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Carleman and Korotkov operators on Banach spaces 

N. E. GRETSKY AND J. J. UHL, JR. 
t 

This paper is an attempt to use basic theory of vector measures as an approach 
to study certain types of classical integral operators and their generalizations. The 
first section begins with a look at the classical Carleman integral operators from 
L2 to L2. In the course a connection, which seems to us to be heretofore unnoticed, 
is established with operators whose truncates on large sets is compact into 
This is then generalized to the consideration of operators from any Banach space 
into the spaces Lp(p) 0S/)S«>. The second section is devoted to an application 
to a "folklore theorem" about weak compactness in Lm(p). Next specialization is 
made of the general results of section 1 to integral operators f rom one Lp space 
to another in section 3. A class of operators we call Korotkov operators are studied 
in section 4. The last section is devoted to extensions to general function spaces. 

1. Carleman operators 

We start with a description of the classical situation as motivation for the 
current work. The book of H A L M O S and S U N D E R [6] may be consulted for more 
details. Let (£2,1, n) be a finite separable measure space and let T h e a linear oper-
ator from L2(H) to L2(/J.). The operator T is called an integral operator if there is a 
H X ̂ -measurable function k such that 

(i) k(s, • ) / ( ' ) £ L i ( p ) for /¿-almost all s and all f£L2(n), 

(ii) f k ( - , 0 / 0 ) d f i ( t ) f L2(p) for a l l / i n L2(ji), and 
a 

(iii) Tf(s)= f k(s, t)f(t)dfi(t) almost everywhere for all / i n L2(p). 
a 
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It is an old theorem of BANACH [1] that such an operator is automatically con-
tinuous. An integral operator is called a Carleman integral operator if its kernel 
additionally satisfies 

(iv) k(s, •)£L2(JI) for /i-almost all s. 

Following Halmos—Sunder, Korotkov and probably many others, note that 
the last condition can be interpreted to mean that there exists a function g: Q—L2(p) 
such that g(s)(-)=k(s, •) for almost all s in Q. By the Riesz representation theo-
rem we may regard g as taking values in (L200)*(=i200) and read condition 
(ii) as saying (g( • ),f)£L2(/i) for a l l / i n L2(JI) and read (iii) as saying that Tf( •) = 
= (£ ( • )> / ) f ° r aH / i n L2{p). Moreover since (g(-),f)£L2(ji) for a l l / i n L2(p) 
and since L2(ji)*=L2(p) we see that g is a weakly measurable function into L2(n). 
Since L2(p.) is separable here, PETTIS'S measurability theorem [3 , I I . 2 . 2 ] shows that 
g is (strongly) measurable. 

Conversely if g: Q^L2(p.) is measurable and if (g(-),f)€L2(ji) for all / 
in L2(H), then a theorem of D U N F O R D and PETTIS [4 , I I I . 1 1 . 1 7 ] produces a /¿Xn-
measurable function k such that k(s, •)=g(s)(-) for almost all in Q with the 
property that 

<g( • ) . / > = / * ( • , 0 / 0 ) ^ 0 ) 
SI 

almost everywhere. Thus the operator on L 2 0 0 to L2(ji) defined by f—{g(-),f) 
is a Carleman integral operator. 

This proves the first theorem and sets the perspective of most of this paper. 

T h e o r e m 1. Let (Q, I , n) be a finite separable measure space. A linear oper-
ator T: L2(f.i) -*L2(p) is a Carleman integral operator if and only if there exists 
a measurable g: Q^L2(p) such that for each f in L2(ix) the equality (Tf)( •) = 
= <£(•)./> obtains almost everywhere. 

Throughout the remainder of the paper let (Q, I , ¡i) be an arbitrary finite 
measure space; let Lp(p), be the usual Lebesgue spaces and let L0(/i) be 
the space of all measurable (equivalence classes of) functions on Q under the topology 
of convergence in measure. 

D e f i n i t i o n 2. Let 0 a n d let A' be a Banach space. A linear operator 
T: X-*Lp(ji) is called a Carleman operator if there is a measurable function 
g: i2—X* such that (7x)(s) = (g(.y), x) almost everywhere for all x in X. In this 
case g is called the kernel of T. 

