The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice

E. THOMAS SCHMIDT

The congruence lattice of an arbitrary lattice is a distributive algebraic lattice, i.e. the ideal lattice of a distributive semilattice with 0 . The converse of this statement is a long-standing conjecture of lattice theory. We prove the following:

Theorem. Let L be the lattice of all ideals of a distributive lattice with 0 . Then there exists a lattice K such that L is isomorphic to the congruence lattice of K.

The conjecture was first established for finite distributive lattices by R. P. Dilworth. Later, it was solved for the ideal lattice of relatively pseudo-complemented join-semilatices (E. T. Schmidt [4], [5]).

The first section of this paper reviews the definitions and gives the outline of the proof. The basic notion is the so-called distributive homomorphism of a semilattice (see [4]). The second section proves that for every distributive lattice F with 0 there exists a generalized Boolean algebra B - considered as a semilattice - and a distributive homomorphism of B onto F. In the third section we prove the main result and in the last section we give some generalizations.

1. Preliminaries

Semilattice always means a join-semilattice in this paper. The compact elements of an algebraic lattice L form a semilattice L^{c} with 0 , and L is isomorphic to the ideal lattice of L^{c}. We denote by $\operatorname{Con}(K)$ the congruence lattice of the lattice K. The compact elements of Con (K) are called compact congruence relations, these form the semilattice $\operatorname{Con}^{c}(K)$.

Let B be a sublattice of a lattice K. The connection between $\operatorname{Con}^{c}(B)$ and Con $^{c}(K)$ is of course very loose. Let θ be a congruence relation of B.

Received October 23, 1979, in revised form May 12, 1980.

Then there exists a smallest congruence relation $\theta^{\circ} \in \operatorname{Con}(K)$ such that $\left.\theta^{0}\right|_{B} \geqq \theta$. It is easy to see that $\theta_{1}^{0} \vee \theta_{2}^{0}=\left(\theta_{1} \vee \theta_{2}\right)^{0}$, i.e. the correspondence $\theta \rightarrow \theta^{0}$ is a homomorphism of $\operatorname{Con}^{c}(B)$ into the semilattice $\operatorname{Con}^{c}(K)$. If this homomorphism is onto we call K a strong extension of B [1]; or we say that B is a strongly large sublattice. It is an important case if $\left.\theta^{0}\right|_{B}=\theta$ holds, then we write $\bar{\theta}$ instead of $\theta^{\circ} . \bar{\theta}$ is called the extension of θ.

It is well known that in generalized Boolean lattices (i.e. relatively complemented distributive lattices with zero) there is a one-to-one correspondence between congruence relations and ideals and therefore if B denotes a generalized Boolean lattice then $\operatorname{Con}^{c}(B) \cong B$. Let F be a distributive semilattice with 0 . We would like to get a lattice K such that $\operatorname{Con}^{c}(K)=F$ holds. Therefore we start with a generalized Boolean lattice B which has a join-homomorphism onto F and we construct a strong extension K of B such that $\theta \rightarrow \theta^{0}$ is the given join-homomorphism. The construction of a strong extension of this kind was developed in [4].

We will make a further assumption that B is a convex sublattice of K. In this case the homomorphism $\theta \rightarrow \theta^{0}$ has an additional property, formulated in the next proposition.

Proposition 1. Let B be a convex sublattice of K and let $\theta^{0}=\Phi^{0} \vee \Psi^{0}$ where $\theta, \Phi, \Psi \in \operatorname{Con}^{c}(B)$. Then there exist $\Phi_{1}, \Psi_{1} \in \operatorname{Con}^{c}(B)$ such that $\Phi_{1} \vee \Psi_{1}=\theta$ and $\Phi_{1}^{0} \leqq \Phi^{0}, \Psi_{1}^{0} \leqq \Psi^{0}$.

Proof. θ is a compact congruence relation of B, hence $\theta=\bigvee_{i=1}^{n} \theta\left(a_{i}, b_{i}\right), \quad$ where $a_{i}<b_{i}, a_{i} b_{i} \in B$. From $\theta^{0}=\Phi^{0} \vee \Psi^{0}$ we get $a_{i} \equiv b_{i}\left(\Phi^{0} \vee \Psi^{0}\right), i=1,2, \ldots, n$. We have therefore for every i a finite chain $a_{i}=c_{0, i}<c_{1, i}<\ldots<c_{n, i}=b_{i}$ such that $c_{j, i} \equiv$ $\equiv c_{j+1, i}\left(\Phi^{0}\right)$ or $c_{j, i} \equiv c_{j+1, i}\left(\Psi^{0}\right)$. By the assumption, B is a convex sublattice, i.e $c_{j, i} \in B$. Let Φ_{1} be the join of all principal congruences $\theta\left(c_{j, i}, c_{j+1, i}\right) \in \operatorname{Con}^{c}(B)$ with $c_{j, i} \equiv c_{j+1, i}\left(\Phi^{0}\right)$. In a similar way we get Ψ_{1}. Then $a_{i} \equiv b_{i}\left(\Phi_{1} \vee \Psi_{1}\right)$ for every i, i.e. $\theta=\Phi_{1} \vee \Psi_{1}$, and $\Phi_{1}^{0} \leqq \Phi^{0}, \Psi_{1}^{0} \leqq \Psi^{0}$.

This Proposition suggests the following
Definition 1. Let S, T be two distributive semilattices. A homomorphism φ of S into T is called weak-distributive if $\varphi(u)=\varphi(x \vee y)$ implies the existence of $x_{1}, y_{1} \in S$ such that $x_{1} \vee y_{1}=u, \varphi\left(x_{1}\right) \leqq \varphi(x), \varphi(y)_{1} \leqq \varphi(y)$ (see Figure 1).

Figure 1.

The congruence relation induced by a weak-distributive homomorphism is called a weak-distributive congruence.

Let φ be a homomorphism of the semilattice S into the semilattice T. The congruence relation of S induced by φ is denoted by θ_{φ}.

Proposition 2. Let S be a distributive semilattice. $\varphi: S \rightarrow T$ is a weakdistributive homomorphism if and only if $a \equiv b \vee c\left(\theta_{\varphi}\right), a \geqq b \vee c$ imply the existence of elements $b_{1} \geqq b, c_{1} \geqq c$ such that $b \equiv b_{1}\left(\theta_{\varphi}\right), c \equiv c_{1}\left(\theta_{\varphi}\right)$ and $b_{1} \vee c_{1}=a$ (Figure 2).

