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Functional models and extended spectral dominance 
H. BERCOVICI, C. FOIA?, C. M. PEARCY, and B. SZ.-NAGY 

In the paper [4], SCOTT BROWN showed that every subnormal operator on 
Hilbert space has nontrivial invariant subspaces, and thereby originated techniques 
which could be applied to broader classes of operators also; from the rapidly growing 
number of pertinent papers let us only mention a few: say [1], [2], [5], [7]. Two 
further papers, [9] and [10], took the first steps to exploit similar techniques in 
the setting of the functional model of contractions. The present paper is a partly 
expository synthesis and a continuation of these two papers, with some applica-
tions to invariant subspace problems. We have chosen to reproduce here, with 
some rearrangement and simplifications, the pertinent parts of [9] and [10] because 
of some shortcomings in their redaction (in particular the definition of the functional 
t] in [9]), which unnecessarily restricted the applicability of the results. 

In this paper we shall have to do with Lebesgue and Hardy spaces L", H" 
(1^/?^°°) relative to the unit-circle C={e": 0^t<2n} and the normalized Lebes-
gue measure dm=dt/(2n) on C; the general reference may be, e.g., [6]. For any 
measurable subset s of C, L"s will denote the subspace of LP consisting of functions 
vanishing outside of s. Every function /£L P admits a harmonic "extension" / 
to the unit disc D={X: |A|< 1}, defined by 

where P' is the Poisson kernel function on C corresponding to the point fiÇD, i.e., 

The function / can be recovered from /almost everywhere on C, as a "non-tangential 
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1. Fonction spaces. Dominance of sets. Convex hulls 

(1.1) 

(1.2) P„(,ei,) = {\-\n\i)\\-Ueit\-2-, 11^1 = 1-

\ 
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limit": /(e")=iim f(p) as / i -e" , non-tangentially to C. If f£Hp, / is analytic 
in D, and in this case it is customary not to distinguish between / and f . We denote by 
HI the subspace of H", consisting of the functions vanishing at the point 0. 

Recall that H°° is the Banach dual of the space V-jHl through the bilinear 
form ( / • , u)—j fu dm ( / € L \ w€H°°), /—/ ' denoting the natural map of L1 onto 
V-jHl- For the sake of simplicity, we shall also write, for any /(jL1, || f\\iMH} instead 
of II /•Ik»/««1' a n d ll/IUv) instead of [| /|i||z.i(j). By the definition of the norm in 
a Banach quotient space, we have 

(1-3) \\fLw= infJf+g\\Li, and hence, | | f \ \ L l , H } ^ 11/11 

A subset S of the unit disc D is called dominating for a (measurable) subset s 
of the circle C if almost every point of s is the non-tangential limit of a sequence of 
points of S. (It is easily seen that for any set S<^D the set of all non-tangential 
limits of S on C is measurable, indeed an FaSa.) A set S dominating for the whole 
circle C will be also called simply dominant. Such a set enjoys the property 

(1.4)3 sup |m(A)| = ||u|U for all cf. [3]. 

* 
Consider now an arbitrary complex Banach space X, its (closed) unit ball Xly 

and an arbitrary subset E of X. The absolutely convex hull of E (aco E) is defined by 
acoE = c-xt (finite sums): x£E, c,€C, 2 lcil — l} ; 

i i 

its closure will be denoted by aco E. 
We shall need the following standard consequence of the Hahn—Banach theo-

rem (cf., e.g., [5], Prop. 2.8): 

Lemma 1.1. Let the subset E of the unit, ball X1 of the complex Banach space X 
satisfy 

(1.5) . sup|<p(x)| = ||</>|| for all q> in the dual space X*. 
X€E 

Then aco E=Xl. ' . 

We consider two special cases: 
a) X=L1(s) and E={P/1\s: fi£S}, where S is a subset of the unit disc D, 

dominating for the measurable set s on C. 
b) X=L1/Hq and E={P- fi^S}, where 5 is a dominant subset of D. 
In case a) we have X*—L°°(s) and we infer for any ££Loa(s),. using Fatou's 

theorem, 

sup 1/CP„dm\ = sup |f (/i)| = ess sup |£| = ||£||L-(s). 
*es 1 1 /tes s • 
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In case b) we have X*=Hm and we deduce for any again by using 
Fatou's theorem, 

sup'|<P;, 01 = sup I f P„Sdm\ = sup = ess sup = [|£||H~. 