A quick application of the closed graph theorem shows that a Carleman oper-
ator is necessarily continuous. 
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Recall that [3, Chap. Ill] a Banach space X has the Radon—Nikodym property 
(RNP) if for any finite measure space ( i 2 , I , p) and for any bounded linear oper-
ator T: L1(p)-*X there is a bounded measurable function g: Q—X such that 

Tf= f f g d p , 
n 

as a Bochner integral, for a l l / i n 
The first theorem is a generalization of a theorem of KOROTKOV [ 1 0 , 11 ] and is 

closely related to a theorem of WONG [ 1 7 ] . 

T h e o r e m 3. Let and let X be a Banach space whose dual X* has 
RNP. A bounded linear operator T: X—Lp(p) is a Carleman operator if and only if 
there is a measurable function <P on Q such that 

|(7x)(S)| ||*|| <P(s) 

almost everywhere for each x in X. 

P r o o f . Suppose T is a Carleman operator with kernel g. Then, for s in Q, 
we have 

|(7*)(s)| = |g(s)x| ^ | | g ( s )M|x | | x . 

Since g is measurable, so is ||g(*)llx*- Taking = proves the necessity. 
Conversely, suppose there is a measurable function Q—R such that 

| ( 7 x ) ( j ) | ^ 0 ( s ) almost everywhere for all x£X. Without loss of generality, 
we may assume that <P(w) is everywhere finite. For n^ 1, define the sets 
E„ = [n — and note that <£ is bounded on each En. Define the operator 
E„ on every Lp by 

Enf=f/.E„-

By hypothesis, EnoT has its range in (p); moreover an application of the 
closed graph theorem shows that 

E„oT: X - L„(p) 

is continuous. Define Sn: L^(p)*—X* to be the adjoint of EnoT and consider 
its restriction to L^p). Since X* has RNP, there is a measurable g„: Q—X* 
such that 

S„f= f f g n d n for all f£LM-
n 

Next observe that ({EnoT)x)(-) = (g„(-), x) a.e. by computing for / in I ^ f j i ) 
and x in X the integral 

/{E„T)xfdp = ( S n ( f ) , x) = < f f g n d p , x ) = f f ( g n , x)dp 
n a n 

14 
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where the last equality follows from the "commuting" of the Bochner integral with 
bounded linear operators [3, II. 2.9]. 

In particular, (g„('), x) vanishes almost everywhere outside E„ for each x 
in X. Without loss of generality, we may take g„(a>)=0 for co$En. Then g„ is 
still measurable and ((E„oT)x)(') = (gn(-), x) for all x in X, 

Now define g: Q-*X* by g(s)=g„(s) for s in E„ (recall that the E„ are dis-
joint and exhaustive). Then g is measurable and it remains only to show that 
(Tx)(s) = (g(s), x) almost everywhere for x in X. 

To this end, note that if h£Lp(ti), then 
m 

h = limhxFm in measure, where Fm = (J En. m m n= 1 
Hence if x€X, then 

Tx = lim (Tx)x F m = lim J (EnoT)x = lim J <gn( •), *> = m m „ = 1 m n=1 
= LIM < g ( - ) > * > X F „ = <g( •).*>> ffi 

where all limits are taken in measure. This completes the proof. 

The first corollary is implicit in STEGALL [16]. Its converse is also true, but 
we shall not prove it here because it is the main theme of Stegall's paper. 

C o r o l l a r y 4. If X* has RNP, then every continuous linear operator from X 
into (n) is a Carleman operator. 

P r o o f . If T: X—L^ifi) is a continuous linear operator, then | 7 x | ( - ) s 
21 ||x|| a.e.; apply Theorem 3. 

C o r o l l a r y 5. A weakly compact operator from an arbitrary Banach space into 
L„ (ji) is a Carleman operator. 

P r o o f . Let A'be an arbitrary Banach space and let T: Z — b e a weakly 
compact operator. Then T*: is weakly compact as is its restriction to 
Liip), By a classical theorem of DUNFORD, PETTIS, and PHILLIPS [3, I I I . 2 .12 ] , there 
exists a measurable g: Q—X* such that 

T*f= J f g d p , ftl^in). 

Now, by the proof of Theorem 3, we see that 

( ?* ) ( ; ) = <«(•),*> 

for all x£X, so that T .̂is indeed a Carleman operator. 
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The next theorem characterizes Carleman operators from X to Lp(n) in terms 
of compactness of the operator into (p). No R N P assumptions need be made 
on A'or its dual. This theorem appears to be new even in the classical case of Carle-
man integral operators from L2(p) to L2(JI). Recall that to each set E in I there is 
the associated operator E: LP(P)—LP(P) defined by Ef=fxE. Call a linear oper-
ator T: X~*Lp(p) almost weakly (or norm) compact into Lm(p) if for each s > 0 
there is a set E£E with p(Q\E)<s such that EoT is a weakly (or norm) com-
pact operator Jf into Lm(p). 