Proof. Let us assume that φ is a weak-distributive homomorphism and let $a \geqq b \vee c, \varphi(a)=\varphi(b \vee c)=\varphi(b) \vee \varphi(c)$, i.e. $a \equiv b \vee c\left(\theta_{\varphi}\right) . \varphi$ is weak-distributive, hence we have elements $b_{0}, c_{0} \in S$ such that $b_{0} \vee c_{0}=a, \varphi\left(b_{0}\right) \leqq \varphi(b), \varphi\left(c_{0}\right) \leqq \varphi(c)$. Let $b_{1}=b \vee b_{0}, c_{1}=c \vee c_{0}$ then $b_{1} \vee c_{1}=b \vee c \vee b_{0} \vee c_{0}=b \vee c \vee a=a$ and $\varphi\left(b_{1}\right)=\varphi\left(b \vee b_{0}\right)=$ $=\varphi(b) \vee \varphi\left(b_{0}\right)=\varphi(b)$, i.e. $b_{1} \equiv b\left(\theta_{\varphi}\right)$. Similarly we get $c_{1} \equiv c\left(\theta_{\varphi}\right)$ which proves that θ_{φ} satisfies the given property.

Let θ_{φ} be a congruence relation with the property formulated in the Proposition. Let $a\left[\theta_{\varphi}\right]=x\left[\theta_{\varphi}\right] \vee y\left[\theta_{\varphi}\right]$, i.e. $a \equiv x \vee y\left(\theta_{\varphi}\right)$. Then $a \vee x \vee y \equiv x \vee y\left(\theta_{\varphi}\right)$ and there exist $x_{1}, y_{1} \in S$ satisfying $x_{1} \vee y_{1}=x \vee y \vee a, x \equiv x_{1}\left(\theta_{\varphi}\right), y \equiv y_{1}\left(\theta_{\varphi}\right)$. Therefore $x_{1} \vee y_{1} \geqq a$, hence by the distributivity of S we get elements x_{2}, y_{2} for which $x_{2} \leqq x_{1}$; $y_{2} \leqq y_{1}$ and $x_{2} \vee y_{2}=a$. These elements satisfy $\varphi\left(x_{2}\right) \leqq \varphi\left(x_{1}\right) \leqq \varphi(x)$, i.e. φ is weakdistributive.

Figure 2.

It is easy to give an example for a semilattice S and $a, b \in S$ such that there is no. smallest weak-distributive congruence satisfying $a \equiv b(\theta)$, i.e. the principal weak-distributive congruence does not exist. We follow another way to define a special weak-distributive congruence which plays the role of the principal congruence. The principal congruences of a semilattice have the property that every congruence class contains a maximal element.

Definition 2. [4] A congruence relation θ of a semilattice is called monomial if every θ-class has a maximal element.

The monomial congruence are special meet-representable congruences. Every congruence relation of a semilattice is the join of principal congruence relations therefore it is natural to introduce the following notion.

Definition 3. [4] A congruence relation θ of a semilattice is called distributive if θ is the join of weak-distributive monomial congruences. A homomorphism $\varphi: S \rightarrow T$ is distributive iff the congruence relation θ induced by φ is distributive.

Remark. It is easy to prove that the join of weak-distributive congruences is weak-distributive. The basic properties of distributive congruences are listed in [6].

If $(B ; \vee, \wedge)$ is a generalized Boolean lattice, then the semilattice $(B ; \vee)$ will be called a generalized Boolean semilattice.

For the solution of the characterization problem of congruence lattices of attices it is enough to solve the following two problems.

Problem 1. Let B be a generalized Boolean semilattice and let θ be a distributive congruence of B. Does there exist a lattice K satisfying $\operatorname{Con}^{c}(K) \cong B / \theta$? Does there exist a strong extension of B satisfying the same property?

This problem was solved positively in [4]. In section 3 we give the sketch of the proof.

Problem 2. Let F be a distributive semilattice with 0 . Does there exist a generalized Boolean semilattice B and a distributive congruence θ of B such that F is isomorphic to B / θ ?

This problem is open. We solve this problem if F is a lattice, i.e. we prove the following.

Theorem 1. Let F be a distributive lattice with 0 . Then there exist a generalized Boolean semilattice B and a distributive congruence θ of B such that $F \cong B / \theta$.

The proof of this theorem will be given in the next sections. We present here the basic idea of the proof.

Let F be a semilattice, $a, b \in F$. The pseudocomplement $a * b$ of a relative to b is an element $a * b \in F$ satisfying $a \vee x \geqq b$ iff $x \leqq a * b$. If $a * b$ exists for all $a, b \in F$ then F is a relatively pseudocomplemented semilattice. (In the literature the pseudocomplement is usually defined in meet-semilattices.)

Let F be a relatively pseudocomplemented lattice (i.e. the join-semilattice F^{V} is relatively pseudocomplemented). The proof of Theorem 1 in this case is quite easy. Let B be the Boolean lattice R-generated by F. (See [2], p. 87.) Then for every $x \in B$ there exists a smallest $\bar{x} \in F$ satisfying $x \leqq \bar{x}$. The mapping $x \rightarrow \bar{x}$ is a distributive homomorphism of B onto F. The congruence relation induced by this mapping is
monomial. The converse of this statement is true: if θ is a monomial distributive congruence of B then B / θ is a relatively pseudocomplemented lattice.

If F is a relatively pseudocomplemented semilattice then this construction does not work. In this case we consider for every $a \in F, a \neq 0$ the skeleton of (a], i.e. $S(a)=\{x * a ; x \leqq a\}$ ([2], p. 112). $S(a)$ is a Boolean lattice. Consider the lower discrete direct product $\prod_{d}(S(a) ; a \in F, a \neq 0)$, i.e. the sublattice of the direct product $\Pi S(a)$ of those sequences t for which $t(a)=0$ for all but finitely many $a \in F$. This is a generalized Boolean lattice B, and it is easy to show that B has a distributive congruence θ satisfying $B / \theta \cong F$ (see [4]).

To prove Theorem 1 we generalize the notion of the skeleton. Let φ be the identity $\varphi: S(1) \rightarrow F$. If B denotes $S(1)$ and $0, I \in B$ then this φ obviously has the following properties:
(1) φ is a $\{0,1\}$-homomorphism of the Boolean semilattice B into the semilattice F,
(2) if $\varphi(I)=x \vee y$ in F then there exist $x_{1}, y_{1} \in B$ such that $x_{1} \vee y_{1}=I, \varphi\left(x_{1}\right) \leqq x$, $\varphi\left(y_{1}\right) \leqq y$.
(1) follows from the property that $S(a)$ is a subsemilattice of F, and (2) is obvious if we take $x_{1}=y * 1, y_{1}=x_{1} * 1$.

Definition 4. Let F be a distributive semilattice with $0, \quad 1 \in F$ and let B be a Boolean semilattice with unit element I and zero element $0 . B$ is called a preskeleton of F if there exists a mapping φ of B into F such that conditions (1) and (2) are satisfied.