Thus condition (1.6) holds in both cases, and we deduce from Lemma 1.1: 

Lemma 1.2. 
a) If the set ScD is dominating for the measurable set sczC, then 

b) If the set SczD is dominating for C then 

aco{P;: /i65} = (L1///0
1)1. 

2. Functional model and representation theorem for L1 and I}\H\ 

Preliminaries. Denote by (CNU) the class of completely nonunitary contrac-
tion operators T on a separable complex Hilbert space The (unitarily equivalent) 
"functional model" of an operator (CNU) is the operator S{&) on the Hilbert 
space § ( 0 ) associated with a purely contractive analytic function {(£, (£*, 0(A)}, 
on the unit disc D ((£ and being separable Hilbert spaces) in the following way. 
0 (e") being defined as the a.e. existent radial limit of 0(A) on C, and setting A (eil)= 
[/—0(e")*0(e")]V2, consider the Hilbert function spaces 

(2.1) &+(&)= H\<&J®AlJ(&j . and § ( 0 ) = tf+(0)e{0w0d>v: w€#2(®)} 

and the orthogonal projection operator P ^ e ) : ft+(0) — §(0 ) . Then the operator 
5 (0 ) defined on § ( 0 ) by 

(2.2) S{0)(u®v) = P^e){ei,u®ei'v) (u 9 »€$(©)) 

is in (CNU). It is unitarily equivalent to a given operator !T£(CNU) on § if 0 coin-
cides with the characteristic function 0 r of T, i.e., with the function {ST, ®T*, 0T(X)} 
defined by 

(2.3) 0 r(A) = [ - T + X D r ^ I - X T ^ D r W Z r , 

where 

(2.4) DT = (,l-T*TY>\ DT* = (I-TT*)1/2> X>r = D^, = D^S-

Note that 0 T (O)=- :T | I> r , and hence 0 r(O)*= - r * | £ T , so that 0 r (O)*0 r (O)= 
= T*T\S)t and 0t(O)0t(O)* = TT*\T>t,. Further, note that r * r | § 9 ® r = 
=Jz>e*T

 a n d T T * \ w h e n c e we infer that 0 r(O)*0 r(O) and 
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T*T, and hence their positive square-roots also, have on [0, 1) the same spectra 
a and the same essential spectra a e . The same holds for the other two products 
with the factors in the reverse order. It is also known (we refer for all these facts 
to Chapter VI of [8]) that for any /i£Z) the characteristic function of the Möbius 
transform 
(2.5) T„ = (T-nW-ßT)-1 

coincides with j l> r , 5>r*, & т whence it follows as above that the parts 

on [0, 1) ofthe spectra and ofthe essential spectra of (Q{p)* &(ji))V2 and (T* TJ1'2 

are equal, and the same holds for the factors in the reverse order. We shall only 
need that, in particular, 

(2.6) inf (Je(eT(ß) вт(мГ)г'2 = inf oe{TJ$4\ 

where, in case dim 35r*<oo, the left hand side is taken to be 1. 
Let us add the remark that, for any selfadjoint operator R on an infinite dimen-

sional Hilbert space we have 

inf (Te (7?) = sup inf ||7to||, 
H a l l = 1 

where Ф denotes the family of finite codimensional subspaces of SR. As a con-
sequence, 
(2.7) infae(SS*y1 2 = sup inf Ц^аЦ 

Я6Ф а€'Л 
» a l l = 1 

for any operator S: §>— §>' where may be another Hilbert space. Thus (2.6) 
may be written in the form 

(2.6)' sup inf ||0г(/г)*а|| = sup inf | |7> ' | | , 
«€«> оея «'e®' o'eäv neu = 1 llo'U=l 

where Ф and Ф' denote the families of finite codimensional subspaces of D r , and 
respectively. 

The product h • A'* and some of its properties. Starting from a purely contrac-
tive analytic function {(£, (S*, 0(A)} we define, for h—u®v, A'=H'©I/£§(0), 
the "product" h -h'* by 

(2.8) (h . h'W) = (Не% h'(e'%tee = (и(е"), + v'(e<%; 

it is clear that 

(2.9) h-h'*=h'-h*<iL1. 

