give some generalizations. 

1. Preliminaries 

Semilattice always means a join-semilattice in this paper. The compact elements 
of an algebraic lattice L form a semilattice Lc with 0, and L is isomorphic to the 
ideal lattice of Lc. We denote by Con (K) the congruence lattice of the lattice K. 
The compact elements of Con (K) are called compact congruence relations, these 
form the semilattice Conc (AO-

Let B be a sublattice of a lattice K. The connection between Conc {B) and 
Conc (K ) is of course very loose. Let 6 be a congruence relation of B. 
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Then there exists a smallest congruence relation 0 ° £ C o n ( £ ) such that 0 ° | B s 0 . 
It is easy to see that d°V0°=(01V02)°, i.e. the correspondence 0—0° is a homo-
morphism of Conc (B) into the semilattice Conc (A"). If this homomorphism is onto 
we call K a strong extension of B [1]; or we say that B is a strongly large sublattice. 
It is an important case if 0° |B=0 holds, then we write B instead of 0°. B is called the 
extension of 6. 

It is well known that in generalized Boolean lattices (i.e. relatively complemented 
distributive lattices with zero) there is a one-to-one correspondence between con-
gruence relations and ideals and therefore if B denotes a generalized Boolean lattice 
then Conc (B)^B. Let F be a distributive semilattice with 0. We would like to get 
a lattice K such that C o n C ( K ) = F holds. Therefore we start with a generalized 
Boolean lattice B which has a join-homomorphism onto F and we construct a strong 
extension K of B such that 0-»0° is the given join-homomorphism. The construc-
tion of a strong extension of this kind was developed in [4]. 

We will make a further assumption that B is a convex sublattice of K. In this 
case the homomorphism 0—0° has an additional property, formulated in the next 
proposition. 

P r o p o s i t i o n 1. Let B be a convex sublattice of K and let 0°=&°\/ where 
0, <P, f £ C o n c (B). Then there exist <P1; f ^ C o n ' (5 ) such that $ 1 V f 1 = 0 and 

P r o o f . 0 is a compact congruence relation of B, hence 0— V 0(at, b^, where 

a ^ b ; , Uib£B. From we get a ^ b ^ V ¥">), / = 1 , 2, ..., n. We have 
therefore for every i a finite chain a ; = c 0 , , < c l i c n i=bj such that cjti= 
= cJ+1 ¡(0°) or Cj ¡=cJ+l i(f°). By the assumption, B is a convex sublattice, i.e 
cjt¡€B. Let <PX be the join of all principal congruences 9(cj ¡, c J + l i ) ç C o n c (B) 
with Cj ¡=Cj+l i(<P0). In a similar way we get XF1. Then ai = bi{'P1\J <//

1) for every 
i, i.e. 0=4>1V¥ /I, and f ^ 

This Proposition suggests the following 

D e f i n i t i o n 1. Let S, T be two distributive semilattices. A homomorphism 
q> of S into T i s called weak-distributive if (p(u)=<p(x\/ y) implies the existence of 
x1,y1£S such that XiVj-'i = w, <p00=<?(*)> <p(y)i^<p(y) (see Figure 1). 

n 

i = l 

<t(Y) 

Figure 1. 
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The congruence relation induced by a weak-distributive homomorphism is 
called a weak-distributive congruence. 

Let cp be a homomorphism of the semilattice S into the semilattice T. The 
congruence relation of S induced by cp is denoted by . 

P r o p o s i t i o n 2. Let S be a distributive semilattice. <p: S-+T is a weak-
distributive homomorphism if and only if a=b\/c (9^), a=sb\/c imply the existence 
of elements b^b, c1^c such that b=b1 (6^), c = cL (9rp) and b^V cl = a (Figure 2). 

P r o o f . Let us assume that cp is a weak-distributive homomorphism and let 
a s è V c , q>{a)~(p(b\lc)=(p{b)yq>{c), i.e. a=b\/c (0V). <p is weak-distributive, hence 
we have elements b0,c0£S such that b0Vc0=a, <p(b0)^cp(b), (p(cQ)^(p(c). Let 
b^bVbo, Cj — c\JCq then ¿1Vc1 = ftVcVè0Vc0=6\/cVa=a and (p{b^)=<p(b\Jb^ = 
= <p(b)V<p(b0) = (p(b), i.e. bi = b (9V). Similarly we get q = c (0p) which proves 
that satisfies the given property. 

