On center-valued states of von Neumann algebras

DÉNES PETZ

Center-valued states are projections of norm one onto the centre of the algebra. This concept is the natural extension of the notion of the (scalar-valued) state. The space of normal states is sequentially complete and the same can be said about the space of normal center-valued states with respect to the pointwise weak convergence.

We remark that center-valued states are central-linear maps. Central-linear maps (or module homomorphisms) onto the centre were studied extensively also in [4] and in [8].

On a von Neumann algebra \mathscr{A} each normal state φ has the representation $\varphi(A) = \sum_{i=1}^{\infty} \langle Ax_i, x_i \rangle$ where $\sum_{i=1}^{\infty} ||x_i||^2 = 1$. In section 2 we prove a similar formula for center-valued states: if $\int \bigoplus \mathscr{A}(z) d\mu(z)$ is the central decomposition of \mathscr{A} in the Hilbert space \mathfrak{H} , then any central-valued state τ has the form

$$\tau(A) = \int \bigoplus \sum_{i=1}^{\infty} \langle A(z) x_i(z), x_i(z) \rangle I(z) d\mu(z) \quad \left(A = \int \bigoplus A(z) d\mu(z) \right)$$

where $x_i \in \mathfrak{H}$ ($i \in \mathbb{N}$).

In the last section we use the above representation theorem to obtain an alternative proof of a result of H. HALPERN [5] and S. STRĂTILĂ—L. ZSIDÓ [8] concerning central ranges for elements of von Neumann algebras (here on separable spaces).

0. Preliminaries. We only consider separable Hilbert spaces \mathfrak{H} . \mathscr{A} will always denote a von Neumann algebra on \mathfrak{H} , and \mathscr{A}_1 its closed unit ball.

For the reduction theory of von Neumann algebras we refer to [3] and [7]. In this paper Z always means a separable metric space and μ a positive Borel measure on Z. If

$$\mathfrak{H} = \int\limits_{\mathbf{Z}} \oplus \mathfrak{H}(\mathbf{z}) \, d\mu(\mathbf{z})$$

Received January 1, 1980; revised February 3, 1981.

(cf. [3], chap. II, § 1, def. 3) then $\{x_i\}_{i=1}^{\infty}$ will be a dense sequence in \mathfrak{H} , for which we may assume that, for all $z \in \mathbb{Z}$, $\{x_i(z)\}_{i=1}^{\infty}$ is dense in $\mathfrak{H}(z)$ and the map $z \mapsto ||x_i(z)||$ is bounded.

If $\mathcal{B} \subset \mathcal{A}$ is bounded and $B \in \mathcal{B}$ then

$$V(n, m) = \left\{ T \in \mathscr{B} \colon |\langle (T-B)x_i, x_j \rangle| \le \frac{1}{m}, \ i, j \le n \right\} \quad (n, m \in \mathbb{N})$$

is a neighbourhood base of B in \mathcal{B} , endowed with the weak operator topology Consequently, \mathscr{A}_1 endowed with the weak operator topology can be metrized with the metric ϱ defined by

$$\varrho(A, B) = \sum_{i, j \in \mathbf{N}} |\langle (A - B) x_i, x_j \rangle| \cdot 2^{-i-j}.$$

1. Center-valued states. In this section we introduce the notion of center-valued state and establish some properties. (See also [4] and [5].)

1.1. Definition. Let \mathscr{A} be a von Neumann algebra with center \mathscr{C} . By a centervalued state we mean a linear mapping τ from \mathscr{A} into \mathscr{C} such that

- (i) $\tau(C \cdot A) = C\tau(A)$ $(A \in \mathcal{A}, C \in \mathcal{C})$
- (ii) $\tau(I) = I$
- (iii) if $A \ge 0$ then $\tau(A) \ge 0$ $(A \in \mathcal{A})$.

1.2. Proposition. Let \mathscr{A} be a von Neumann algebra with center \mathscr{C} . The linear mapping $\tau: \mathscr{A} \rightarrow \mathscr{C}$ is a center-valued state if and only if the following conditions are fulfilled:

(a) $\|\tau\| = 1$, (b) $\tau(C) = C$ ($C \in \mathscr{C}$).