We are looking for conditions under which every function / in L1 can be represented 
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in the form f=h -h'* on C or on a given subset s of C, or on C in the form 
f=h •h'* modulo Hq. In order to do so we use elements of § ( 0 ) associated with 
points fi£D and vectors ai©* in the following way 

(2.10) noa = P^e)(pfia®0), 
where 

(2.11) Pll(X) = (1 -M 2 ) 1 / 2 ( l 

A straightforward calculation yields that 

(2.12) fioa = (p„a — 0w)©(— Aw), where is given by 
(2-13) w(e") = [pil(ei<)G(ei'ya]+ = p^e'^QiTa; 

[ ] + and []_ denote the natural orthogonal projections of any (scalar or vector 
valued) function space L2 onto its subspaces H2 and L2 Q H2, respectively. 

For any h=u@v£§>(0) we have then, using the second representation of w 
in (2.13), 
(2.14) (p.oa) • h* = (p^a-0w, u)St-(Aw, v)e = (p^a, x)St = (a, f^x)^, 

where x=u—0(ji)(0*u+Av). 
i If K > r any orthonormal sequence in then (2.14) implies that (p, o a„) • h* ->-0 

pointwise on C, as n — M o r e o v e r , we have 

\ ( n ° a J - h * \ * \ P l t \ M * . Z L \ because p ^ L 2 , x t L 2 ^ ) ; 

by virtue of the Lebesgue dominated convergence theorem we infer \\(p o s j 
as «-<-«=. Recalling (2.9) also, we have proved: 

Lemma 2.1. If dim®* = °° and {a„}~ is an orthonormal sequence in then, 
for any (i£D and A£§(0), 

(/ioa„) • h* -» 0 and h-(fioan)* — 0 

in L1, and a fortiori in every Lx(s) and in U/Hq. (Cf. (1.3).) 
Next we derive from (2.12) and (2.13) the following relations for n£D, 

N « , = 1, 
(2.15) (jioa)'(jio a)* = ||pMa - 6>w||l, +| |dw| | | = 

= I 0 w \ t ~ { 0 w , P^)ffit + ||w||| = |p u \ 2 - (0* P f l a , w)e-j>, 
where, using the first one of the representations in (2.13) for w, we have 

y = (w, 0*plia)e-(w, [0*Plla]+)s = (w, [0*p„a]-)<E-
As w£H°° we infer that while 

M i a ^ f I M U [ 0 * P „ a ] - M m ^ | |w|| t 2 ( (E) | |[0^a]_||La( (E)^ 
= II'w||L.((E)l|0*P„a||L8((E)S ||w||L1(S)||Jp/la||I.,(e<t)= ||w||t,(e). 
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For the middle term in the last member of (2.15) we have the same evaluation. 
Observe that \pj? equals the Poisson kernel function P^ (see (1.2) and that, by 
(2.13), 

IMIL»(C) = I I P ^ R A L L L ^ ) S \\p„\\Li\\0(ji)*<i\\e = II0(¿0*0LIE; 

we conclude: 

Lemma 2.2. For any a£(E* of norm 1, and any n€.D we have 

(2.16) \\ifioa).(Jloar-Pli\\Ll ^ 
(2.16)' \\(^oa)-(jioar-Pll\\LllH} WQfjiTa^. 

The representation theorems. From now on we shall always assume that 
dim (Ê  = (this was tacitly assumed in Lemma 2.1), and consider the quantity, 
already appearing in (2.6) and (2.6)': 

(2.17) 1o(n) — SUP inf || 0 ( j i f a | | s (= i n f [ ( 0 ( p ) 000*)1/2]); HiD, 
ae® a 

Uali =1 
<P denoting the family of finite codimensional subspaces of (E*. 

Lemma 2.3. For any given p(LD, 2I0€<2>, and e>0, there exists an ortho-
normal sequence {«„}" in 2I„ such that 

(2.18) U0OO* a n U * n e ( n ) + e. 

Proof . By induction: Suppose that for some m ^ l the vectors with 
/¡</n have been already chosen so that they form an orthonormal system and sat-
isfy (2.18) (these conditions are void if m~ 1). The subspace U I m = G ( V an) 

. n<m 
belongs to so by (2.17) we have inf | | 0 ( / I ) * A | | a n d hence there exists 

fl€ 2lm 
l l f l l l = 1 

a unit vector am€Mm satisfying (2.18) for n—m. Clearly is orthonormal. 
The proof is done. 