T h e o r e m 6. Let and let X be a Banach space. If a continuous linear 
operator T: X—Lp(p) is almost weakly compact into Lm(p), then T is a Carleman 
operator. Conversely, if T is a Carleman operator, then T is almost norm compact 
into L^(p). 

P r o o f . Suppose T: X—Lp(p) is almost weakly compact into Lm(p). Then 

there is a disjoint sequence (En) in I with (J E„ = Q such that EnoT: X—L^(ji) 
n = 1 

is weakly compact. By Corollary 5 each EnoT is a Carleman operator and thus 
is given by (EnoT)x=g„(-)x where g„: Q—X* is a measurable function sup-
ported on E„. Define g ( j ) = g n ( j ) for sf_E„ and proceed as in the proof of Theorem 3 
to prove Tx=g(~)x. Thus 7"is a Carleman operator. 

On the other hand, suppose T: X—Lp(p) is a Carleman operator with ker-
nel g. Since g is measurable, there is a sequence (g„) of measurable simple functions 
from Q to X* such that lim | |gn(-)~g(Ollx—0 almost everywhere. Fix e > 0 and m 
use Egorov's theorem to obtain a set E£Z such that p(Q\E)<e and lim | | g n (0 — 

m 
— ' ) l l x = ® uniformly on E. Since g must be bounded on E, EoT maps X into 
£„(• ) • Define the finite rank operators Tn: X—L^ip) by Tnx=y_Eg„(-)x. Then 

lim sup \]EoT(x)-EoTn(x)\\„ = \im sup \\XEg( • ) * - * * ? . ( 0*11- ^ 
n llxll s i „ U| |S1 

S lim sup sup|g(s)x-g„(s)x| = lim sup ||g(s)-g„(s)||x* = 0. 
n 11x1131 s€£ 'n s£E 

Thus, EoT\ is the uniform limit of finite rank operators and is con-
sequently a compact operator. 

At this point, we are again getting close to the theme of STEGALL [16]. In his 
recent study of the RNP in dual spaces, Stegall effectively works with Carleman 
operators from X to Lm{p) and proves that X* has R N P if and only if all oper-
ators from X to Lm{p) are Carleman operators. The connection is as follows: 
An operator T: X—L^p) is a Carleman operator if and only if the restriction 
of the adjoint T* on Lx (ji) is representable in the sense of [3, Chap. II]. 

14» 
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2. Weakly compact sets in L^f j i ) 

This section is a bit of a digression to some well-established but not so well-
known facts about weakly compact sets in Lca(fi). Probably this section should 
have been included in [3, Chap. VIII]; it certainly could have been. The subject of 
this section is a folklore theorem which explains the interchange between norm and 
weak compactness in and thus explains the interchange in Theorem 6. Prob-
ably all of this section should be attributed to GROTHENDIECK [5], but unfortunately 
the theorem which we are about to prove does not seem to be generally known. 
In keeping with the terminology above, a subset W of Lm(ji) will be called (rela-
tively) almost norm compact if for each £>0 there exists E in E with p(Q\E)<e 
such that %EW is (relatively) norm compact in 

T h e o r e m 7. (Folklore) If W is a relatively weakly compact subset of Lm(p), 
then W is relatively almost norm compact in 

P r o o f . Let Wbe a relatively weakly compact subset of L„(ji). By the factoriza-
tion theorem of DAVIS, FIGIEL, JOHNSON, and PELCZYNSKI [ 2 ] there is a reflexive 
Banach space R and a bounded linear operator T: R-*Lm{pL) such that WQ T(BR), 
where BR is the closed unit ball of R. By Corollary 5, the weakly compact operator 
T is Carleman. By Theorem 6, given e<0 there is E£I with n(Q\E)<s such 
that E T: R-*Lm(ji) is a compact operator. Thus /E WQEoT(BR) is relatively 
norm compact. This completes the proof. 

