On approximation by unitary operators

JOSÉ BARRÍA and RAMÓN BRUZUAL

Introduction. Let \mathfrak{H} be a separable infinite dimensional complex Hilbert space. Let $\mathscr{L}(\mathfrak{H})$ be the algebra of all bounded linear operators on \mathfrak{H} . In [3] D. D. ROGERS has determined the distance from an arbitrary operator in $\mathscr{L}(\mathfrak{H})$ to the set of unitary operators in $\mathscr{L}(\mathfrak{H})$. He also has given sufficient conditions for the existence of unitary approximants.

In this paper we prove the density of the operators with unitary approximants; the existence of unitary approximants for *n*-normal operators is established. The proofs of these results rely on the paper [3]. For easy reference we state below the results that are needed. Let $T \in \mathscr{L}(\mathfrak{H})$. Write $|T| = (T^*T)^{1/2}$, and let $\sigma_e(T)$ be the essential spectrum of T. Let $m_e(T)$ denote the infimum of the set $\sigma_e(|T|)$. The index of T is defined by ind T=dim ker T-dim ker T^* with the convention that ind T=0 if ker T and ker T^* have infinite dimension. A unitary approximant of T is a unitary operator U_0 such that $||T-U_0|| = \inf \{||T-U||: U$ unitary in $\mathscr{L}(\mathfrak{H})\}$.

Theorem A [3]. Let $T \in \mathscr{L}(\mathfrak{H})$.

1

(i) If T=U|T| with U unitary, then U is a unitary approximant of T.

(ii) If ind T < 0 and $m_e(T)$ is an eigenvalue of |T| of infinite multiplicity, then T has a unitary approximant.

1. Density. In [3] it is proved that an operator $T \in \mathscr{L}(\mathfrak{H})$ has no unitary approximant if T has negative index and its distance to the set of unitary operators is equal to one. However, we have the following theorem.

Theorem 1. The set of operators in $\mathcal{L}(\mathfrak{H})$ with unitary approximants is dense in $\mathcal{L}(\mathfrak{H})$.

Proof. Let \mathscr{A} be the set of operators with unitary approximants. Let \mathscr{A} be the closure of \mathscr{A} in the norm topology. Let $T \in \mathscr{L}(\mathfrak{H})$. Clearly $T \in \mathscr{A}$ if and only if $T^* \in \mathscr{A}$. If ind T=0, then Theorem A(i) implies that $T \in \mathscr{A}$. Therefore,

Received July 20, 1980. The second author was partially supported by F. G. M. de Ayacucho.

it is enough to show that $T \in \mathscr{A}$ whenever T has negative index. If ind T < 0, then T = S|T| where S is an isometry. Let $\varepsilon > 0$. Let $\lambda = m_e(|T|)$. Since $\lambda \in \sigma_e(|T|)$, from [1, Theorem 2.18] there exists a closed infinite dimensional subspace \mathfrak{H}_0 such that |T| has the representation:

$$\begin{bmatrix} \lambda + K_1 & X \\ K_2 & Y \end{bmatrix}$$

with respect to the decomposition $\mathfrak{H} = \mathfrak{H}_0 \oplus \mathfrak{H}_0^{\perp}$, where K_i is a compact operator and $||K_i|| \leq \varepsilon$, for i=1, 2. Since |T| is a positive operator we have $X = K_2^*$ and $Y \geq 0$. Hence |T| = P + K where $P = \lambda \oplus Y \geq 0$, K is a compact operator and $||K|| \leq 2\varepsilon$.

Let $T_0 = SP$. We now show that T_0 has a unitary approximant. Since $S(\ker T_0) \subseteq \ker T_0^*$, then ind $T_0 \leq 0$. If ind $T_0 = 0$, then $T_0 \in \mathscr{A}$ from Theorem A(i). Now we assume that ind $T_0 < 0$. Since $T - T_0 = SK$ is compact, it follows that $m_e(T) = m_e(T_0) = \lambda$. Furthermore, $|T_0| = P$ implies that $m_e(T_0)$ is an eigenvalue of $|T_0|$ of infinite multiplicity. Then from Theorem A(ii) we have $T_0 \in \mathscr{A}$. Since $||T - T_0|| = ||K|| \leq 2\varepsilon$, the proof that $T \in \mathscr{A}$ is complete. \Box

2. *n*-normal operators. An $n \times n$ operator matrix $T = (T_{ij})_{i,j=1}^n$ acting on the direct sum of *n* copies of \mathfrak{H} is *n*-normal if the set $\{T_{ij}\}_{i,j=1}^n$ consists of mutually commuting normal operators on \mathfrak{H} . It is well known (see [2]) that an *n*-normal operator matrix is unitarily equivalent to an *n*-normal operator matrix in upper triangular form.