In the sequel we shall be concerned, for any 5£[0, 1), about the set 

(2.19) = {n£D: r,e(M) ^ 3}. 

Lemma 2.4. Suppose that, for some 3£[0, £), the set <S9 is dominating for 
some measurable set scC, and take a 9'6(29, 1). Suppose we have 

II/— h • k*\\LHs) ^ a> for some f in L1, and h, k in $ ( 0 ) . 

Then there exist h', k' in § ( 0 ) such thai 

(2.20) \\f-h'.k'*\\LHs)^!>'co, 

(2.21) \\h—h'\\ = oj1'2, || fc — fc'|| = G)1'2. 
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: P roo f . Fix an e>0, to be specified later. By Lemma 1:2 there exists a finite 

•sum 2 cmP^ with n m £S such that 
i 

(2.22) f-h-k*-2cmP,„ î s and 2 lcml = 
L\s) 1 

According to Lemma 2.3 we can choose an orthonormal sequence {a„}~ in 
satisfying (2.18) for n=nx. By Lemma 2.1 we know that / •(/i1oa„)*—0 in L1 

as w — f o r any fixed /£§(©). Therefore we can find bj, equal to some a„, 
such that 

II ^ • O î ° ^I)*IIli — £> Wk-i^ob^h^s -

(indeed every a„ with n large enough does it). Next, again by Lemmas 2.3 and 2.1, 
we can choose a unit vector b2 in (E* Q (V ¿>i) such that 

H0(M2)*b2le^t}0(ju2) + s and ¡¡l-(fi2ob2)*HL1^s for i = ft, fc,/^o^. 

Continuing, we find step by step an orthonormal sequence {¿>„}J in such that 

<2.23) H 0 ( t i J * b J 9 ^ 1 e ( M J + e and P - ^ o i J I y S « 

for 

I = h, k, nn o b„ (n < m). 

Now choose complex numbers dm, em such that cm = dmem, |i4.| = |em| = |cm|i/2, and set 

h' = h + 2 dm- (jim o bm), k' = k +2 em- (jim o bm). 
l l 

Inequalities (2.21) are easily verified; it suffices to look at the first one. Indeed, 
using (2.10) we have 

•\\h-h'|| = \\2dmQimobm)\\ = \\Psw2dm(pltmbm®0)\\ ^ 

^ ¡12 dmPilmbm\\HHm = (2 W 2 = (2 U)1/2 ^ «l/2-

For the difference Q=f—h'-k'* we begin with the following rearrangement:; 

Q = (/_ h • k* - 2 cm p j - 2 cm [(ft» ° b j -(jimobmy- PJ -

-2dm(fimobm)-k*-2^,h-(nmobmy-22 dmTn(n„ obn) • (nmObmy. 

From inequalities (2.22), (2.16), and (2.23) we deduce: 

II OIIliw ^ 6 + 2 U 21| 0 GO* b j +2\dJ£ + 2\eJs + 22\dMerS 

sS e+co • 29+(®1/2 r1/2+co112 r1'2+cor) e, 

and this is obviously ^S'co if s was chosen appropriately small; thus (2.19) holds. 
The proof is done. 
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In the case s—C a similar result can be obtained even under a milder condi-
tion, namely that S be dominant for some 9€[0,1) (instead of S£[0, How-
ever, we get then, for any 1), evaluations in the quotient space (instead 
of the space ^(Cy—L1). The method of proof is the same except that we can now 
refer to part b) of Lemma 1.1 (instead of part a)), and in particular, to the estimate 
(2.16)- in Lemma 2.2 (instead of the estimate (2.16)). 

Let us formulate the result so obtained, without repeating the details of the 
proof: 

Lemma 2.4'. Suppose that, for some 9£[0, 1), the set S3 is dominant and take 
a 1). Suppose we have 

|]/— h • k*\\LllHi S co for some f in L1, and h, k in § (0 ) . 

Then there exist h' and k' in § ( 0 ) such that 

\\f-h'.k'*\\LllH^S'<D, 

Wh-h'W^co1'2, \\k-k'\\ti(D1/2. 

Now we can turn to our main "representation theorems". 