Note that the converse of Theorem 7 is not true. Indeed, if X* has the RNP, 
then any operator T: X-~Lm(p) is a Carleman operator by Corollary 4. Thus by 
Theorem 6, the operator T i s almost norm compact into L^(/x); i.e. T(BX) is rela-
tively almost norm compact in Lm(p) as in the conclusion of Theorem 7. But, if 
X is not reflexive, then T need not be a weakly compact operator; so, T(BX) need 
not be weakly compact in (p). 

Theorem 7 has an easy corollary which seems to have been known to Grothen-
dieck. To our best knowledge it was first stated explicitly by PERESSINI [14, Prop. 5]. 
Weaker versions of it were proved by ZOLEZZI [ 1 8 ] and KHURANA [8]. (See K H U -

RANA [9] for an interesting generalization to the vector-valued case.) 

C o r o l l a r y 8. If (Q, I , p) is a finite measure space, then a weakly convergent 
sequence in Lm(p) converges almost everywhere. 
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3. Carleman operators as classical integral operators 

The definition of a Carleman operator was motivated by that of a Carleman 
integral operator [6] from L2(p) to L2(jt). The definition of Carleman integral oper-
ator has a natural extension to the other Lp(p) spaces and it will be shown here 
that the natural extension coincides with the definition of Carleman operators on 
Lp(jx). Throughout this section (S, !F, A) and (Í2,1, /t) will be finite measure 
spaces. In addition p and r will be numbers such that and 
The number s will be conjugate to r in the sense that r _ 1 + j _ 1 = l . 

T h e o r e m 9. A continuous linear operator T: Lr(X)^Lp(p) is a Carleman 
operator if and only if there exists a XXn-measurable function k: SXÍ2—R such 
that k( -, y) in Ls(/1) for p-almost all y in Q and such that 

(7T)(-) = Jf(x)k(x,-)dX(x) 
s 

for all f in Lr(X) fi-almost everywhere. 

P r o o f . Suppose T: Lr(X)->-Lp(n) is a Carleman operator with kernel 
g: Q-~(Lr(X))* = Ls(X) so that 7 J ( . ) = ( g ( . ) , / ) . In order to produce a AX/t-
measurable function k such that k(x, j>) —(g(.v))(*) a.e., consider g ( ' ) / l lg (OL-
This is a bounded X,(A)-valued measurable function and is therefore /t-Bochner 
integrable. An appeal to a theorem of DUNFORD and PETTIS [4 , I I I . 11 .17] produces 
a Ax/¿-measurable function kx such that 

M * , y ) = ((gOO)(*))/llg(y)l!s 

for //-almost all y in Í2. Now set k(x, = 11̂ (̂ )11 y\ note that k is 
measurable. Now observe that f o r / i n Lr(X) and //-almost all y in Q, we have 

T ( f ) ( y ) = (g(y)J) = f(g(y)](x)f(x)dX(x)= Jf(x)k{x,y)dX(x). 
s s 

Conversely, suppose there is a jointly measurable function k: Sx£2->-R such 
that k(', y)£Ls(X) for /i-almost all y in Q and such that, for / in Lr(A), we have 

(r/)(0= Jf(x)k(x, .)dX(x) 
s 

almost everywhere. Without loss of generality we assume that k(-, y)£Ls(X) for 
all y in Q. Define gt: Í2 —LS(X) by Since 

(gx(y)J) = ff(x)(gl(y))(x)dX(x) = f f ( x ) k ( x , y)dX(x) = (Tf)(y) 

for all /€L r(A) for /¿-almost all y, we see that gt is weakly measurable. But any 
weakly measurable function with values in a reflexive space (or WCG space, for 
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that matter) is equivalent to a (strongly) measurable function [3, p. 88]; viz. there 
is a measurable g: Q—Ls(/.) such that for all x*£Lr(X)* we have (x*, g) — (x*, gx) 
//-almost everywhere. Thus (g1(y),f)—{g(y),f) for almost all y£Q and all 
/€LS(/.). Consequently, for e a c h / i n Lr().), we have 

(Tf)(y) = f f ( x ) k ( x , y)d?.(x) = < g l(y) , /> = <g(y),/> 
s 

for //-almost all y. This proves that T is a Carleman operator. 

The sufficiency proof of Theorem 9 also shows how to replace kernels that 
are not jointly measurable by ones that are, since joint measurability of k is not 
used in that argument. The requirement of joint measurability in the definition of 
integral operator is not necessary for most of the work but is usually assumed so 
as to guarantee that each integral operator has a unique kernel. The question of 
whether every operator determined by a nonjointly measurable kernel can be induced 
from a jointly measurable kernel appears to be open (see [6, § 8] for a discussion), 
but is easily settled for the Carleman operators. 