Condition (2) is related to the distributivity of φ; if (2) is satisfied for every $a \in B$ (instead of I) and φ is onto then we get that φ is distributive.

2. The pre-skeleton

To prove Theorem 1 we shall show that every bounded distributive lattice has a pre-skeleton. First we verify some simple well-known properties of free Boolean algebras. The free Boolean algebra B generated by the set G is denoted by $F(G)$. If $|G|=m$ we shall write $F(m)$ for $F(G) .1$ denotes the unit element of $F(G)$. Let $G^{\prime}=$ $=\left\{x^{\prime} \mid x \in G\right\}$ (x^{\prime} denotes the complement of x) and $G_{1}=G \cup G^{\prime}$. For $g \in G, g^{e}$ is either g or g^{\prime}. Let k be a natural number. We consider the subset G_{k} of B defined by $G_{0}=\{1\}$ and $G_{k}=\left\{x \mid x \in B, x \neq 0, x=g_{1}^{e} \wedge \ldots \wedge g_{k}^{e}\right.$, where g_{1}, \ldots, g_{k} are different elements of G. From these sets G_{k} we get $\mathscr{H}=\bigcup_{i=0}^{\infty} G_{i}$. If $|G|=n$ is a natural number then G_{n} is the set of atoms of $F(n)$ and each $a \in F(n), a \neq 0$ has a unique representation as a join of elements of G_{n}. If G is infinite we have no atoms, therefore we must take the whole set \mathscr{H}, which is of course a relative sublatice of B.

The most important properties of \mathscr{H} are collected in the following definition.
Definition 5. A relative sublattice \mathscr{H} of a Boolean algebra B is called a join-base iff the following conditions are satisfied:
(i) $0 ¢ \mathscr{H}$ and $1 \in \mathscr{H}$.
(ii) Each $a \in B, a \neq 0$ has a representation as a join of elements of \mathscr{H}.
(iii) There is a dimension function δ from \mathscr{H} onto an ideal of the chain of non-negative integers such that $\delta(1)=0$ and $x \prec y$ in \mathscr{H} if and only if $x \leqq y$ and $\delta(x)=\delta(y)+1$. The set of all $x \in \mathscr{H}$ with $\delta(x)=i$ is denoted by \mathscr{H}_{i}.
(iv) For every finite subset $U=\left\{u_{1}, \ldots, u_{n}\right\}$ of B there exists an $i \in \mathbf{N}$ such that each $\mathscr{H}_{k}(k \geqq i)$ has a finite subset $A_{k}(U)$ with the property that each $u \in U$ has a unique join representation as a join of elements of $A_{k}(U)$.
(v) If $a \wedge b \neq 0$ in $B, a, b \in \mathscr{H}$ then $a \wedge b \in \mathscr{H}$; if $a \vee b$ exists in \mathscr{H} and a, b are incomparable then $a, b \in \mathscr{H}_{i}, a \vee b \in \mathscr{H}_{i-1}$ for some $i \in \mathbf{N}$. Assume, that there exists an $a_{0} \in \mathscr{H}_{i-1}, a_{0} \neq a \vee b, a_{0}>a$, then there is a $b_{0} \in \mathscr{H}_{i-1}$ such that $a_{0} \vee b_{0}$ exists and $a_{0} \wedge(a \vee b)=a, b_{0} \wedge(a \vee b)=b$.

Let \mathscr{H} be a join-base of a Boolean semilattice B and let $f: \mathscr{H} \rightarrow L$ be a homomorphism into a distributive lattice (i.e. $f(a \wedge b)=f(a) \wedge f(b)$ whenever $a \wedge b$ exists, and the same for V). We want to extend f to a homomorphism $\varphi: B \rightarrow L$ (i.e., φ will be a join-homomorphism of the Boolean algebra B). Let $a=h_{1} \vee \ldots \vee h_{n}$ where $h_{i} \in \mathscr{H}$. The only way to define φ is the following: $\varphi(a)=f\left(h_{1}\right) \vee \ldots \vee f\left(h_{n}\right)$. Condition (iv) yields that this definition is unique and (ii) implies that φ maps \dot{B} into L.

Definition 6. The homomorphism φ of the Boolean semilattice into L is called an L-valued homomorphism of B induced by f.

To prove Theorem 1 we need the definition of free $\{0,1\}$-distributive product (see G. Grätzer [2], p. 106).

Definition 7. Let D be the class of all bounded distributive lattices and let $L_{i}, i \in I$ be lattices in D. A lattice L in D is called a free $\{0,1\}$-distributive product of the $L_{i}, i \in I$, iff every L_{i} has an embedding ε_{i} into L such that
(i) L is generated by $\cup\left(\varepsilon_{i} L ; i \in I\right)$.
(ii) If K is any lattice in D and φ_{i} is a $\{0,1\}$-homomorphism of L_{i} into K for $i \in I$, then there exists a $\{0,1\}$-homomorphism φ of L into K satisfying $\varphi_{i}=\varphi \varepsilon_{i}$ for all i.

The free $\{0,1\}$-distributive product is denoted by $\Pi^{*}\left(A_{i} ; i \in I\right)$ or by $A * B$. The lower discrete direct product is denoted by $\Pi_{d}\left(A_{i} ; i \in I\right)$ and finally if A_{i} are lattices with unit element then $\Pi^{d}\left(A_{i} ; i \in I\right)$ is the upper discrete direct product,
i.e. the sublattice of the direct product ΠA_{i} of those sequences t for which $t(a)=1$ for all but finitely many a.

Lemma 1. Let L be a bounded distributive lattice and let $A_{i}(i \in I)$ be Boolean semilattices. If $\varphi_{i}: A_{i} \rightarrow L(i \in I)$ are L-valued $\{0,1\}$-homomorphisms generated by $f_{i}: \mathscr{H}^{i} \rightarrow L$ then the free $\{0,1\}$-distributive product $\Pi^{*} A_{i}$ has a join-base \mathscr{H} and a homomorphism $f: \mathscr{H} \rightarrow L$ such that $\mathscr{H} \cap A_{i}=\mathscr{H}^{i}$ for each $i \in I$. There exists an L-valued homomorphism φ of $\Pi^{*} A_{i}$ generated by f satisfying $\varphi_{i}=\varphi \varepsilon_{i}$.