Proof. Let τ be a center-valued state. If $A \ge 0$ then $0 \le \tau(A) \le \tau(||A|| \cdot I) = = ||A|| \cdot I$ so $||\tau(A)|| \le ||A||$. For an arbitrary $A \in \mathscr{A}$ the Schwarz-inequality gives that $||\tau(A)||^2 = ||\tau(A)^* \tau(A)|| = ||\tau(A^*) \tau(A)|| \le ||\tau(A^*A)|| \le ||A^*A|| = ||A||^2$. Hence $||\tau|| \le 1$, and (a) and (b) follow.

The converse is a special case of a well-known result of TOMIYAMA [10] on projections of norm one.

1.3. Definition. If \mathscr{A} is a von Neumann algebra then the set of all centervalued states on \mathscr{A} will be denoted by $\Sigma(\mathscr{A})$ and by Σ if \mathscr{A} is fixed. We endow Σ with the topology of pointwise weak convergence.

1.4. Proposition. $\Sigma(\mathcal{A})$ is compact.

Proof. Let $X = \Pi \{X_A : A \in \mathcal{A}\}$ where X_A is $||A|| \cdot \mathcal{C}_1$ with the compact weak operator topology. So X is compact. Define $e: \Sigma \to X$ by the formula $pr_A e(\tau) = \tau(A)$.

e is a topological embedding and we want to show that the range of e is closed. Set

$$H_1(A, B) = \{\tau \in X: \ pr_{A+B}\tau = pr_A\tau + pr_B\tau\},\$$
$$H_2(A, \lambda) = \{\tau \in X: \ pr_{\lambda A}\tau = \lambda pr_A\tau\},\$$
$$H_3(C) = \{\tau \in X: \ pr_C\tau = C\}.$$

These sets are closed for any $A, B \in \mathcal{A}, C \in \mathcal{C}$ and $\lambda \in \mathbb{C}$. Since $||pr_A \tau|| \leq ||A||$ for any $A \in \mathcal{A}$ and $\tau \in X$, according to point 1.2,

$$e(\Sigma) = \bigcap_{A,B \in \mathscr{A}} H_1(A,B) \cap \bigcap_{\substack{A \in \mathscr{A} \\ \lambda \in \mathbb{C}}} H_2(A,\lambda) \cap \bigcap_{C \in \mathscr{C}} H_3(C)$$

that is the range of e is closed.

1.5. Proposition. For a center-valued state τ on the von Neumann algebra \mathcal{A} the following conditions are equivalent:

(i) τ is σ -weakly continuous,

(ii) τ is weakly continuous on the unit ball,

- (iii) τ is strongly continuous on the unit ball,
- (iv) $\tau^{-1}(0)$ is σ -weakly closed,

(v) τ is normal.

Proof. We obtain the assertion by applying a theorem of TOMIYAMA [10] for the case of projections of norm onto the center.

1.6. Example. Assume that the von Neumann algebra \mathscr{A} in the Hilbert space \mathfrak{H} is expressed as a direct integral of factors, $\mathscr{A} = \int_{Z} \mathfrak{G} \mathscr{A}(z) d\mu(z)$, and let $\mathfrak{H} = \int_{Z} \mathfrak{G} \mathfrak{H}(z) d\mu(z)$ be the corresponding decomposition of \mathfrak{H} . If $x \in \mathfrak{H}$ such that ||x(z)|| = 1 for μ -a.e. on Z, then

$$\tau \colon A \mapsto \int_{\mathbf{Z}} \oplus \langle A(z) x(z), x(z) \rangle I(z) \, d\mu(z) \quad \left(A = \int_{\mathbf{Z}} \oplus A(z) \, d\mu(z) \right)$$

is a normal center-valued state. (Here I(z) stands for the identity operator on the space $\mathfrak{H}(z)$.)

The center of \mathscr{A} consists of the diagonal operators and the verifications of (a) and (b) in 1.2 is easy. By Prop. 1.5 it remains only to prove the strong operator continuity of τ on the unit ball of \mathscr{A} .