Let 0V be a congruence relation with the property formulated in the Proposi-
tion. Let i-e. a=x\Jy (0„). Then ayx\jy=x\Jy (0„) and 
there exist x1; S satisfying x1\/y1=x\/y\/a, x=x1 (9 J , y=yl (9^). Therefore 
* i V j i = « , hence by the distributivity of S we get elements x2, y2 for which = x L , 
y 2 =yi and x2\J y 2=a. These elements satisfy q>(x2)^<p(x,)<p(.v), i.e. <p is weak-
distributive. 

a 

Figure 2. 

It is easy to give an example for a semilattice S and a, b£S such that there is 
no smallest weak-distributive" congruence satisfying a=b (0), i.e. the principal 
weak-distributive congruence does not exist. We follow another way to define a 
special weak-distributive congruence which plays the role of the principal congruence. 
The principal congruences of a semilattice have the property that every congruence 
class contains a maximal element. 

D e f i n i t i o n 2. [4] A congruence relation 0 of a semilattice is called monomial 
if every 0-class has a maximal element. 
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The monomial congruence are special meet-representable congruences. Every 
congruence relation of a semilattice is the join of principal congruence relations 
therefore it is natural to introduce the following notion. 

D e f i n i t i o n 3. [4] A congruence relation 9 of a semilattice is called distributive 
if 9 is the join of weak-distributive monomial congruences. A homomorphism 
(p: S— T is distributive iff the congruence relation 9 induced by (p is distributive. 

R e m a r k . It is easy to prove that the join of weak-distributive congruences 
is weak-distributive. The basic properties of distributive congruences are listed 
in [6]. 

If (B; V, A) is a generalized Boolean lattice, then the semilattice (B; V) will 
be called a generalized Boolean semilattice. 

For the solution of the characterization problem of congruence lattices of 
attices it is enough to solve the following two problems. 

P r o b l e m 1. Let B be a generalized Boolean semilattice and let 6 be a distribu-
tive congruence of B. Does there exist a lattice K satisfying Conc (K)=B/01 Does 
there exist a strong extension of B satisfying the same property? 

This problem was solved positively in [4]. In section 3 we give the sketch of 
the proof. 

P r o b l e m 2. Let .Fbe a distributive semilattice with 0. Does there exist a gen-
eralized Boolean semilattice B and a distributive congruence 9 of B such that F is 
isomorphic to BjOl 

This problem is open. We solve this problem if F is a lattice, i.e. we prove the 
following. 

T h e o r e m 1. Let Fbe a distributive lattice with 0. Then there exist a generalized 
Boolean semilattice B and a distributive congruence 6 of B such that F=B\9. 

The proof of this theorem will be given in the next sections. We present here 
the basic idea of the proof. 

Let F b e a semilattice, a, b£F. The pseudocomplement a*b of a relative to b 
is an element a*b£F satisfying aVx^b iff xsa*b. If a*b exists for all a, ¿>€F 
then F i s a relatively pseudocomplemented semilattice. (In the literature the pseudo-
complement is usually defined in meet-semilattices.) 

Let F be a relatively pseudocomplemented lattice (i.e. the join-semilattice F v 

is relatively pseudocomplemented). The proof of Theorem 1 in this case is quite easy. 
Let B be the Boolean lattice ^-generated by F. (See [2], p. 87.) Then for every x£B 
there exists a smallest x£F satisfying x^x. The mapping x—x is a distributive 
homomorphism of B onto F. The congruence relation induced by this mapping is 
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monomial. The converse of this statement is true: if 6 is a monomial distributive 
congruence of B then B/G is a relatively pseudocomplemented lattice. 

If F is a relatively pseudocomplemented semilattice then this construction does 
not work. In this case we consider for every a£F, a^Q the skeleton of (a], i.e. 
S(a) = {x*a; x ^ a } ([2], p. 112). S(a) is a Boolean lattice. Consider the lower 
discrete direct product 77 (S(a); a£F, a^O), i.e. the sublattice of the direct product 

d 
77 S(a) of those sequences t for which t(a)=0 for all but finitely many a£F. 
This is a generalized Boolean lattice B, and it is easy to show that B has a distribu-
tive congruence 0 satisfying B/O^F (see [4]). 

To prove Theorem 1 we generalize the notion of the skeleton. Let <p be the 
identity (p: S(l)->-F. If B denotes 5(1) and 0, l£B then this <p obviously has 
the following properties: 

(1) (p is a {0, l}-homomorphism of the Boolean semilattice B into the semi-
lattice F, 

(2) if <p(J) = x\]y in Fthen there exist xx , >',65 such that x^\Jy\= I, (p(x,)^x, 
viyd^y-

(1) follows from the property that S(a) is a subsemilattice of F, and (2) is obvi-
ous if we take X ^ J * 1, = 1. rwmt 

D e f i n i t i o n 4. Let F be a distributive semilattice with 0, 1 £F and let B 
be a Boolean semilattice with unit element I and zero element 0. B is called a pre-
skeleton of F if there exists a mapping cp of B into /"such that conditions (1) and (2) 
are satisfied. 