Proof. Let \mathscr{H} be the set of all those elements $h \neq 0$ of $\Pi^{*} A_{i}$ which have a finite meet-representation as a meet of elements from $\vee \mathscr{H}^{i}$. (Then \mathscr{H} is isomorphic to the upper direct product $\Pi^{d} \mathscr{H}^{i}$.) Obviously $\mathscr{H}^{i} \subseteq \mathscr{H}, \mathscr{H}^{i}=\mathscr{H} \cap A_{i}$. Let $u=h_{1} \wedge$ $\wedge h_{2} \wedge \ldots \wedge h_{n}$ where the $h_{i} \in \mathscr{H}^{i}$ belong to different components, then this representation is unique. We have by (iii) the functions $\delta_{i}: \mathscr{H}^{i} \rightarrow \mathbf{N}$. Now let $\delta: \mathscr{H} \rightarrow \mathbf{N}$ be defined by $\delta(u)=\delta_{1}\left(h_{1}\right)+\ldots+\delta_{n}\left(h_{n}\right)$. It is easy to verify (iv) and (v). Assume that $f_{i}: \mathscr{H}^{i} \rightarrow L$ are homomorphisms, then we can extend them as follows: $f(u)=$ $=f_{1}\left(h_{1}\right) \wedge \ldots \wedge f_{n}\left(h_{n}\right)$. Hence $x \geqq y\left(x, y \in \Pi^{*} A_{i}\right)$ implies $f(x) \geqq f(y)$. Let us assume that for incomparable $b, c \in \mathscr{H}, b \vee c$ exists, i.e. $b \vee c \in \mathscr{H}$. Then by (v) there exist an i and $b_{0}, c_{0} \in \mathscr{H}_{i}$ such that $b=b_{0} \wedge(b \vee c)$ and $c=c_{0} \wedge(b \vee c)$. Thus we get by the distributivity of L that $f(b) \vee f(c)=\left[f_{i}\left(b_{0}\right) \wedge f(b \vee c)\right] \vee\left[f_{i}\left(c_{0}\right) \wedge f(b \vee c)\right]=\left(f_{i}\left(b_{0}\right) \vee f_{i}\left(c_{0}\right)\right) \wedge$ $\wedge f(b \vee c)$. But $f_{i}: \mathscr{H}^{i} \rightarrow L$ is a homomorphism, hence $f_{i}\left(b_{0} \vee c_{0}\right)=f_{i}\left(b_{0}\right) \vee f_{i}\left(c_{0}\right)$. Obviously $b_{0} \vee c_{0} \geqq b \bigvee c$, i.e. $f\left(b_{0} \vee c_{0}\right) \geqq f(b \vee c)$. This yields $f(b) \vee f(c)=f(b \vee c)$, i.e. f is a homomorphism of \mathscr{H} into L.

The free Boolean algebra on m generators is the free $\{0,1\}$-distributive product of m copies of the free Boolean algebra on one generator, i.e. if $B_{i} \cong F(1), i \in I$ then $F(m) \cong I^{*} B_{i}$.

Corollary. If each $B_{i} \cong F(1)$ has a $\{0,1\}$-homomorphism φ_{i} into the distributive lattice L, then there exists an L-valued homomorphism φ of $F(m)$ into L such that $\varphi_{i}=\varphi \varepsilon_{i}$.

Lemma 2. Let L be a bounded distributive lattice. Then there exists a preskeleton B of L.

Proof. First assume that B is a pre-skeleton and $\psi: B_{1} \rightarrow B$ is a lattice homomorphism of the Boolean lattice B_{1} onto B. Then it is easy to see that B_{1} is again a pre-skeleton and the corresponding join-homomorphism is $\varphi \psi(x)$. Therefore to prove our Lemma it is enough to take a free Boolean algebra generated by a "big" set.

We start with the set G_{1} of all pairs (a, b) satisfying $a, b \in L, a \vee b=1, a, b \neq 1$. Let G be a subset of G_{1} which is maximal with respect to the property: $(a, b) \in G$ iff $(b, a) \notin G$.

In the free Boolean algebra $F(G)$ we define $(a, b)^{\prime}=(b, a)$, i.e. the complement of (a, b) is (b, a). The mapping $\varphi: F(G) \rightarrow L$ is defined as follows. For $(a, b) \in G_{1}$ we set $\varphi((a, b))=a$ and let $\varphi(0)=0$. Then $\varphi((a, b)) \vee \varphi((b, a))=a \vee b=1$, i.e. φ is a $\{0,1\}$-homomorphism of the semilattice $F((a, b))$ into L. Then by the Corollary to Lemma 1 there exists an extension φ of these homomorphisms. Let $x \vee y=1=$ $=\varphi(I), x, y \neq 1$, where I denotes the unit element of $F(G)$. Take $x_{1}=(x, y), y_{1}=$ $=(y, x) \in F(G)$. By the definition of φ we have $\varphi\left(x_{1}\right)=x, \varphi\left(y_{1}\right)=y$, i.e. $F(G)$ is a pre-skeleton of L.

Example 1. As an illustration consider the lattice L represented by Figure 3.

Figure 3.
The set G_{1} contains the pairs $(a, c),(b, c),(c, a),(c, b)$ and for a generating set we can choose $G=\{(a, c),(b, c)\}$; then B is the free Boolean algebra generated by two elements, i.e. $B \cong 2^{4}$. Figure 4 gives the join-homomorphism φ, in which the wavy line indicates congruence modulo $\theta=\operatorname{Ker} \varphi$.

Figure 4.

Figure 5.

Remark. The set G_{1} can be made into a poset as follows: $(x, y) \leqq(u, v)$ iff $x \leqq u$ and $y \geqq v$. We adjoin 0 and I and we take the Boolean algebra B_{1} freely generated by this poset. B_{1} is of course the homomorphic image of B defined above. Sometimes it is easier to work with this "smaller" Boolean algebra (see Figure 5).

Example 2. Let L be the lattice shown in Figure 6.
Let $\mathbf{N}=\{0,1,2, \ldots\}$ be the set of all natural numbers. B is the Boolean-algebra containing all finite and cofinite subsets of \mathbf{N}. We define $\left(a_{i}, b\right)=\left\{x_{i} ; x \geqq i\right\},\left(b, a_{i}\right)=$ $=\{0,1, \ldots, i-1\}$. Then $G=\left\{\left(a_{i}, b\right),\left(b, a_{i}\right) ; i=0,1, \ldots\right\}$ is a generating set. The corresponding join homomorphism is the following. Let A be a subset of \mathbf{N} with the smallest element $f(A)$. If A is finite then $\varphi(A)$ is b if $f(A)=0$ and $\varphi(A)=c_{f(A)}$ if $f(A)>0$. For an infinite A we have $\varphi(A)=1$ if $f(A)=0$ and $\varphi(A)=a_{f(A)}$ if $f(A)>0$. It is easy to see that φ is a distributive homomorphism of B onto L, which proves that $I(L) \cong L$ is the congruence lattice of a lattice. This is the simplest example to show that $\operatorname{Con}^{c}(K)$ need not to be relatively pseudocomplemented.