Assume that $A_n \in \mathscr{A}$, $||A_n|| \leq 1$ and $A_n \xrightarrow{s_0} 0$. In order to prove that $\tau(A_n) \xrightarrow{s_0} 0$ it suffices to show that $||\tau(A_n)u|| \to 0$ for every $u \in \mathfrak{H}$ such that ||u(z)|| is bounded on Z (cf. [3], chap. II, § 1, prop. 7). But, setting $K = \sup \{||u(z)|| : z \in Z\}$ we have

by the Schwarz inequality

$$\|\tau(A_n)u\|^2 = \langle \tau(A_n)^* \tau(A_n)u, u \rangle \leq \langle \tau(A_n^*A_n)u, u \rangle =$$

= $\int \langle A_n(z)^*A_n(z), x(z), x(z) \rangle \langle u(z), u(z) \rangle d\mu(z) \leq$
 $\leq K^2 \int \langle A_n(z)^*A_n(z)x(z), x(z) \rangle d\mu(z) = K^2 \|A_n x\|^2 \to 0$

1.7. Definition. $\Sigma^{n}(\mathscr{A})$ denotes the set of all normal center-valued states on the von Neumann algebra \mathscr{A} endowed with the topology of pointwise convergence in the weak operator topology.

1.8. Proposition. $\Sigma^{n}(\mathcal{A})$ is sequentially complete.

Proof. It is sufficient to see that Σ^n is sequentially closed in Σ . Suppose that $\tau_n \rightarrow \tau$ and $\tau_n \in \Sigma^n$, $\tau \in \Sigma$. Let f be a normal linear functional on \mathscr{C} . Then $f \circ \tau_n$ is normal linear functional on \mathscr{A} . $f \circ \tau_n(A) \rightarrow f \circ \tau(A)$ for every $A \in \mathscr{A}$ and so $f \circ \tau$ is normal (see [1] Cor. III.3). Since $f \circ \tau$ is normal for every normal f on \mathscr{C} , τ is also normal.

2. Decomposition of center-valued states. In this section we show that if the von Neumann algebra \mathcal{A} is expressed as a direct integral of von Neumann algebras then any normal center-valued state of \mathcal{A} is decomposable concerning the integral.

2.1. Lemma. Assume that $\mathscr{A} = \int_{Z} \bigoplus \mathscr{A}(z) d\mu(z)$. Then there exists a countable family \mathcal{T} in \mathscr{A}_{1} such that

(i) \mathcal{T} is strongly dense in \mathcal{A}_1 ,

(ii) $\mathcal{T}(z) = \{T(z): T \in \mathcal{T}\}\$ is strongly dense in $\mathcal{A}(z)_1$, μ -a.e. on Z. (Here $T = \int_{\mathcal{T}} \oplus T(z) d\mu(z)$.)

Proof. By the definition of the direct integral of von Neumann algebras there is a sequence $A_n = \int_Z \oplus A_n(z) d\mu(z)$ $(n \in \mathbb{N})$ such that $\mathscr{A}(z)$ is the von Neumann algebra generated by $\{A_n(z): n \in \mathbb{N}\}$ μ -a.e. on Z and we may assume that \mathscr{A} is generated by $\{A_n: n \in \mathbb{N}\}$. Let \mathscr{K} be the *-algebra over the complex rationals generated by $\{A_n: n \in \mathbb{N}\}$. Take

$$\mathscr{T}=\Big\{\int_{Z} \oplus T(z) d\mu(z) \colon T=\int_{Z} \oplus T(z) d\mu(z) \in \mathscr{K}\Big\}, \quad \widetilde{A}=\begin{cases}A & \text{if } \|A\| \leq 1, \\ A \cdot \|A\|^{-1} & \text{if } \|A\| > 1.\end{cases}$$

 \mathcal{T} is countable and by Kaplansky's density theorem it satisfies (i)—(ii).