Condition (2) is related to the distributivity of (p; if (2) is satisfied for every 
a£B (instead of I) and <p is onto then we get that cp is distributive. 

2. The pre-skeleton 

To prove Theorem I we shall show that every bounded distributive lattice has 
a pre-skeleton. First we verify some simple well-known properties of free Boolean 
algebras. The free Boolean algebra B generated by the set G is denoted by F(G). If 
\G\=m we shall write F(m) for F(G). 1 denotes the unit element of F(G). Let G'= 
= {x'|x£G} (x' denotes the complement of x) and G1=GUG'. For g£G, ge is 
either g or g'. Let A: be a natural number. We consider the subset Gk of B defined 
by G0={1} and Gk={x\x£B, x^O, x=glf\.../\ge

k, where gx, ...,gk are different 
oo 

elements of G}. From these sets Gk we get G ;. If \G\~n is a natural 
>=o 

number then G„ is the set of atoms of F(n) and each a£F(n), a^Q has a unique 
representation as a join of elements of G„. If G is infinite we have no atoms, there-
fore we must take the whole set which is of course a relative sublattice of B. 
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The most important properties of are collected in the following definition. 

D e f i n i t i o n 5. A relative sublattice / of a Boolean algebra B is called a 
join-base iff the following conditions are satisfied: 

(i) and 
(ii) Each a£B, a^O has a representation as a join of elements of JC. 

(iii) There is a dimension function 5 from onto an ideal of the chain of 
non-negative integers such that <5(1)=0 and x<y in J f if and only if 
x^y and d(,v)=5(y) +I. The set of all with S(x)=i is denoted 
by 

(iv) For every finite subset U= {ult ..., wn} of B there exists an ¡'€N such that 
each (&&/) has a finite subset Ak(U) with the property that each 
a£U has a unique join representation as a join of elements of Ak(U). 

(v) If aAb^O in B,a,b€3i? then aKbitf-, if a\Jb exists in Jf and a, b 
are incomparable then a, a \ ! b f o r some N. Assume, 
that there exists an a ^ a S / b , a 0 > a , then there is a 
such that a0Vb0 exists and a0A(aVb)=a, b0A(a\/b)=b. 

Let j e be a join-base of a Boolean semilattice B and let / : ¿C-+L be a homo-
morphism into a distributive lattice (i.e. f(a[\b)=f(a)f\f(b) whenever af\b exists, 
and the same for V). We want to extend / to a homomorphism <p\ B-+L (i.e., 
<p will be a join-homomorphism of the Boolean algebra B). Let a=h1\/ hn 

where hfcJF. The only way to define cp is the following: (p(a)=f(h^V...Vf(h„). 
Condition (iv) yields that this definition is unique and (ii) implies that q> maps B 
into L. 

D e f i n i t i o n 6. The homomorphism <p of the Boolean semilattice into L is 
called an L-valued homomorphism of B induced by f . 

To prove Theorem 1 we need the definition of free {0, l}-distributive product 
( s e e G . G R A T Z E R [2] , p . 1 0 6 ) . 

D e f i n i t i o n 7. Let D be the class of all bounded distributive lattices and let 
Lh be lattices in D. A lattice L in D is called a free {0, 1 }-distributive product 
of the Lh id I, iff every Lt has an embedding et into L such that 

(i) L is generated by U(e tL; /£/). 
(ii) If K is any lattice in D and is a {0, l}-homomorphism of Lt into K for 

i'€/, then there exists a {0, l}-homomorphism q> of L into K satisfying <p;=<pa, 
for all i. 

The free {0, l}-distributive product is denoted by II*(A¡; i(Ll) or by A*B. 
The lower discrete direct product is denoted by IId(At; /£ / ) and finally if At 

are lattices with unit element then Hd{Ai, /£ / ) is the upper discrete direct product, 
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i.e. the sublattice of the direct product IIAt of those sequences / for which i(a) = 1 
for all but finitely many a. 