Lemma 3. Let A_{1}, A_{2} be Boolean semilattices and let $\varphi_{i}: A_{i} \rightarrow L$ be L-valued $\{0\}$-homomorphisms generated by the homomorphisms $f_{i}: \mathscr{H}_{i} \rightarrow L$ of the join-bases $\mathscr{H}_{i} \subseteq A_{i}(i=1,2)$. Then $\mathscr{H}=\mathscr{H}_{1} \cup \mathscr{H}_{2} \cup\{1\}$ is a join-base of $A_{1} \times A_{2}$ and if φ is the homomorphism generated by $f: \mathscr{H} \rightarrow L$ then $\varphi_{i}=\varphi \varepsilon_{i}$

Proof. The proof is obvious.
Remark. Lemma 3 is true for lower discrete direct product. In the infinite case this is a generalized Boolean algebra.

The basic idea of the proof of Theorem 1 can be illustrated by the following lattice (Figure 7).

Figure 6.

Figure 7.

Let a be an element of L. Then (a] is a bounded distributive lattice. If B is a pre-skeleton of (a] then we write $B=B(a) ; B(1)$ is a pre-skeleton of L.

By Lemma 2 we have a homomorphism φ_{1} of the pre-skeleton $B(1)$ onto the semilattice containing the elements $\{1, a, b, c, d, 0\}$. Applying again Lemma 2 for the principal ideal (a] we get the mapping φ_{a} of the pre-skeleton $B(a)$ of (a] onto $\{a, d, e, b, f, 0\}$. Let x be an element of $B(1)$ for which $\varphi_{1}(x)=a$. $B(1)$ is the direct product $(x] \times\left(x^{\prime}\right]$ where x^{\prime} denotes the complement of x. Take the free $\{0,1\}$ distributive product C of (x] and $B(a)$. Let B be the Boolean semilattice $C \times\left(x^{\prime}\right]$ then by Lemmas 1 and $3 \varphi_{1}$ and φ_{a} can be extended to a homomorphism $\varphi: B \rightarrow L$ which is a distributive homomorphism onto L.

We need the following
Definition 8. Let B be a Boolean semilattice and let L be a distributive lattice with 0 . Let $\varphi: B \rightarrow L$ be a 0 -preserving distributive homomorphism. (B, φ, L) is called a saturated triple if $\varphi(u)=x \vee y$ implies the existence of $x_{1}, y_{1} \in B$ such that $x_{1} \vee y_{1}=u, \varphi\left(x_{1}\right) \leqq x, \varphi\left(y_{1}\right) \leqq y$.

Lemma 4. If $(C, f, L),(D, g, L)$ are saturated triples then there exists a distributive homomorphism $h: C \times D \rightarrow L$ such that $\left.h\right|_{C}=f,\left.h\right|_{D}=g$ and $(C \times D, h, L)$ is saturated.

Proof. For $(c, d) \in C \times D$ we define $h((c, d))=f(c) \vee g(d)$. Then $h((c, 0))=$ $=f(c) \vee 0=f(c),\left.h\right|_{c}=f$. Similarly $\left.h\right|_{D}=g$. Now

$$
\begin{gathered}
h((a, b) \vee(c, d))=h((a \vee c, b \vee d))=f(a \vee c) \vee g(b \vee d)=(f(a) \vee f(c)) \vee \\
\vee(g(b) \vee g(d))=(f(a) \vee g(b)) \vee(f(c) \vee g(d))=h((a, b)) \vee h((c, d))
\end{gathered}
$$

which means that h is a homomorphism. We prove that h is distributive.
Let $h(c, d)=f(c) \vee g(d)=x \vee y$ in L. By the distributivity of L we get elements $x_{1}, x_{2}, y_{1}, y_{2} \in L$ such that $x_{1} \vee y_{1}=f(c), x_{2} \vee y_{2}=g(d), x_{1}, x_{2} \leqq x, y_{1}, y_{2} \leqq y$. Since (C, f, L) is saturated, therefore we have $c_{1}, c_{2} \in C$ such that $c_{1} \vee c_{2}=c$ and $f\left(c_{1}\right) \leqq x_{1}$, $f\left(c_{2}\right) \leqq y_{1}$. Similarly we get elements $d_{1}, d_{2} \in D$ with $d_{1} \vee d_{2}=d, g\left(d_{1}\right) \leqq x_{2}, g\left(d_{2}\right) \leqq y_{2}$. Set $\bar{x}=\left(c_{1}, d_{1}\right), \bar{y}=\left(c_{2}, d_{2}\right)$. Then $\bar{x} \vee \bar{y}=\left(c_{1} \vee c_{2}, d_{1} \vee d_{2}\right)=(c, d), h\left(\left(c_{1}, d_{1}\right)\right)=f\left(c_{1}\right) \vee$ $\vee g\left(d_{1}\right) \leqq x, h\left(c_{2}, d_{2}\right) \leqq y$. This proves that h is weak-distributive. Let $\theta=\operatorname{Ker} f$, $\Phi=\operatorname{Ker} \dot{g}$ Then $\theta=\vee \theta_{j}, . \Phi=\vee \Phi_{j} ; \theta_{j}, \Phi_{j}$ are monomial distributive congruences. θ_{i} resp. Φ_{j} can be extended to $C \times D, \bar{\theta}_{i} \cup \bar{\Phi}_{j}$ which are again monomial. It is easy to see that $\operatorname{Ker} h=\vee\left(\bar{\theta}_{i} \vee \bar{\Phi}_{j}\right)$.

Corollary. Let. C, D be two Boolean semilattices and fresp. g distributive homomorphisms of these Boolean semilattices into the distributive lattice L. If $f(C)$ resp. $g(D)$ are ideals of L then there exists a distributive homomorphism $h: C \times D \rightarrow L$ such that $\left.h\right|_{C}=f,\left.h\right|_{D}=g$.

Remark: In Lemma $4 f$ and g are not necessarily L-valuations induced by some join-bases.