2.2. Theorem. Let $\mathscr{A} = \int_{z} \bigoplus \mathscr{A}(z) d\mu(z)$ and τ be a normal center-valued state on \mathscr{A} . Then for almost every $z \in Z$ there is a normal center-valued state τ_{z} on $\mathscr{A}(z)$ such that for every $A = \int_{z} \bigoplus A(z) d\mu(z) \in \mathscr{A}$ the operator field $z \mapsto \tau_{z} A(z)$ is μ -measurable and

$$\tau(A) = \int_{Z} \oplus \tau_z A(z) d\mu(z).$$

Proof. Using the lemma we have two countable families \mathscr{S} and \mathscr{T} such that (i) $\mathscr{T}(z) \subset \mathscr{A}(z)_1$ and $\zeta(z) \subset \mathscr{C}(z_1)$ μ -a.e. on Z,

(ii) $\mathscr{T}(\mathscr{T}(z))$ is strongly dense in \mathscr{A}_1 (in $\mathscr{A}(z)_1 \mu$ -a.e. on Z), (iii) $\mathscr{S}(\mathscr{S}(z))$ is strongly dense in \mathscr{C}_1 (in $\mathscr{C}(z)_1 \mu$ -a.e. on Z). Let

$$\mathscr{R} = \left\{ \sum_{i=1}^{k} \alpha_i S_i T_i: k \in \mathbb{N}, S_i \in \mathscr{S}, T_i \in \zeta, \alpha_i \text{ is complex rational } (i \ge k) \right\}.$$

If τ is a normal center-valued state then for $z \in Z$ we define $\hat{\tau}_z$ by the formula

$$\hat{\tau}_{z}\left(\sum_{i=1}^{k}\alpha_{i}S_{i}(z)T_{i}(z)\right)=\sum_{i=1}^{k}\alpha_{i}S_{i}z)\tau(T_{i})(z)$$

where $\sum_{i=1}^{k} \alpha_i S_i T_i \in \mathcal{R}$. We will show that $\hat{\tau}_z$ is well-defined μ -a.e. on Z.

Take
$$R_1, R_2 \in \mathscr{R} \left(R_1 = \sum_{i=1}^k \alpha_i S_i T_i, R_2 = \sum_{j=1}^l \beta_j S_j T_j \right)$$

and put

$$H(R_1, R_2) = \left\{ z \in Z \colon R_1(z) = R_2(z), \sum_{i=1}^k \alpha_i S_i(z) \tau(T_i)(z) \neq \sum_{j=1}^l \beta_j S_j(z) \tau(T_j)(z) \right\}.$$

This set is measurable and its characteristic function χ belongs to \mathscr{C} . Hence

$$\chi\tau(R_1)=\tau(\chi R_1)=\tau(\chi R_2)=\chi\tau(R_2).$$

So $\tau(R_1)(z) = \tau(R_2)(z)$ for μ -a.e. $z \in H(R_1, R_2)$. Since $\sum_{i=1}^k \alpha_i S_i(z) \tau(T_i)(z) = \tau(R_1)(z)$ and $\sum_{j=1}^l \beta_j S_j(z) \tau(T_j)(z) = \tau(R_2)(z)$ μ -a.e., we have obtained that $\mu(H(R_1, R_2)) = 0$ Since \mathscr{R} is countable, if follows

$$\mu\left(\bigcup_{R_1,R_2\in\mathscr{R}}H(R_1,R_2)\right)=0.$$

Let

 $S = \{z \in \mathbb{Z}: \hat{\tau}_z | \mathscr{R}(z)_1 \text{ is not weak operator continuous at } 0\},\$

where $\Re(z)_1 = \{R(z): R \in \mathcal{R}, ||R(z)|| \le 1\}$. We claim that $\mu(S)=0$. For $A, B \in \mathcal{A}(z)$ define

$$\varrho_z(A, B) = \sum_{i,j \in \mathbb{N}} |\langle (A-B) x_j(z), x_i(z) \rangle| 2^{-i-j}.$$

So ρ_z is a measurable field of metrics metrizing the unit ball of $\mathscr{A}(z)$ endowed with the weak operator topology (see 0). The set

 $H(k, l, \varepsilon, \delta) = \{z \in \mathbb{Z}: \text{ there is } R \in \mathcal{R} \text{ such that } ||R(z)|| < 1, \}$

$$\varrho_z(R(z), 0) < \delta$$
 and $|\langle \hat{\tau}_z(R(z)) x_l(z), x_k(z) \rangle| > \varepsilon \}$

is measurable and

$$S = \bigcup_{l=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{\infty} \bigcap_{j=0}^{\infty} H(k, l, \varepsilon_i, \delta_j)$$

provided that $\varepsilon_i \setminus 0$ and $\delta_i \setminus 0$. Hence S is measurable.