Theorem A. Suppose that, for some the set SA is dominating for 
some measurable subset s of C, and take £)'6(29, 1). For every f^L1 and h,k£§>(&) 
there exist h', fc'£§(0) such that 

f = h' • k'* a.e. on s, and -

\\h-h'II, \\k-k'\\ == ( i - ^ r i z - f c . / c l i ^ ) 

Proof . Repeated application of Lemma2.4, with co= ||/— h-k*\\Li^, shows 
the existence of sequences in § ( 0 ) suchthat h0—h,k0=k and 

Wf-K-KWms^V"«) , and \\hn-hn+11|, ||fc„-fcn+1|| (n = 0,1, . . .) . 
This obviously implies that the limits h'=lim/z„, k'=\imk„ exist, satisfy 
\\f—h' -Ä:'*||£i(s) = lim \\f—hn •Ar*||ii(s)=0, and 

\\h-h' || si 2 (S'"ß>)1/2 = (1 -S'1'2)-1 co112; 2(h~K+1) o 
similarly for j|fc —jf||. The proof is complete. 

An almost identical proof, based on Lemma 2.4', yields: 

Theorem A'. Suppose that, for some 3g[0, 1) the set S3 is dominant and take 
1). Then, for every f^L1 and h, k£§>(&) there exist h',k!6§(0) such that 

f = h' • k'* mod Hi on C, and 
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Coro l l a ry A. Under the hypotheses of Theorem A the set 

Z — {/i£§(0): h'k* = 0 a.e. on s for some nonzero fc£§(0)} 

is dense in §(0). 

Corol la ry A". Under the hypotheses of Theorem A" the set 

Z• = {h£9j(0): h -k* = 0 mod Hi for some nonzero 

is dense in § ( 0 ) . 

Proof . Choose 9 and 9' as required in the respective Theorem. For a fixed 
5 3 choose, as in Lemma 2.3, an orthonormal sequence {a„}~ such that 

\\0(ji)*an^9'. Using also (2.12) and (2.13) we have 

I M W * ) H l i v 0 0 0 X 1 1 W ) = 1 - S ' , 

and hence, fioa^O. Now apply Theorem A or A*, respectively, with / = 0 , k—fioan, 
and an arbitrarily chosen A€§(0). We infer the existence of sequences {h'^, {k'„\ 
in § ( 0 ) such that 

h'„ • k'„* = 0 a.e. on s, or h'„ -k'„* = 0 m o d / f t on C, 

respectively, and moreover, 

\\h-h'n\\, Wk-KW ^ (1-9'vy1 \\h. (»oaf\\%)0lLllHi. 

By Lemma 2.1, p •(ft°a„)*\\Li-*0 as « — w h i c h implies the same in the metrics 
of Lj(J) and I I ¡Hi as well. This concludes the proof of both corollaries. 

* 

The first interest of these corollaries lies in their implication to the existence 
of non-cyclic vectors for the "model" operator 5 (0 ) defined on § ( 0 ) by S(0)h= 

cf. (2.2). 
Indeed, if the set 5 a is dominant for some [0, 1), then no vector /z£Z- is 

cyclic for 5(0), because if A: is a nonzero vector in § ( 0 ) such that h -k* =0 
mod Hi, then 

(2.24) (5(0)"h, k) = (einth, k)=J¿"'(hie*1), k(e'%t@edm = 

= fein,(h-k*)(e")dm = 0 for n = 0,1, .... 

In case 53 is dominant even for some £) then we have for every h£Z and a 
corresponding k?±0 such that h-k*—Q a.e. on C, besides (2.24) also 

(2.25) {S(0fh, k) ={h, S(0)nk)= Je-in,(h{eu), fc(e"))«.®B dm = 
= Je~in,(h • k*)(eu)dm = 0 for n = 0,1 
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Thus in the case 3(E[0, 1) the nonzero vector k is orthogonal to V S(0)"h, white 
o 

in the case 5e[0, k is orthogonal both to V S(0)nh :and to V S(Q)*nh. 
o o 

R e m a r k . The chains of equations (2.24) and (2.25) clearly hold, with the 
exception of the last members ("=0"), irrespective of any assumption on the set 
S9, and for any h , k ( 0 ) . They show that the function h-k*£ L1 has the Fourier 
series 2 c ne i n t , with cn = (S(0)"h, k) and c_n = (S{0)*nh, A:)for ?i=0,1, . . . . Note 
that this representation frees the definition of the product h • k* from the model 
operator. For any (CNU) contraction on a Hilbert space § we can define h • k* 
(h, k £§>) as the function in L1 with the Fourier series 2 cne'"' with cn = (T"h, k). 
and c-n — (T*nh,k) (« —0, 1, ...); and this definition is clearly unitarily invariant. 