L e m m a 1. Let L be a bounded distributive lattice and let At (»€/) be Boolean 
semilattices. If At-*-L (i€/) are L-valued {0,1 }-homomorphisms generated by 
f : Jff'—L then the free {0, 1}-distributive product II* At has a join-base and a 
homomorphism f : such that 3%T\Ai=J#'i for each There exists an 
L-valued homomorphism (p of II*A i generated by f satisfying (p—cpei-

P r o o f . Let je be the set of all those elements hj±0 of II*At which have a 
finite meet-representation as a meet of elements from V (Then is isomorphic 
to the upper direct product n d J^ 1 . ) Obviously tf'Qtf, Let M=AxA 
Ah2/\...Ahn where the hfij^' belong to different components, then this represen-
tation is unique. We have by (iii) the functions 5t: a f '—N. Now let 8: & N 
be defined by ¿(m)=51(/i1)-|-...+5„(An). It is easy to verify (iv) and (v). Assume 
that / ¡ : are homomorphisms, then we can extend them as follows: / ( « ) = 
= / i (^ i )A-" Afn(h„). Hence x^y (x, y£II*A^ implies f ( x ) ^ f ( y ) . Let us assume 
that for incomparable b, c^Jt?, bVc exists, i.e. b\! c^JF. Then by (v) there exist 
an i and b0, such that b—b0t\(b\lc) and c=c0f\{b\Jc). Thus we get by the 
dis t r ibut ive of L t h a t / ( 6 ) V / ( c ) = [ f - X h W W c ) ] V [/f(c0)A/(6Vc)] = ( m ) V / ; ( c 0 ) ) A 
A f ( bWc) . But /¡ : jf'^-L is a homomorphism, hence /¡(¿>0Vc0) /¡(c0). Obvi-
ously ¿ 0 Vc 0 s6Vc , i.e. / ( 6 0 V c 0 ) s / ( i V c ) . This yields f(b)\Jf(c)=f(b\Jc), i.e. / 
is a homomorphism of J f into L. 

The free Boolean algebra on m generators is the free {0, l}-distributive product 
of m copies of the free Boolean algebra on one generator, i.e. if B^F{\), i£l then 
F(m)=n* B;. 

C o r o l l a r y . If each fif=F( 1) has a {0, l}-homomorphism cp; into the distribu-
tive lattice L, then there exists an L-valued homomorphism cp of F(m) into L such 
that (p—cpBi. 

L e m m a 2. Let L be a bounded distributive lattice. Then there exists a pre-
skeleton B of L. 

P r o o f . First assume that B is a pre-skeleton and Bx-—B is a lattice homo-
morphism of the Boolean lattice Bx onto B. Then it is easy to see that B1 is again 
a pre-skeleton and the corresponding join-homomorphism is <pij/(x). Therefore to 
prove our Lemma it is enough to take a free Boolean algebra generated by a 
"big" set. 

We start with the set G± of all pairs (a, b) satisfying a, b£L, a\Jb—\, a, b^l. 
Let G be a subset of G1 which is maximal with respect to the property: (a, b)£G 
iff (b,a)$G. 
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In the free Boolean algebra F(G) we define (a, b)'=(b, a), i.e. the complement 
of (a, b) is (b, a). The mapping <p: F(G)—L is defined as follows. For (a, b)£Gl 

we set q>{{a, b))=a and let <p(0)=0. Then (p((a, b))V<p((b, a))=a\Jb = \, i.e. cp 
is a {0, l}-homomorphism of the semilattice F((a, b)) into L. Then by the Corollary 
to Lemma 1 there exists an extension (p of these homomorphisms. Let xVy= 1 = 
=cp (/), x, y^l, where / denotes the unit element of F(G). Take x j = ( x , y), 
= ( j . x)£F(G). By the definition of <p we have (p^x^—x, <p(y1)=y, i.e. F(G) is 
a pre-skeleton of L. 

E x a m p l e 1. As an illustration consider the lattice L represented by Figure 3. 

1 

0 

Figure 3. 

The set Gt contains the pairs (a, c), (b, c), (c, a), (c, b) and for a generating 
set we can choose G= {{a, c), (b, c)}; then B is the free Boolean algebra generated 
by two elements, i.e. B=2i. Figure 4 gives the join-homomorphism (p, in which 
the wavy line indicates congruence modulo 0 = K e r (p. 
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R e m a r k . The set can be made into a poset as follows: (x, y)=(u, v) iff 
x u and y^v. We adjoin 0 and / and we take the Boolean algebra B1 freely gen-
erated by this poset. B1 is of course the homomorphic image of B defined above. 
Sometimes it is easier to work with this "smaller" Boolean algebra (see Figure 5). 

E x a m p l e 2. Let L be the lattice shown in Figure 6. 