Suppose that $\mu(S) > 0$. Then we have $K \subset S$, $\varepsilon > 0$, and $k, l \in \mathbb{N}$ such that

$$(iv) \quad \mu(K) > 0$$

and for $z \in K$ and $j \in \mathbb{N}$ there is an $R_z^j \in \mathcal{R}$ with the properties

(v) $||R_z^j(z)|| < 1$,

(vi)
$$\varrho_z(R_z^j(z),0) < \delta_j$$
,

(vii)
$$|\langle \hat{\tau}_z(R_z^j(z)) x_l(z), x_k(z) \rangle| > \varepsilon.$$

By Lusin's lemma we may assume that K is compact and the functions

(viii)
$$z \mapsto ||R(z)||,$$

(ix) $z \mapsto \varrho_z(R(z), 0),$
(x) $z \mapsto \langle (\tau R)(z) x_l(z), x_k(z) \rangle$

are continuous on K for any $R \in \mathscr{R}$. In this case the inequalities (v)—(vii) are fulfilled on an open set in K. For any $j \in \mathbb{N}$ a compactness argument gives a measurable partition $\{H_i^j: i \leq p(j)\}$ of K and operators $R_i^j \in \mathscr{R}$ $(i \leq p(j))$ such that for $z \in H_i^j R_i^j(z)$ satisfies (v)—(vii). Let χ_i^j be the characteristic function of H_i^j $(j \in \mathbb{N}, i \leq p(j))$ and define

$$R^{j}(z) = \sum_{i=1}^{P(j)} \chi_{i}^{j}(z) R_{i}^{j}(z) e_{i}^{j}(z) \quad \text{where} \quad e_{i}^{j}(z) = \overline{\operatorname{Arg}\left\langle \hat{\tau}_{z} R_{i}^{j}(z) x_{l}(z), x_{k}(z) \right\rangle},$$

and for $0 \neq \lambda \in \mathbb{C}$ set $\operatorname{Arg} \lambda = \lambda \cdot |\lambda|^{-1}$.

Taking $R^{j} = \int \oplus R^{j}(z) d\mu(z)$ we have $R^{j} \in \mathscr{A}_{1}$ and

$$\varrho(R^{j},0) \leq \int_{Z} \varrho_{z}(R^{j}(z),0) d\mu(z) = \sum_{i=1}^{P(j)} \int_{H^{j}_{i}} \varrho_{z}(R^{j}_{i}(z),0) d\mu(z) \leq \mu(K)\delta_{j};$$

moreover,

$$\langle \tau(R^j) x_l, x_k \rangle = \int_{Z} \langle \tau R^j(z) x_l(z), x_k(z) \rangle d\mu(z) =$$

$$= \sum_{i=1}^{P(j)} \int_{H_i^j} |\langle \hat{\tau}_z R_i^j(z) x_l(z), x_k(z) \rangle| d\mu(z) \ge \mu(K) \varepsilon.$$

This contradicts the continuity of τ . Hence $\mu(S)=0$ so $\hat{\tau}_z|\mathscr{R}(z)_1$ is weak operator continuous μ -a.e. on Z. It is then also uniformly continuous with respect to the uniformity defined by the metric ϱ_z .

Now extend $\hat{\tau}_z|\mathscr{R}(z)_1$ by uniform continuity with respect to the compact metrizable weak operator topology to $\mathscr{A}(z)_1$ and then by the homogeneity to $\mathscr{A}(z)$. So we get a linear τ_z such that $\|\tau_z\| \leq 1$ and $\tau_z|\mathscr{C}(z)$ is the identity. Hence τ_z is a center-valued state μ -a.e. on Z.