Let L be an arbitrary distributive lattice with 0 . If $a \in L, a \neq 0$ the principal ideal (a] is a bounded distributive lattice. Assume that for every (a] we have a Boolean semilattice B_{a} and a distributive homomorphism φ_{a} of B_{a} onto (a]. Consider the lower discrete direct product $B=\Pi_{d}\left(B_{a} \mid a \in L, a \neq 0\right) . B$ is a generalized Boolean semilattice. By Lemma 4 we have a distributive homomorphism $\varphi: B \rightarrow L$ which is onto. Consequently to prove Theorem 1 we can assume that L is a bounded distributive lattice. By Lemma 2 we have a pre-skeleton $B(1)$ with a homomorphism $\varphi_{1}: B(1) \rightarrow L$ which satisfies (2). Let u be an arbitrary non-zero element of the join-basis $H \subseteq B(1), a=\varphi_{1}(u)$. The principal ideal ($\left.a\right]$ of L is a bounded distributive lattice, therefore we can apply again Lemma 2 to get a pre-skeleton $B(a)$ and a homomorphism $\varphi_{a}: B(a) \rightarrow(a]$ into (a]. If u^{\prime} denotes the complement of u in $B(1)$ then $B=B(1)$ is the direct product $\left(u^{\prime}\right] \times(u]$. Take the free $\{0,1\}$-distributive product $(u] ⿻ B(a)$ and finally the Boolean semilattice

$$
B[I, u]=((u] * B(a)) \times\left(u^{\prime}\right] .
$$

By Lemmas 1 and 3 we have a homomorphism $\varphi: B[I, u] \rightarrow L$, satisfying the following condition:
(*) if $r \in T=\{I, u\}, \varphi(r)=x \vee y$ then there exist $x_{1}, y_{1} \in B[I, u]$ with $x_{1} \vee y_{1}=r$, $\varphi\left(x_{1}\right) \leqq x, \varphi\left(y_{1}\right) \leqq y$.
Using the same method for an element $v \in B \subset B[I, u]$ we get from $B[I, u]$ a Boolean algebra $B[I, u, v]$ satisfying (*) for the set $T=\{I, u, v\}$.

Lemma 5. Let $u, v \in B$, then $B[I, u, v] \cong B[I, v, u]$.
Proof. If H denotes a join-base of B and $x \in H$ then we shall write $H(x)$ for $H \cap(x]$. It is easy to show that $H(x) \cup H\left(x^{\prime}\right)$ is again a join-base and L-valuations generated by these join-bases coincide. If $u, v \in B$ then we have therefore a join-base $H(u \wedge v) \vee H\left(u \wedge v^{\prime}\right) \vee H\left(u^{\prime} \wedge v\right) \vee H\left(u^{\prime} \wedge v^{\prime}\right)$. Hence we get for $B[I, u, v]$ resp: $B[I, v, u]$ the following. Let H_{u} resp. H_{v} be a join base of $B\left(\varphi_{1}(u)\right)$ resp. $\dot{B}\left(\varphi_{1}(v)\right)$; then $\left(H_{u}^{1} \times H_{v}^{1} \times H^{1}(u \wedge v)\right) \cup\left(H_{u}^{1} \times H^{1}\left(u \wedge v^{\prime}\right)\right) \cup\left(H_{v}^{1} \times H^{1}\left(u^{\prime} \wedge v\right)\right) \cup H^{1}\left(u^{\prime} \wedge v^{\prime}\right)$ which proves the isomorphism.

Continuing this construction we get for arbitrary $u_{1}, u_{2}, \ldots, u_{n} \in B$ a Boolean semilattice $B\left[I, u_{1}, \ldots, u_{n}\right]$ and a homomorphism of this Boolean semilattice into L such that condition (*) is satisfied for $T=\left\{I, u_{1}, \ldots, u_{n}\right\}$.

All these Boolean semilattices form a direct family. Let C_{1} be the direct limit Then $B(1)=C_{0}$ is a Boolean subalgebra of C_{1} and we have $\varphi: C_{1} \rightarrow L$ which satisfies (*) for all $x \in T=B(1)$. Then we start with C_{1} and in the same way we get a Boolean semilattice C_{2}. Then C_{1} is a Boolean subalgebra of C_{2}. Similarly, we get
$C_{i}(i=3,4, \ldots)$. These algebras C_{i} form again a direct family. Let $: \bar{B}$ be the direct limit. Let $\varphi: \bar{B} \rightarrow L$ be the corresponding homomorphism. Then (B, φ, L) is. saturated, hence φ is a weak-distributive homomorphism into L.

Lemma 6. \bar{B} has a join-base.
Proof. This is a trivial consequence of Lemmas 1 and 3.
Lemma 7. Let $\varphi: B \rightarrow L$ be a weak-distributive homomorphism of a Boolean semilattice B generated by a homomorphism $f: H \rightarrow L$ of a join-base H. Then φ is distributive.

Proof. Let θ be the congruence relation induced by $\varphi . H_{k}$ denotes the set of all $x \in H$ of dimension k. Take two elements $a, b \in B, a>b$ satisfying $a \equiv b(\theta)$. Then a and b have join-representations as joins of elements from some H_{k}, say $a=h_{1} \vee \ldots \vee h_{n} \vee h_{n+1}$ and $b=h_{1} \vee \ldots \vee h_{n}$. If $c=h_{1} \vee \ldots \vee h_{k}, k<n$ and $d=h_{i} \vee \ldots \vee h_{n}$, $i \leqq k$ then $c \vee d=b$. By condition (iv) of Definition 5 we can assume that these representations of a, b, c, d are unique. By the weak distributivity of θ we have elements $\bar{c} \geqq c, \bar{d} \geqq d$ such that $\bar{c} \vee \bar{d}=a$ and $c \equiv \bar{c}(\theta), d \equiv \bar{d}(\theta)$. For \bar{c}, \bar{d} we have the following possibilities: (i) $\bar{c}=c \vee h_{n+1}, \bar{d}=d$; (ii) $\bar{c}=c, \bar{d}=d \vee h_{n+1}$; (iii) $\bar{c}=c \vee h_{n+1}$, $\bar{d}=d \vee h_{n+1}$.

We define a binary relation $\theta_{a b}$ on B as follows: $x \equiv y\left(\theta_{a b}\right), x>y$ iff $x \equiv y(\theta)$ and $y \leqq b, x \vee b=a$. Then the assumption that θ is induced by the join-base H we get that each $\theta_{a b}$-class contains a maximal element. Let $\theta_{a b}^{\vee}$ be the smallest join congruence of B satisfying $\theta_{a b}^{\vee} \geqq \theta_{a b}$. Then $u \equiv v\left(\theta_{a b}^{\vee}\right), u \geqq v$ iff there exist $x \geqq y$, $x \equiv y\left(\theta_{a b}\right)$ such that $y \leqq v$ and $x \vee v=u$. Obviously $\theta_{a b}^{\vee} \leqq \theta, \vee \theta_{a b}^{\vee}=\theta$. The first part of the proof yields that $\theta_{a b}^{\vee}$ is distributive.