Let N = { 0 , 1 , 2, „.} be the set of all natural numbers. B is the Boolean-algebra 
containing all finite and cofinite subsets of N. We define (at, b ) = x ^ i } , (b, a,) = 
= {0, 1, ..., i—1}. Then G = {(a;, b), (b,a¡); i=0 , 1, ...} is a generating set. The 
corresponding join homomorphism is the following. Let A be a subset of N with 
the smallest element f(A). If A is finite then cp(A) is b if f(A)—0 and (p (A)=cf(A) 

if f(A)^~0. For an infinite A we have (p (A)=1 if f(A)=0 and <p(A)=af^ if 
f(A)>0. It is easy to see that q> is a distributive homomorphism of B onto L, which 
proves that I ( L ) ^ L is the congruence lattice of a lattice. This is the simplest 
example to show that Conc (K) need not to be relatively pseudocomplemented. 

L e m m a 3. Let A1, A% be Boolean semilattices and let (pt: A(—L be L-valued 
{0}-homomorphisms generated by the homomorphisms /¡: L of the join-bases 
¿e^Ai (¿=1,2). Then J f = J f 1 U ^ f 2 U { l } is a jo¿n-base of AyXA2 and \if <p is 
the homomorphism generated by f : JtiC^-L then 

P r o o f . The proof is obvious. 

R e m a r k . Lemma 3 is true for lower discrete direct product. In the infinite 
case this is a generalized Boolean algebra. 

The basic idea of the proof of Theorem 1 can be illustrated by the following 
lattice (Figure 7). 
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Let a be an element of L. Then (a] is a bounded distributive lattice. If B is a 
pre-skeleton of (a] then we write B=B(a); B(l) is a pre-skeleton of L. 

By Lemma 2 we have a homomorphism <px of the pre-skeleton 5(1) onto the 
semilattice containing the elements {1, a, b, c, d, 0}. Applying again Lemma 2 for 
the principal ideal (a] we get the mapping <pa of the pre-skeleton B(a) of (a] onto 
{a, d, e, b,f, 0}. Let x be an element of 5(1) for which cp1{x)=a. 5(1) is the direct 
product (x]X(x'] where x' denotes the complement of x. Take the free {0, 1}-
distributive product C of (*] and B{a). Let B be the Boolean semilattice CX(x ' ] 
then by Lemmas 1 and 3 <p1 and <pa can be extended to a homomorphism q>: B-^L 
which is a distributive homomorphism onto L. 

We need the following 

D e f i n i t i o n 8. Let B be a Boolean semilattice and let L be a distributive 
lattice with 0. Let q>: B—L be a 0-preserving distributive homomorphism. (B, <p, L) 
is called a saturated triple if q>(u)=xVy implies the existence of y^B such 
that X j V j ^ « , <p(*i)=*, <p(yi)=y-

L e m m a 4. If (C, / , L), (D, g, L) are saturated triples then there exists a dis-
tributive homomorphism h: CxD-*L such that h\c=f, h\D—g and ( C x D , h , L ) 
is saturated. 

P r o o f . For ( c , d ) £ C x D we define h((c, d))=f(c)Vg(d). Then h((c,0))= 
=/ (c )V0=/ (c ) , h\c=f Similarly h\D=g. Now 

h((a,b)W(c,d)) = h(j[ayc,byd))=f(aWc)Wg(byd)=(f(a)yf(c))V 

• V(g(6)Vg(d) ) .^ ( / i« )Vg( i ) )V( / (c )VgW) = fc((fl,i))VK<c,:'0) 

which means that h is a homomorphism. We prove that h is distributive. 
Let h(c, d)=f(c)Vg(d)=xVy in L. By the distributivity of L we get elements 

xlt x2,y1,y^L such that xxVji=/(c), x2\Jy2~g(d), x1,x2^x, yx,y2^y. Since 
(C, f L) is saturated, therefore we have ci,c2^C such that cx\/c2=c and 
/ ( c ^ S j j . Similarly we get elements d1,d2£D with d1yd2=d, g(d1)^x2, £(¿4)—JV 
Set x=(c 1 , i / i ) , y=(c2,d2). Then x\y={Cly c2, dxVd£=(c, d), h((cx, dJ)=f{c^\J 

h(c2, d2)^y. This proves that h is weak-distributive. Let 6=Ker f , 
<P=KeF£oThen 6 = V 9 j , 6}, 4>j are monomial distributive congruences. 
0i resp. can be extended to CxD, which are again monomial. It is easy 
to see that Ker A=V(0 ; V^) . 

C o r o l l a r y . Let C, D be two Boolean semilattices and f resp. g distributive 
homomorphisms of these Boolean semilattices into the distributive lattice L. If / ( C ) 
resp. g(D) are ideals of L then there exists a distributive homomorphism h: CxD-*L 
such that h\c=f, h\D=g. 
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R e m a r k . In Lemma 4 / and g are not necessarily /.-valuations induced by 
some join-bas6s. 