We want to check that $\tau(A) = \int_{Z} \oplus \tau_z A(z) d\mu$ if $A = \int_{Z} \oplus A(z) d\mu(z)$. We may assume that $||A|| \leq 1$. In this case there is a sequence $T_n \in \mathcal{T}$ $(n \in \mathbb{N})$ such that $T_n \xrightarrow{s} A$. Then for a subsequence T_{n_k} we have $T_{n_k}(z) \xrightarrow{s} A(z)$ for μ -a.e. $z \in Z$ (cf. [3] chap. II. § 2. prop. 4). According to the weak continuity of τ_z now ${}_{z}T_{n_k}(z) \xrightarrow{w} \tau_z A(z)$. Consequently $\tau(T_{n_k}) = \int_{Z} \oplus \tau_z T_{n_k}(z) d\mu(z) \xrightarrow{w} \int_{Z} \oplus \tau_z A(z) d\mu(z)$, On the other hand $\tau(T_{n_k}) \xrightarrow{w} \tau_z(A)$ so $\tau(A) = \int_{Z} \oplus \tau_z A(z) d\mu(z)$.

2.3. Theorem. Let \mathscr{A} be a von Neumann algebra acting on the Hilbert space $\mathfrak{H} = \int \oplus \mathfrak{H}(z) d\mu(z)$ and suppose that \mathscr{A} is decomposable as a direct integral of factors $\int \oplus \mathscr{A}(z) d\mu(z)$. Then $\tau: \mathscr{A} \to \mathscr{C}$ is a normal center-valued state if and only if it has the form

$$\tau(A) = \int \oplus \sum_{i=1}^{\infty} \langle A(z)u_i(z), u_i(z) \rangle I(z) d\mu(z) \quad \left(A = \int \oplus A(z) d\mu(z)\right)$$

where $u_i \in \mathfrak{H}$ $(i \in \mathbb{N})$ and $\sum_{i=1}^{\infty} ||u_i(z)||^2 = 1$ μ -a.e. on Z.

Proof. If $\tau: \mathscr{A} \to \mathscr{C}$ has the form described above then τ is a center-valued state since \mathscr{C} consists of the diagonal operators and it follows from 1.6 that τ is normal.

Now assume that τ is a normal center-valued state. By Theorem 2.2, $\tau = \int_{z} \oplus \tau_{z} d\mu(z)$. Let $H_{n} = \{z \in \mathbb{Z}: \dim \mathfrak{H}(z) = n\}$ $(n = 1, 2, ..., \infty)$ and put $\tau_{n} = \int_{H_{n}} \oplus \tau_{z} d\mu(z)$. So $\tau = \oplus \tau_{n}$ and it suffices to prove the theorem for τ_{n} $(n = 1, 2, ..., \infty)$. Hence we may identify each $\mathfrak{H}(z)$ with a fixed Hilbert space \mathfrak{H}_{0} .

Let Y be the unit ball of $\mathfrak{H}_0 \oplus \mathfrak{H}_0 \oplus \ldots$ endowed with the weak topology. So Y is a compact metrizable space.

Let $\mathcal{T} \subset \mathcal{A}$ be a countable family with the properties (i)—(ii) in 2.1. Define

$$H(T) = \left\{ (z, y_1, y_2, \ldots) \in \mathbb{Z} \times Y \colon \tau_z T(z) = \sum_{i=0}^{\infty} \langle T(z) y_i, y_i \rangle I(z) \right\}$$

H(T) is a Borel set in $Z \times Y$ and so is $H = \bigcap \{H(T): T \in \mathscr{F}\}$.

15

We will use the principle of measurable choice (see [7] p. 35). *H* is analytic and for $z \in \mathbb{Z}$ there is a normal state φ_z on $\mathscr{A}(z)$ such that $\tau_z = \varphi_z \cdot I(z)$. Hence,

$$\tau_z(S) = \sum_{i=1}^{\infty} \langle Su_z^i, u_z^i \rangle I(z)$$

for every $S \in \mathscr{A}(z)$ and for some $u_z^i \in \mathfrak{H}_0$ $(i \in \mathbb{N})$. Consequently $(z, u_z^1, u_z^2, \ldots) \in H$. By the principle of measurable choice there exists a μ -measurable function $\Phi: Z \to Y$ such that $\Phi(z) \in H$ μ -a.e. on Z. If $\Phi(z) = (u_1(z), u_2(z), \ldots)$ then $u_i \in \mathfrak{H}$ $(i \in \mathbb{N})$. We have obtained that