Lemma 1. Let $T = (T_{ij})_{i,j=1}^n$ be an n-normal operator matrix in upper triangular form (i.e. $T_{ij} = 0$ for i > j). If ker $T_{11} = \{0\}$, then

dim ker $T = \dim \ker T_0$, and dim ker $T^* = \dim \ker T^*$

where T_0 is the (n-1)-normal operator matrix obtained from T by d_{ϵ} leting the first row and the first column.

Proof. Let $S = (-T_{11}) \oplus I \oplus ... \oplus I$ acting on the direct sum of *n* copies of \mathfrak{H} . Let $\mathfrak{M} = \{\langle T_{12}x_2 + ... + T_{1n}x_n, x_2, ..., x_n \rangle : \langle x_2, ..., x_n \rangle \in \ker T_0\}$. Clearly \mathfrak{M} is a closed subspace and dim $\mathfrak{M} = \dim \ker T_0$. Now we show that $S(\ker T)^- = \mathfrak{M}$. From this equality and ker $S = \{0\}$ the first assertion of the lemma follows.

Let $\langle x_1, ..., x_n \rangle \in \ker T$. Then $T_{12}x_2 + ... + T_{1n}x_n = -T_{11}x_1$ and $\langle x_2, ..., x_n \rangle \in \ker T_0$. Therefore, $S \langle x_1, ..., x_n \rangle = \langle -T_{11}x_1, x_2, ..., x_n \rangle$ is an element of \mathfrak{M} , and $S(\ker T) \subseteq \mathfrak{M}$.

Let E be the spectral measure of T_{11} . For $k \ge 1$ we define $P_k = E\left(\left\{z \in C : |z| \ge \frac{1}{k}\right\}\right)$. For x in \mathfrak{H} we have $||x - P_k x||^2 = \left\|E\left(\left\{z \in C : |z| < \frac{1}{k}\right\}\right) x\right\|^2 \to ||E(\{0\}) x||^2 \ (k \to \infty)$. Since $E(\{0\}) = \ker T_{11} = \{0\}$, then $||x - P_k x|| \to 0 \ (k \to \infty)$.

240

Now we are ready to prove that $\mathfrak{M} \subseteq S(\ker T)^-$. Let $\langle y, x_2, ..., x_n \rangle \in \mathfrak{M}$. Then $y = T_{12}x_2 + ... + T_{1n}x_n$ and $\langle x_2, ..., x_n \rangle \in \ker T_0$. Let $y^{(k)} = P_k y$ and $x_i^{(k)} = P_k x_i$ (i=2, ..., n). Since P_k and T_{ij} commute, then $y^{(k)} = T_{12}x_2^{(k)} + ... + T_{1n}x_n^{(k)}$ and $\langle x_2^{(k)}, ..., x_n^{(k)} \rangle \in \ker T_0$. Therefore $\langle y^{(k)}, x_2^{(k)}, ..., x_n^{(k)} \rangle \in \mathfrak{M}$ and $\langle y^{(k)}, x_2^{(k)}, ..., x_n^{(k)} \rangle \to \langle y, x_2, ..., x_n \rangle$ $(k \to \infty)$. If $\mathfrak{H}_k = P_k \mathfrak{H}_k$, there fore the restriction of T_{11} is bounded below on $\mathfrak{H}_k \left(\|T_{11}x\| \ge \frac{1}{k} \|x\|$ for x in \mathfrak{H}_k ; therefore the restriction of T_{11} to \mathfrak{H}_k is an invertible operator. Since $y^{(k)} \in \mathfrak{H}_k$, there exists $x_1^{(k)} \in \mathfrak{H}_k$, such that $T_{11}x_1^{(k)} = -y^{(k)}$. Therefore $T_{11}x_1^{(k)} + ... + T_{1n}x_n^{(k)} = 0$ and $\langle x_1^{(k)}, ..., x_n^{(k)} \rangle \in \ker T$. Furthermore, $S \langle x_1^{(k)}, ..., x_n^{(k)} \rangle = \langle y^{(k)}, x_2^{(k)}, ..., x_n^{(k)} \rangle \to \langle y, x_2, ..., x_n \rangle \in S(\ker T)^-$ and $\mathfrak{M} \subseteq S(\ker T)^-$. This completes the proof that $\mathfrak{M} = S(\ker T)^-$.

The second assertion of the lemma follows from the fact that Ker $T^* = \{\langle 0, x_2, x_n \rangle : \langle x_2, ..., x_n \rangle \in \ker T_0^* \}$. \Box

Theorem 2. Let
$$T = (T_{ij})_{i,j=1}^n$$
 be an n-normal operator matrix. Then
dim ker $T = \dim \ker T^*$.