C o r o l l a r y 10. Let T: Lr(;.)—Lp(p) be a continuous linear operator. If there 
exists a (possibly) nonjointly measurable function k: Sx —R such that k( •, y)dLs(X) 
for p-almost all y in Q and such that 

(77)00= Jf{x)k(x,y)d?.(x) 
s 

for all /€ Lr(/) and p-almost all y in Q, then T is a Carleman operator (and hence 
given also by a jointly measurable kernel). 

4. Compactness and Korotkov operators 

It follows directly that if T: X-Lm(p) is a Carleman operator, then T(BX) 
is compact in every Lp(p) for ; indeed Theorem 6 guarantees that for a 
set E of large measure EoT: X—Lm(p) is compact. Thus, if T: X—Lao(p) is 
Carleman and lim j \Tx\pdp=0 uniformly in | |x| |sil , then T maps bounded 

sets into relatively compact subsets of Lp(p). Moreover, since 0 < r < / x » implies 
that lim^ J\f\rdp=0 uniformly for any bounded set of L'p(p), it follows that 

if T: X-*Lp(p) is a Carleman operator, then T maps bounded subsets of X into 
L r (/^-relatively compact sets. This line of reasoning holds up for a class of operators 
which strictly includes the Carleman operators. 
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D e f i n i t i o n 11. A bounded linear operator T: X—Lp(p) is called a Korot-
kov operator if there is a measurable real function <P on Q such that \(Tx) (• )l ^ 
^11*11 &(•) for all x in X/¿-almost everywhere (cf. KOROTKOV [10 , 11]). 

Recall that Theorem 3 shows that every Carleman operator is a Korotkov 
operator while the converse evidently requires that X* have the RNP. It is, therefore, 
not surprising that a representation for the Korotkov operators can be found which 
diifers only in its measurability requirements. 

L e m m a 12. Let X be a separable Banach space and let 0 ^ / ? ^ ° ° . If 
T: X—Lp(fi) is a Korotkov operator then there exists a weak*-measurable function 
g: Q — X* such that (Tx)(-) = (g(-), x) for all x^X almost everywhere. 

P r o o f . We refer to the sufficiency part of the proof of Theorem 3, where we 
have the bounded linear operators (EmoT)*: Lx{p)—X*. Replace the hypothesis 
that X* has R N P by the hypothesis that X is separable. Standard arguments ([4, 
VI. 8.6], [3, p. 79]) for representing such operators yield g„: Q—X* vanishing off 
En such that 

((EmoT)*f)(x) = f gm(.-)xfdfi 

for all x£X and / € £ i ( ). Piece g together as in that proof to get that 
is measurable for each JC and that Tx={g, x) for all x£X. 

It is possible to drop the separability assumption in Lemma 12. This, however, 
depends on much deeper arguments than those used — viz. the existence of liftings. 
With this tool it is possible to prove [7] that if X is an arbitrary Banach space and 
S: L1(ii)-~X* is any continuous linear operator, then there exists a bounded weak*-
measurable function h: Q—X* such that ((Sf)x)(-)= f h(-)xfdfi for all x£X 

n 
and fdLxip). This would generalize Lemma 12 to non separable spaces; since, how-
ever, we can manage without this deep theorem we shall not use it. 

D e f i n i t i o n 13. Let 0</?«*=. A bounded subset K of Lp(p) is called equi-
integrable if 

uniformly in fdK. A subset of L0(ji) is called equi-integrable if it is relatively compact. 
Recall that a subset M of a Banach space it is called weakly conditionally com-

pact if every sequence in M has a weak Cauchy subsequence. 

T h e o r e m 14. Let and X be an arbitrary Banach space. A Korotkov 
operator T: X—Lp{p) with the property that T(BX) is equi-integrable in Lp(jx) maps 
weakly conditionally compact sets into norm compact sets. 
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P r o o f . Let W be a weakly conditionally compact subset of X and let (j>„) 
be a sequence in W. It must be shown that (T(y„)) has an Lp(^-convergent sub-
sequence. Let y be the (separable) closed subspace of X determined by O v } ^ . 
The restriction of T to y, still denoted by T, is a Korotkov operator from y to Lp(p). 
According to Lemma 12 there is a function g: Q-+y* such that Ty=(g,y) for 
all y in Y. Since W is weakly conditionally compact, the sequence (;'„) has a weak 
Cauchy subsequence (yn^. Since g has B values in y*, it follows that (T(y„})= 
= ((g, yn)) is a pointwise convergent sequence in an equi-integrable set. Vitali's 
convergence theorem guarantees that ( T ( y n i s Lp(p) convergent. This completes 
the proof. 