$$\tau_z T(z) = \sum_{i=1}^{\infty} \langle T(z) u_i(z), u_i(z) \rangle I(z)$$

for any $T \in \mathcal{T}$, μ -a.e. on Z. Since \mathcal{T} is dense in \mathscr{A}_1 and τ is continuous we have

$$\tau(A) = \int_{Z} \bigoplus \sum_{i=1}^{\infty} \langle A(z)u_{i}(z), u_{i}(z) \rangle I(z) d\mu(z)$$

for every $A \in \mathscr{A}$. Moreover, $\sum_{i=1}^{\infty} ||u_i(z)||^2 = 1$ μ -a.e. on Z because $\tau(I) = I$. This completes the proof.

3. An application. In this section we use 2.2 in order to give an alternative proof for an extension, given in [8] and [5], of a result of J. B. Conway.

3.1. We introduce some notations. If A belongs to the algebra \mathscr{A} then let $C_0(A)$ be the convex hull of the set $\{UAU^*: U \text{ is a unitary in } \mathscr{A}\}$. Moreover, let $C(A) = \overline{C_0(A)}^w \cap \mathscr{C}$ and $\overline{W}(A)$ be the closed numerical range of A. The following proposition was proved by J. B. CONWAY [2].

3.2. Proposition. If \mathscr{A} is a type III factor and $A \in \mathscr{A}$ then $C(A) = \overline{W}(A) = = \Sigma(A)$.

3.3. Proposition. If $\mathscr{A} = \int_{z} \bigoplus \mathscr{A}(z) d\mu(z)$ and $A = \int_{z} \bigoplus A(z) d\mu(z)$ then $C(A) = \int \bigoplus C(A(z)) d\mu(z).$

The latter assertion was proved by S. KOMLÓSI [5] and it means that $B = \int \bigoplus B(z) d\mu(z) \in C(A)$ if and only if $B(z) \in C(A(z))$ μ -a.e. on Z.

3.4. Lemma. Let $\mathscr{A} = \int_{Z} \oplus \mathscr{A}(z)d\mu(z)$ and $A = \int_{Z} \oplus A(z)d\mu(z) \in \mathscr{A}$. Assume that U is a weak operator neighbourhood of the diagonal operator $B = \int_{Z} \oplus f(z)I(z)d\mu(z)$

and $f(z) \in \overline{W}(A(z))$ for $z \in \mathbb{Z}$. Then there is a $u \in \mathfrak{H}$ such that

(i)
$$\int_{z} \oplus \langle A(z)u(z), u(z) \rangle d\mu(z) \in U,$$

(ii) $||u(z)|| = 1 \quad \mu$ -a.e. on Z.

Proof. Take a sequence $\{e_n\} \subset \mathfrak{H}$ such that $||e_n(z)|| = 1$ and $\{e_n(z)\}$ is dense in $\{s \in \mathfrak{H}(z); ||s|| = 1\}$ μ -a.e. on Z. Suppose that U is determined by $\varepsilon > 0$ and $y_i \in \mathfrak{H}$ that is

$$U = \{T \in \mathscr{A} \colon |\langle (T-B)y_i \colon y_j \rangle| < \varepsilon \ (i,j \leq m) \}.$$

Choose a compact $K \subset Z$ with the properties

- (a) $z \mapsto \langle A(z)e_i(z), e_j(z) \rangle$ is continuous on K $(i, j \in \mathbb{N})$, (b) $\mu(Z \setminus K) < \delta$,
 - (c) $\int_{Z \setminus K} |\langle y_i(z), y_j(z) \rangle| d\mu(z) < \delta$ $(i, j \leq m),$
- (d) f is continuous on K.