Proof. We need to consider only the case when T is in upper triangular form. Then we assume that $T_{ii}=0$ for i>j. Now the proof will proceed by induction on n. If n=1, then T is a normal operator and ker $T=\ker T^*$. Next we assume that the theorem holds for all (n-1)-normal upper triangular operator matrices. $\mathfrak{H}_1 = \ker T_{11} \cap \ker T_{nn},$ $\mathfrak{H}_2 = (\ker T_{nn} \ominus \mathfrak{H}_1) \oplus (\mathfrak{H} \ominus \ker T_{11}T_{nn})$ and Let $\mathfrak{H}_3 =$ =ker $T_{11}T_{nn} \ominus$ ker T_{nn} . Then the subspaces $\mathfrak{H}_1, \mathfrak{H}_2, \mathfrak{H}_3$ are pairwise orthogonal and $\mathfrak{H} = \mathfrak{H}_1 \oplus \mathfrak{H}_2 \oplus \mathfrak{H}_3$. Since ker T_{11} , ker T_{nn} and ker $T_{11}T_{nn}$ reduce T_{ij} , then \mathfrak{H}_k (k=1, 2, 3) reduces T_{ij} for all i and j. Furthermore, if $T_{ij}^{(k)} = T_{ij} | \mathfrak{H}_k$ and $T_k =$ $=(T_{ii}^{(k)})_{i,i=1}^{n}$ (k=1, 2, 3), then T_k is an *n*-normal operator matrix in upper triangular form and $T = T_1 \oplus T_2 \oplus T_3$ with respect to the decomposition $\bigoplus_{k=1}^{\infty} (\mathfrak{H}_k \oplus ... \oplus \mathfrak{H}_k)$ (*n* copies) of $\mathfrak{H} \oplus \ldots \oplus \mathfrak{H}$ (*n* copies). The next and last step in the proof is to show that dim ker T_k = dim ker T_k^* for k=1, 2, 3.

We consider first the operator T_1 . If the dimension of \mathfrak{H}_1 is finite, then T_1 is acting in a finite dimensional space and the assertion is true. Assume that \mathfrak{H}_1 has infinite dimension. From the definition of \mathfrak{H}_1 we have $T_{11}^{(1)} = T_{nn}^{(1)} = 0$. Therefore, $\mathfrak{H}_1 \oplus \{0\} \oplus \ldots \oplus \{0\} \oplus \bigoplus \{0\} \oplus \mathfrak{H}_1 \subseteq \ker T_1^*$. Therefore dim ker $T_1 = \dim \ker T_1^* = \dim \mathfrak{H}_1$.

Now we consider the operator T_2 . From the definition of \mathfrak{H}_2 it is clear that ker $T_{11}^{(2)} = \{0\}$. From Lemma 2.1 we have dim ker $T_2 = \dim \ker T_{2,0}$ and dim ker $T_2^* = = \dim \ker T_{2,0}^*$, where $T_{2,0}$ is the (n-1)-normal operator matrix obtained from T_2 by deleting the first row and the first column. Now from induction dim ker $T_{2,0} = \dim \ker T_{2,0}^*$. Therefore, dim ker $T_2 = \dim \ker T_2^*$.

1*

J. Barría and R. Bruzual: On approximation by unitary operators

Finally, we consider the operator T_3 . From the definition of \mathfrak{H}_3 it is clear that ker $T_{nn}^{(3)} = \{0\}$. It is easy to see that T_3^* is unitarily equivalent to the *n*-normal, upper triangular operator matrix $(T'_{ij})_{i,j=0}^{n-1}$ with entries $T'_{ij} = T_{n-j,n-i}^{(3)*}$ (for $0 \le i \le j \le n-1$) and =0 for i < j. Since the (0, 0)-entry of this operator is one-to-one, the argument given for the operator T_2 applies in this case. Therefore, dim ker $T_2^* = \dim \ker T_2$. \Box

Corollary 1. Let $T = (T_{ij})_{i,j=1}^n$ be an n-normal operator matrix. Then T has a unitary approximant.

Proof. The result is immediate from Theorem 2 and Theorem A(i). \Box

References

- C. M. PEARCY, Some recent developments in Operator Theory, NSF—CBMS Lecture Notes, № 36, Amer. Math. Soc. (Providence, R. I., 1978).
- [2] H. RADJAVI, P. ROSENTHAL, Invariant Subspaces, Springer-Verlag (New York, 1973).
- [3] D. D. ROGERS, Approximation by unitary and essentially unitary operators, Acta Sci. Math., 39 (1977), 141-151.

-1

INSTITUTO VENEZOLANO DE INVESTIGACIONES CIENTIFICAS DEPARTMENTO DE MATEMÁTICAS APARTADO 1827 -CARACAS 1010-A, VENEZUELA