Let L be an arbitrary distributive lattice with 0. If a£L, a 0 the principal 
ideal (a] is a bounded distributive lattice. Assume that for every (a] we have a Boolean 
semilattice Ba and a distributive homomorphism (pa of Ba onto (a]. Consider the 
lower discrete direct product B=IId(Ba\a£L, a?±0). B is a generalized Boolean 
semilattice. By Lemma 4 we have a distributive homomorphism <p: B—L which 
is onto. Consequently to prove Theorem 1 we can assume that L is a bounded dis-
tributive lattice. By Lemma 2 we have a pre-skeleton 5(1) with a homomorphism 
(Pi- B(l)—L which satisfies (2). Let u be an arbitrary non-zero element of the 
join-basis H ^ B ( l ) , a—cpjiu). The principal ideal (a] of £ is a bounded distributive 
lattice, therefore we can apply again Lemma 2 to get a pre-skeleton B(a) and a 
homomorphism <pa: B(a)-^(a] into (a]. If u' denotes the complement of u in 5(1) 
,then B=B(l) is the direct product (w']x(w]. Take the free {0, l}-distributive 
product (u]*B(a) and finally the Boolean semilattice 

B[I,u] = ((u]*B(a))x(u']. 

By Lemmas ! and 3 we have a homomorphism (p: B[I, u]-*L, satisfying the fol-
lowing condition: 

(* ) if r^T—{I, u}, (p(r)=x\/y then there exist x1,y1£B[I,u] with x^X/y^r, 
9(.x-j)sx, (piyj-^y. ; 

, Using the same method for an element v£Bc.B[f, u] we get from B[T,u] 
a Boolean algebra B[I, u,v] satisfying ( * ) for the set T= {/, u,v). 

L e m m a 5. Let u,v£B, then B[I, u, v\~B[I, v, u]. 

P r o o f . If H denotes a join-base of B and x£H then we shall write H(x) 
for / / f l (x] . It is easy to show that H(x) U H(x') is again a join-base and L-valua-
tions generated by these join-bases coincide. If u,v£B then we have therefore a 
join-base H(uAv)WH(uAv')\IH(u'Av)VH(u'Ay')- Hence we get for B[I, u, v] resp. 
B[I, v, u] the following-Let Hu resp. Hv be a join base of B(cp1(u)) resp. B(q>i(v))-, 
then • (Hi XHl xHl(uA r)) U (Hi X H1 (uA v')) U (Hi X H1 (u A v)) U H1 (u'Av') which 
proves the. isomorphism. • ' -

Continuing this construction we get for arbitrary ur, u2, ..., un£B a Boolean 
semilattice i?[7,«i> ...,"„] and a homomorphism of this Boolean semilattice into 
L such that condition ( * ) is satisfied for T={I, wx, ..., «„}. 

All these Boolean semilattices form a direct family. Let Ci be the direct limit 
Then 2?(1)=C0 is a Boolean subalgebra of and we have cp: C1-*L which sat-
isfies ( * ) for all x£T=B( 1). Then we start with Cx and in the same way we get 
a Boolean semilattice C2. Then Cx is a Boolean subalgebra of C2. Similarly, we get 
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C¡ (/ = 3, 4, ...). These algebras Q form again a direct family. Let B be the direct 
limit. Let q>: B-*L be the corresponding homomorphism. Then (B, <p, L) is sat-
urated, hence cp is a weak-distributive homomorphism into L. 

Lemma 6. B has a join-base. 

P r o o f . This is a trivial consequence of Lemmas 1 and 3. 

L e m m a 7. Let cp: B^L be a weak-distributive homomorphism of a Boolean 
semilattice B generated by a homomorphism f : H—L of a join-base H. Then (p is 
distributive. 

P r o o f . Let 9 be the congruence relation induced by cp. Hk denotes the set of 
all x£H of dimension k. Take two elements a,b£B, a>b satisfying a=b (9). 
Then a and b have join-representations as joins of elements from some Hk, say 
a=ñ1V . . .y/ínV/i„+1 and b=hlV ...V hn. If c=h1V ...Vhk,k^nand d=h¡\/...\Jhn, 
i^k then c\Jd—b. By condition (iv) of Definition 5 we can assume that these 
representations of a, b, c, d are unique. By the weak distributivity of 9 we have 
elements c 5 c , such that c\jl=a and c=c(6), d=E (0). For c, 3 we have 
the following possibilities: (i) c — c\Jhn+1, cl=d; (ii) c = c, d=d\Jhn+1~, (iii) c = c\/h„. 
d=dyh„+1. 