Very set of grandship

15*

(δ is arbitrary but fixed). We can find $x_z \in \{e_n\}$ and an open G_z containing z such that the definition of the second s

$$|f(v) - \langle A(v) x_z(v), x_z(v) \rangle| < \delta \quad (v \in G_z)$$

for $z \in K$. Using compactness one has a measurable partition $\{H_i: i \leq k\}$ of K such that $H_i \subset G_{z_i}$ for some $z_i \in K$ $(i \leq k)$. Let χ_i (χ) be the characteristic function of H_i $(Z \setminus K)$ and define u by

$$u(z) = \chi(z)e_1(z) + \sum_{i=1}^k \chi_i(z)x_{z_i}(z) \quad (z \in \mathbb{Z}).$$

||u(z)|| = 1 is fulfilled evidently for μ -a.e. $z \in Z$. An easy estimation gives

$$\left|\left\langle \left(\int\limits_{Z} \oplus \left\langle A(z)u(z), u(z) \right\rangle I(z) d\mu(z) - B\right) y_{i}, y_{j} \right\rangle \right| \leq \delta(\|A\| + \|B\| + \|y_{i}\| \cdot \|y_{j}\|)$$

So if δ is small enough then (i) is satisfied.

3.5. Theorem. If \mathscr{A} is a type III von Neumann algebra and $A \in \mathscr{A}$ then

$$C(A)=\overline{\Sigma^n(A)}^w.$$

Proof. We express \mathscr{A} as a direct integral of type III factors: $\int_{z} \oplus \mathscr{A}(z) d\mu(z)$. If $B = \int_{z} \oplus B(z) d\mu(z) \in C(A)$ then $B(z) \in C(A(z))$ μ -a.e. on Z by 3.3. According to 3.2 $B(z) \in \overline{W}(A(z))$ and we can use 3.4. For every weak neighbourhood U of B there is a $u \in \mathfrak{H}$ such that

$$\int_{z} \oplus A\langle (z)u(z), u(z)\rangle I(z) d\mu(z) \in U.$$

However, $T \mapsto \int_{Z} \bigoplus \langle T(z)u(z), u(z) \rangle I(z) d\mu(z)$ defines a normal center-valued state (cf. 1.6) hence $C(A) \subset \overline{\Sigma^{n}(A)^{w}}$.

Conversely, for any $\tau \in \Sigma^n$, $\tau = \int_Z \oplus \tau_z d\mu(z)$ follows from 2.2 and $\tau_z(A(z)) \in C(A(z))$ from 3.2. By 3.3 we have $\int_Z \oplus \tau_z(A(z)) d\mu(z) \in \int_Z \oplus C(A(z)) d\mu(z) = C(A)$. So $\tau(A) \in C(A)$ and we have obtained that $\Sigma^n(A) \subset C(A)$. Since C(A) is closed, it follows $\overline{\Sigma^n(A)}^w \subset C(A)$.

Acknowledgement. The author wishes to thank Professors J. Szűcs and L. Zsidó for helpful advice and comments.

References

- C. A. AKEMANN, The dual space of an operator algebra, Trans. Amer. Math. Soc., 126 (1967), 286-302.
- [2] J. B. CONWAY, The numerical range and a certain convex set in an infinite factor, J. Funct. Analysis, 5 (1970), 428-435.
- [3] J. DIXMIER, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars (Paris, 1957).
- [4] H. HALPERN, Module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc., 140 (1969), 183-194.
- [5] H. HALPERN, Essential central spectrum and range for elements of a von Neumann algebra, Pacific J. Math., 43 (1972), 349-380.
- [6] S. KOMLÓSI, Theorems and certain convex sets in von Neumann algebras, Thesis, Univ. Szeged, 1977.
- [7] J. T. SCHWARTZ, W*-algebras, Gordon and Breach, 1967.
- [8] Ş. STRĂTILĂ and L. ZSIDÓ, An algebraic reduction theory for W*-algebras, Rev. Roum. Math. Pures Appl., 18 (1973), 407-460.
- [9] M. TAKESAKI, On the conjugate space of an operator algebra, *Tôhoku Math. J.*, 10 (1958), 194-203.
- [10] J. TOMIYAMA, On the projection of norm one in a W*-algebra. I, II, III, Proc. Jap. Acad., 33 (1957), 608—612, Tôhoku Math. J., 10 (1958), 204—209 and 11 (1959), 125—129.

MATHEMATICAL INSTITUTE HUNGARIAN ACADEMY OF SCIENCES

BOLYAI INSTITUTE UNIVERSITY SZEGED

228