C o r o l l a r y 15. Let and X be an arbitrary Banach space. A Korot-
kov operator from X into Lp(n) maps weakly conditionally compact subsets of X 
into relatively compact subsets of Lr(p). A Korotkov operator from X into L0(p) 
maps weakly conditionally compact subsets of X into relatively compact subsets of 
Loifi). 

P r o o f . For p > 0 , the Holder inequality can be used to show that Lp(ji)-
bounded sets are equi-integrable in LT(ji) so that Theorem 14 applies. 

For p=0, glance at the proof of Theorem 14 and remember that pointwise 
convergence implies convergence in measure for sequences. 

ROSENTHAL'S characterization [15] of Banach spaces containing copies of lx 

and Corollary 15 give the next corollary. 

C o r o l l a r y 16. Let Let X be a Banach space containing no copy 
of lx. A Korotkov operator from X to Lp that maps bounded sets into equi-integrable 
sets maps bounded sets into relatively compact sets. Consequently, if 0^f</JS«>, 
then a Korotkov operator from X to L„(p) maps bounded sets into Lr(n)-relatively 
compact sets; and a Korotkov operator from X into L0(¡.i) maps bounded sets into 
relatively compact sets. 

5. Extensions to Banach function spaces and other function spaces 

Let (£2,1, n) be any finite measure space and Y(p) be any linear topological 
space (not necessarily locally convex) of (equivalence classes of /i-measurable func-
tions on £2. For a Banach space X, say that a continuous linear operator T: X— Y(p) 
is a Carleman operator if there is a measurable g: Q-*X* such that 

Tx = <g, x) 
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for all x in X. If F(/z) has the property that <p in Y(p) implies (pxEC_ Y(pi) for all E 
in I , then a check of the proofs of the theorems of Section 1 shows that they remain 
true if Lp(p) is replaced by Y(n). 

Theorem 9 generalizes readily to a wide class of Banach function spaces. (For 
the basic definitions and results used here see LUXEMBURG & Z A A N E N [ 1 3 ] and 
LUXEMBURG [12].) We give a brief summary. Start with a measure space (Q, I , //), 
which for simplicity we assume is a finite measure space. Let M be the set of all 
measurable scalar functions and M+ the nonnegative members of M. The order 
on M is pointwise and functions differing only on a null set are identified. A func-
tion norm is a function Q: M +—[0, <=°] that is positive homogeneous, subadditive, 
takes the value zero if and only if the function is zero almost everywhere, and pre-
serves order (viz. w^v; V£M+=>Q(U)^Q(V)). The function norm is extended to 
all of M by e ( / ) = e ( | / | ) . We denote by Le the set of all f£M satisfying e ( / ) < = o . 
The result is an ordered normed vector space. We assume that Le(p) is norm com-
plete. Without loss of generality we also assume that Q is saturated i.e. there are no 
^-unfriendly sets (a set Ea Q such that e{/F)=<=^ for every FczE with /¿(F)>0). 
The associate norm is defined by 

e'(s) — SUP { | / f s e ( f ) ^ l}; 

and, of course, Holder's inequality | J f g d f i \ ^ g ( f ) Q ' ( g ) obtains. 
This last step gives a function norm whose corresponding LQ,{p) is a Banach 

space. Finally a function in Le is of absolutely continuous norm whenever £>(/„) j 0 
for every ( f „ ) ^ L e such that 0. We call the collection of all such 
functions L*. At this point the extension of Theorem 9 to the context of Banach 
function spaces goes right through. Let i j f , f , K) and (Q, Z, fi) be finite measure 
spaces. Let Y(ji) be as above; let be a function norm such that LQi is reflexive 
(this is equivalent to Le=L"e, Le,=Lx

g, and Q(f„)\e(f) whenever Q=fn\f). A con-
tinuous linear operator T: Lg^{).) — Y{p) is a Carleman operator if and only if 
there exists a XX/¿-measurable function k : R such that 
for /¿-almost all y£(2 with 

(U')(y) = ff(x)k(x,y)dX(x) g.e. 

for all f t L<X). 
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