We define a binary relation 9oi on B as follows: x=y (9ab), x>y iff x=y (0) 
and y=b, x\Jb=a. Then the assumption that 9 is induced by the join-base H 
we get that each -class contains a maximal element. Let 9^b be the smallest join 
congruence of B satisfying 9%b^9ab. Then u=v (9^b), u^v iff there exist x^y, 
X=y (0ab) such that ySv and xVv=u. Obviously 9^9, V9^b=9. The first 
part of the proof yields that 9^b is distributive. 

An element a£L is of finite order if there exists a sequence a=x0, xl7 x2, ..., x„ 
such that a^aM x^aM x^ x^aM x^ ...V-*„_i<aVxiV ...Vx„= 1 and aV*iV 
Vx2V is incomparable with x, (; = l , ..., n). By the construction of (p: B—L 
the image of each u£B, u¿¿ 0 is the meet of elements of finite order. Now we have 
for every a£L a Boolean semilattice B{a) and a distributive homomorphism 
(pa: 5(a)-»-(a] which maps B(a) onto the set of all elements having a meet representa-
tion of elements of finite order in the lattice (a]. Then the triple (B(a), (pa, (a]) is 
saturated. The lower discrete product of these Boolean semilattices B has by Lemma 4. 
a distributive homomorphism onto L which proves Theorem 1. 
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3. Construction of a strong extension 

In this section we give the outline of the proof of the following theorem, which 
was proved in [4]. Combining Theorems 1 and 2 we get our main theorem. 

T h e o r e m 2. Let в be a distributive congruence of a generalized Boolean semi-
lattice B. The lattice of all ideals of В/в is the congruence lattice of a lattice. 

We denote the. five element modular non-distributive lattice by M3\ M3 with 
an additional atom is called M 4 , etc. If a is an arbitrary cardinal number then Mx 

is the modular lattice of length 2 with a atoms. 
Let M= {0<a, b, c < 1} be a lattice isomorphic to M3 and let D be a bounded 

distributive lattice with zero element o, and unit element i. Identifying a with i 
and 0 with o, we get a partial lattice „ М з = д и м 3 (Fig. 8), DDM3={0, a} and 
D, M3 are sublattices; d\Jb resp. d\J с (ddD) is defined iff {0 , a} (see M I T S C H K E 

& W I L L E [3 ] ) . There exists a modular lattice M3[D] generated by DMS such that 
вМ3 is a relative sublattice of M3[D]. In [3] it was proved that there exists only 
one modular lattice with these properties, the modular lattice FM(BM3) freely gen-

An element (x, y, z)£DxDxD is called normal if x/\y = xf\z=yt\z. Let 
M3[D] be the poset of all normal elements, then M3[D] is a modular lattice. Let 
a=(i, 0,0), ¿=(0 , i, 0), c=(0, 0, i), 1=(/, i, i), 0=(0, 0, 0). Then these elements 
form a sublattice isomorphic to M3. The set of all elements (x, 0, 0), (x£D) form 
a sublattice isomorphic to D. D is a strongly large sublattice of M3[D], and every 
congruence relation Con (D) can be extended to M3[D], i.e. Con (D)^ Con (M3[£>]). 
We can use the same construction for distributive lattices without unit element. 

We prove Theorem 2 first for monomial congruences of Boolean semilattices 
i.e. for relatively pseudocomplemented lattices. 

L e m m a 8. Let 6 be a monomial distributive congruence of a generalized Boolean 
semilattice B Then there exists a lattice N such that Conc (N) saB/6. 
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S k e t c h of t h e p r o o f . Consider D=B and the corresponding lattice MS[B]. 
We define a subset N of Ma[B] as follows 

(* *) (x, y, z)€Af3[5] belongs to N iff x is a maximal element of a 0-class. 

Then N is a lattice and (x, 0, 0)£N iff x is a maximal element of 0-class, i.e., 
the ideal I generated by (/', 0, 0) is isomorphic to B/6. N is a strong extension of 
I, a congruence relation of I has an extension to N iff it has the form 6(1'), where 
1' is an ideal of N. Thus Conc (N)^B/6, i.e. Con (AO=/(5/0). 

The ideal J of N,. generated by (0,0, i) is isomorphic to B. By the definition of / 
and J we have / f l / = 0 (Fig. 9). 

Figure 9. Figure 10. 

Let 0 be an arbitrary distributive congruence relation of the generalized Boolean 
semilattice B. Then 0 is the join of monomial distributive congruence relations, say 
0=V(0Ja€i2). We take first for every a the lattice Nx defined before. This Nx has 
two ideals fx^B/Ox and Ja=B. Moreover Con c (Nx)^B/0x. 