An element $a \in L$ is of finite order if there exists a sequence $a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ such that $a<a \vee x_{1}<a \vee x_{1} \vee x_{2}<a \vee x_{1} \vee \ldots \vee x_{n-1}<a \vee x_{1} \vee \ldots \vee x_{n}=1$ and $a \vee x_{1} \vee$ $\vee x_{2} \vee \ldots \vee x_{i-1}$ is incomparable with $x_{i}(i=1, \ldots, n)$. By the construction of $\varphi: \bar{B} \rightarrow L$ the image of each $u \in \bar{B}, u \neq 0$ is the meet of elements of finite order. Now we have for every $a \in L$ a Boolean semilattice $B(a)$ and a distributive homomorphism $\varphi_{a}: B(a) \rightarrow(a]$ which maps $B(a)$ onto the set of all elements having a meet representation of elements of finite order in the lattice (a]. Then the triple $\left(B(a), \varphi_{a},(a]\right)$ is saturated. The lower discrete product of these Boolean semilattices B has by Lemma 4. a distributive homomorphism onto L which proves Theorem 1.

3. Construction of a strong extension

In this section we give the outline of the proof of the following theorem, which was proved in [4]. Combining Theorems 1 and 2 we get our main theorem.

Theorem 2. Let θ bee a distributive congruence of a generalized Boolean semilattice B. The lattice of all ideals of B / θ is the congruence lattice of a lattice.

We denote the five element modular non-distributive lattice by $M_{3} ; M_{3}$ with an additional atom is called M_{4}, etc. If α is an arbitrary cardinal number then M_{α} is the modular lattice of length 2 with α atoms.

Let $M=\{0<a, b, c<1\}$ be a lattice isomorphic to M_{3} and let D be a bounded distributive lattice with zero element o, and unit element i. Identifying a with i and 0 with o, we get a partial lattice ${ }_{D} M_{3}=D \cup M_{3}$ (Fig. 8), $D \cap M_{3}=\{0, a\}$ and D, M_{3} are sublattices; $d \vee b$ resp. $d \vee c(d \in D)$ is defined iff $d \in\{0, a\}$ (see Mitschke \& Wille [3]). There exists a modular lattice $M_{3}[D]$ generated by ${ }_{D} M_{3}$ such that ${ }_{D} M_{3}$ is a relative sublattice of $M_{3}[D]$. In [3] it was proved that there exists only one modular lattice with these properties, the modular lattice $F M\left({ }_{D} M_{3}\right)$ freely generated by ${ }_{D} M_{3}$. This lattice was introduced in [4] and has the following description.

Figure 8.

An element $(x, y, z) \in D \times D \times D$ is called normal if $x \wedge y=x \wedge z=y \wedge z$. Let $M_{3}[D]$ be the poset of all normal elements, then $M_{3}[D]$ is a modular lattice. Let $\dot{a}=(i, 0,0), \quad b=(0, i, 0), c=(0,0, i), \quad 1=(i, i, i), 0=(0,0,0)$. Then these elements form a sublattice isomorphic to M_{3}. The set of all elements ($x, 0,0$), ($x \in D$) form a sublattice isomorphic to $D . D$ is a strongly large sublattice of $M_{3}[D]$, and every congruence relation $\theta \in \operatorname{Con}(D)$ can be extended to $M_{3}[D]$, i.e. Con $(D) \cong \operatorname{Con}\left(M_{3}[D]\right)$. We can use the same construction for distributive lattices without unit element.

We prove Theorem 2 first for monomial congruences of Boolean semilattices i.e. for relatively pseudocomplemented lattices.

Lemma 8. Let θ be a monomial distributive congruence of a generalized Boolean semilattice B. Then there exists a lattice N such that $\operatorname{Con}^{c}(N) \cong B / \theta$.

Sketch of the proof. Consider $D=B$ and the corresponding lattice $M_{s}[B]$. We define a subset N of $M_{3}[B]$ as follows
(**) $(x, y, z) \in M_{3}[B]$ belongs to N iff x is a maximal element of a θ-class.
Then N is a lattice and $(x, 0,0) \in N$ iff x is a maximal element of θ-class, i.e., the ideal I generated by $(i, 0,0)$ is isomorphic to $B / \theta . N$ is a strong extension of I, a congruence relation of I has an extension to N iff it has the form $\theta\left(I^{\prime}\right)$, where I^{\prime} is an ideal of N. Thus $\operatorname{Con}^{c}(N) \cong B / \theta$, i.e. $\operatorname{Con}(N) \cong I(B / \theta)$.

The ideal J of N, generated by $(0,0, i)$ is isomorphic to B. By the definition of I and J we have $I \cap J=0$ (Fig. 9).

Figure 9.

Figure 10.

Let θ be an arbitrary distributive congruence relation of the generalized Boolean semilattice B. Then θ is the join of monomial distributive congruence relations, say $\theta=\vee\left(\theta_{\alpha} \mid \alpha \in \Omega\right)$. We take first for every α the lattice N_{α} defined before. This N_{α} has two ideals $I_{\alpha} \cong B / \theta_{\alpha}$ and $J_{\alpha} \cong B$. Moreover $\operatorname{Con}^{c}\left(N_{\alpha}\right) \cong B / \theta_{\alpha}$.

On the other hand we consider the direct product $\Pi\left(B_{\alpha} \mid \alpha \in \Omega\right) . \quad M$ denotes the sublattice of the direct product of those normal sequences t for which $\{t(\alpha) \mid \alpha \in \Omega\}$ is finite, i.e. the weak direct product is normal if $\alpha, \beta, \gamma \in \Omega, \alpha \neq \beta, \alpha \neq \gamma, \beta \neq \gamma$ imply $t(\alpha) \wedge t(\beta)=t(\alpha) \wedge t(\gamma)=t(\beta) \wedge t(\gamma)$. Let J^{α} be the ideal of M consisting of all t for which $t(\beta)=0$ if $\beta \neq \alpha$. Then $J^{\alpha} \cong B . M$ is a strong extension of J^{α} and $\operatorname{Con}^{c}(M) \cong$ $\cong \operatorname{Con}^{c}\left(J^{\alpha}\right) \cong \operatorname{Con}^{c}(B)$. Let \bar{M} be the dual latice of M. Then $\bar{J}^{\text {a }}$ is a dual of \bar{M}. \bar{J}^{x} is a Boolean algebra, therefore we have a natural isomorphism $J^{\alpha} \cong J^{\dot{a}}\left(x \rightarrow x^{\prime}\right)$. We use the Hall-Dilworth gluing construction for ${ }^{\prime} \bar{M}$ and $N_{\alpha}^{\prime}(\alpha \in \Omega)$, we identify for every α the dual ideal \bar{J}^{α} and the ideal J_{a}. In this way we get a partial lattice P (see Figure 10).
\bar{M} and N_{α} are sublattices of P, and P is a meet-semilattice, Let $F(P)$ be the free lattice generated by P. Then $\operatorname{Con}^{c}(F(P)) \cong B / 0$. This proves :Theorem 2 .

4. Some remarks on the characterization problem

The key problem of the characterization of congruence lattices of lattices is to prove the existence of a pre-skeleton of a bounded distributive semilattice. We reformulate this problem.

Let L be a bounded distributive semilattice. Let $F(G)$ be denote the free Boolean algebra generated by the set G. If $g_{i} \in G$ then the elements $0, g_{i}, g_{i}^{\prime}, I$ form a Boolean subalgebra which is the free Boolean algebra $F\left(g_{i}\right)$ generated by g_{i}. We have remarked that $F(G)$ is the free $\{0,1\}$-distributive product of the Boolean algebras $F\left(g_{i}\right)$, $g_{i} \in G$. Let us assume that every $F\left(g_{i}\right)$ has a $\{0,1\}$-homomorphism φ_{i} into L. Does there exist a $\{0,1\}$-homomorphism $\varphi: F(G) \rightarrow L$ such that $\left.\varphi\right|_{F\left(g_{i}\right)}=\varphi_{i}$? For finite G the answer is yes, we have

Proposition 3. Let B be a finite Boolean algebra. If $\varphi_{1}: B \rightarrow L$ and $\varphi_{2}: F(g) \rightarrow L$ are $\{0,1\}$-homomorphisms into L then there exists a $\{0,1\}$-homomorphism φ of the free $\{0,1\}$-distributive product $B * F(g)$ into L such that $\varphi\left|B=\varphi_{1}, \varphi\right|_{F(\theta)}=\varphi_{2}$.

Proof. Let $p_{1}, p_{2}, \ldots, p_{n}$ denote the atoms of B. The atoms of the free product are $p_{1} \wedge g, \ldots, p_{n} \wedge g, p_{1} \wedge g^{\prime}, \ldots, p_{n} \wedge g^{\prime}$. Then $g<p_{1} \vee \ldots \vee p_{r}=I$ yields $\varphi_{2}(g)<$ $<\varphi_{1}\left(p_{1}\right) \vee \ldots \vee \varphi_{1}\left(p_{n}\right)=1 \in F$. But F is a distributive semilattice hence we have elements $a_{1}, a_{2}, \ldots, a_{n} \in F$ such that $\varphi_{2}(g)=a_{1} \vee \ldots \vee a_{n}, a_{i} \leqq \varphi_{1}\left(p_{i}\right) \quad(i=1,2, \ldots, n)$. Similarly $g^{\prime}<p_{1} \vee \ldots \vee p_{n}$ therefore we have elements $b_{1}, \ldots, b_{n} \in L$ satisfying $\varphi_{2}\left(g^{\prime}\right)=$ $=b_{1} \vee \ldots \vee b_{n}, b_{i} \leqq \varphi_{1}\left(p_{i}\right)$. On the other hand $p_{i} \leqq g \vee g^{\prime}$ hence $\varphi_{1}\left(p_{i}\right) \leqq \varphi_{2}(g) \vee$ $\vee \varphi_{2}\left(g^{\prime}\right)$. Thus we get elements u_{i}, v_{i} such that $\varphi_{1}\left(p_{i}\right)=u_{i} \vee v_{i}, u_{i} \leqq \varphi_{2}(g), v_{i} \leqq \varphi_{2}\left(g^{\prime}\right)$. Define $\varphi\left(p_{i} \wedge g\right)=a_{i} \vee u_{i}, \varphi\left(p_{i} \wedge g^{\prime}\right)=b_{i} \vee v_{i}$. Every u of $B * F(g)$ has a unique representation as a join of atoms, say $u=\vee g_{i}$. We define $\varphi(u)=\vee \varphi\left(g_{i}\right)$. This φ is obviously a homomorphism. From $p_{i}=\left(p_{i} \wedge g\right) \vee\left(p_{i} \wedge g^{\prime}\right)$ we get $\varphi\left(p_{i}\right)=\left(p_{i} \wedge g\right)$ $\left(p_{i} \wedge g^{\prime}\right)=\left(a_{i} \vee u_{i}\right) \vee\left(b_{i} \vee v_{i}\right)=\mathrm{a}_{i} \vee b_{i} \vee \varphi_{1}\left(p_{i}\right)=\varphi_{1}\left(p_{i}\right) . \quad$ Similarly $\quad g=\bigvee_{i=1}^{n}\left(p_{i} \wedge g\right)=$ $=\bigvee_{i}\left(a_{i} \vee u_{i}\right)=\bigvee_{i=1}^{n} a_{i} \vee \bigvee_{i=1}^{n} u_{i}=\varphi_{2}(g)$. (I.e. $\left.\varphi\right|_{B}=\varphi_{1},\left.\varphi\right|_{F(g)}=\varphi_{2}$).

It is necessary to generalize Lemma 1 for distributive semilattice. Let B be the free Boolean algebra $F(G)$. Then the join-base is $H=\bigcup_{i=0}^{\infty} H_{i} \cup\{1\}$.

We have for every $g_{i} \in G$ a $\{0,1\}$-homomorphism $\varphi_{i}: F\left(g_{i}\right)=\left\{0, g_{i}, g_{i}^{\prime}, I\right\} \rightarrow L$, i.e. we have a mapping $H_{1} \rightarrow L$ and we want to get a $\{0,1\}$-homomorphism $\varphi: B \rightarrow L$ which is a common extension of each φ_{i}. To define such a φ it is natural to use induction on k. If $x \in H_{1}$ then $x=g_{i}$ or $x=g_{i}^{\prime}$ for some $g_{1} \in G$ and we have $\varphi(x)=$ $=\varphi_{i}(x)$. Using the method of Proposition 3 it is easy to define $\varphi(x)$ for all $x \in H_{2}$. How can we define $\varphi(x)$ for $x \in H_{3}$?

References

[1] A. Day, Injectivity in equational classes, Canad. J. Math., 24 (1972), 209-220.
[2] G. Grätzer, General Lattice Theory, Akademie-Verlag (Berlin, 1978).
[3] A. Mitschike und R. Wille, Freie modulare Verbände FM ($\mathrm{D}_{3} \mathrm{M}_{3}$), in: Proc. Lattice Theory Conf. Houston, 1973, 383-396.
[4] E. T. Schmidt, Zur Charakterisierung der Kongruenzverbände der Verbände, Mat.-Fyz. C̈asopis Slovensk. Akad. Vied, 18 (1968), 3-20.
[5] E. T. Schmidt, Kongruenzrelationen Algebraischer Strukturen, VEB Deutscher Verlag der Wissenschaften (Berlin, 1969).
[6] E. T. Schmidt, Some remarks on distributive semilatices, Studia Math., to appear.

MATHEMATICAL INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
REALTANODA U. 13-15
1053 BUDAPEST, HUNGARY