On the other hand we consider the direct product /7 ( 5 j a € Q). M denotes 
the sublattice of the direct product of those normal sequences t for which {f(a)|a£ i2} 
is finite, i.e. the weak direct product is norriial if a, /i, y£Q, a^fi, a ^ y , / M y imply 
t(a)At(f}) = t(a)/\i(y) = t(P)At(y). Let J" be the ideal of M consisting of all t for 
which ?(J3)=0 if P^a. Then JX^B. Mis a strong extension of J" and C o n c ( M ) ~ 
^ C o n c ( / a ) = C o n c ( 5 ) . Let' M be the dual lattice of M. Then J" is a dual of M. 
3" is a Boolean algebra, therefore we have a natural isomorphism J"—J1 (x-~x'). 
We use the Hall—Dilworth gluing construction for M arid Na (a£i2), we identify 
for every a the dual ideal J" and theideal Ja. In this way we get a partial lattice P 
(see Figure 10). 

.¡M and Nx are sublattices of P, and P is a meet-semilattice. Let F(P) be the 
free lattice generated by P. Then C o n c ( F ( P ) ) ^ B / 0 . This pro,ves Theorem 2. 
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4. Some remarks on the characterization problem 

The key problem of the characterization of congruence lattices of lattices is 
to prove the existence of a pre-skeleton of a bounded distributive semilattice. We 
reformulate this problem. 

Let L be a bounded distributive semilattice. Let F(G) be denote the free Boolean 
algebra generated by the set G. If gfcG then the elements 0, gt, g\, / form a Boolean 
subalgebra which is the free Boolean algebra F(g () generated by g(. We have remarked 
that F(G) is the free {0, l}-distributive product of the Boolean algebras F(gj), 
g£G. Let us assume that every F(gt) has a {0, l}-homomorphism (pt into L. Does 
there exist a {0, 1 }-homomorphism <p: F(G)~*L such that <p\F(gi)=:(Pi'! For finite 
G the answer is yes, we have 

P r o p o s i t i o n 3. Let B be a finite Boolean algebra. If <Pi. B—L and (p2: F(g)—L 
are {0, \}-homomorphisms into L then there exists a {0, \}-homomorphism q> of the 
free {0,1 }-distributive product B* F(g) into L such that (p\B=q>1, (p\F(Jg)=<P2-

P r o o f . Let pi,p2, Pn denote the atoms of B. The atoms of the free product 
are p1Ag,...,p„Ag,p1hg',...,p„Ag'. Then g - ^ V ...V pr=I yields <p2(£)< 
<<Pi0>i)V...V<Pi(pI))=l£:F. But F is a distributive semilattice hence we have ele-
ments alt a2, ..., a„£F such that (p2(g)=a1\/ ...Wa„, a^cp^p,) ( i '=l , 2, ..., n). 
Similarly ¿»'<PiV ...V/>n therefore we have elements b1; ...,b„£L satisfying (p2(g')= 
=b1V...Vbn, bi^cp^pi). On the other hand p^gVg' hence (Pi(pd^q>2(g)V 
\/<p2(g'). Thus we get elements uit such that (p1(pi)=uiVvi, u^(p2(g), v^(p2(g'). 
Define <p(pi/\g)=ai\/ui, <p(pii\g')=bi\/vi. Every u of B*F(g) has a unique 
representation as a join of atoms, say w = Vg(. We define <p(u) = V cp (g,). This <p is 
obviously a homomorphism. From Pi—{.Pit\g)y(p^\g') we get 9>(/>,)=(/>;Ag) 

(/'iAg')=(«iVwi)V(6iVyi)=aiVfe>V<p1(/>i)=<P1(pi). Similarly g=V (PiAg)= 
i = 1 

= V(fl,Vw;)= V o,V V Ui = <P2(g)- (I-e. <pIb=<Pi> ( p I f ^ v J -i i=l ¡=1 
It is necessary to generalize Lemma 1 for distributive semilattice. Let B be the 

oo 

free Boolean algebra F(G). Then the join-base is H= | J {1}. 
i = 0 

We have for every gfcG a {0, l}-homomorphism F(g ;)={0, gh g'n I}—L, 
i.e. we have a mapping H^—L and we want to get a {0, l}-homomorphism <p: B—L 
which is a common extension of each q>;. To define such a <p it is natural to use 
induction on A:. If x£H1 then x=gi or x—g'i for some g^G and we have (p(x) = 
=<pi(x). Using the method of Proposition 3 it is easy to define <p(x) for all x£H... 
How can we define (p(x) for x£H3l 
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