3. Invariant subspaces 

a) Let us formulate the above consequences of Corollaries A and A* in terms of 
a contraction operator 7".on the Hilbert space 5?, by using the model oper-
ator S(0T), where {D r , DTt, 0T(A)} is the characteristic function associated 
with T. As recalled in the Preliminaries of Section 2, S{0T) is unitarily 
equivalent to T if T is (CNU); in the general case it is unitarily equivalent 
to the (CNU) part of T. As the unitary part (if any) of T does not effect 0T 

and the argumentations at the end of the first paragraph of section 2, we may 
disregard the assumption T€(CNU). 

Set, for [0, 1), in analogy to (2.19), 

(3.1) R9 = {niD: i n f^Kr^* ) 1 / 2 ] =5 9}. 

P ropos i t i on 3.1. Let T be a contraction acting on If R9 is dominant for some 
1 then T has nontrivial invariant subspaces. Moreover, the set of non-cyclic 

vectors for T are dense in Sj. . 

Propos i t i on 3.2. Let T be a contraction acting on §>. If Rs is dominant for 

some — then the set of vectors for which 
2 

V {Tnh,T*nh}^§>, 
n = 0 

is dense in 

Remark . The condition that the defect space D r , be infinite dimensional, 
is implicitly contained in the hypothesis that Ra is dominant for some 3 < 1, antl 
hence non-void. 
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b) As a further application of Theorem A* we prove 

P ropos i t i on 3.3. Under the condition for T that the set R3 is dominant for 
some 1, there exists, for every inner function (p, a semi-invariant subspace 2 for 
T such that the compression Tj, of T to £ be a C0-class contraction with minimal 
function m& equal to q>, and with a cyclic vector; as a consequence Ts> has the Jordan 
model S(q>). 

P r o o f . It sufficies to consider the model operator T—S(0); the assumption 
is then that the corresponding set (cf. (2.19)) be dominant for some 

By Theorem A" this implies that there exist h, k £§>(&) such that 

(3.2) ip = h-k* mod Hi 
Consider the cyclic subspaces 

& = V T"h and § 2 = V T"cp(T)h (= (p(T) fl=0 n = 0 
for T; clearly, §XZ)§2 . Hence £ = § 1 Q § 2 is semi-invariant for T and the com-
pression Ts> = PaT\2 (where denotes orthogonal projection from onto 2) 
satisfies 

(3.3) v(Ta) = ¿VCOI-S for every v£H-~. 

So we have, in particular, 

q>{Ts)2 = Ps(p(T)2 c PMT)$>i <= Pz$>2 = {0}, <p(T2) = 0. 
Hence, T s is of class C0 and its minimal (inner) function me is a divisor 

of <p: (p = qms, pinner. Thus, by (3.2), q = ms,q> = ma-(h- k*) mod H^, and hence,, 
for every v £ H°°, 

2a 2ir 
(3.4) f v(é')q{é') dm = f v{ei')mi,{ei'){h-k*)<<ei')dm = (v(T)m2(T)h, k). 

0 0 
. Next observe that, for any we have 

v (T) (h — Pali)Ç.v (T) §2 c § 2 , Psv(TKh-Peh)^P^2 = {0}, 

and hence, by (3.3), 
(3.5) Pav(T)h = Pj,vÇr)Pj>h = v(Ts)Pah. 

For v = m2 this yields Pams(T)h = 0, and this in turn gives that mi,(T)hÇ.§}2-
Therefore, there exists a sequence {P j} of polynomials such that me(T)h— 
= lim p,(T)<p(T)h. Recalling (3.2) we obtain 

j— Co 

(v(T)ms(T)h, k) = lim {{vpj<p){T)h, h) = lim f vPj<p-(h-k*)dm = 
CO CO v 

— lim J vpjdm = 0 
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for every In particular, take v=q-q(0). Comparing with (3.4) we conclude 
that j(i—q(0)q)dm=f(q—q(0))qdm==0,\q(0)\2=i, and hence q is a constant, 
i.e., (p coincides with m s . 

It only remains to show that has a cyclic vector. Indeed h2 = P2h is such, 
because (3.5) implies for v(?,) = )" (n = 0,1, ...). 

V = V PsT"h = PSi9>1= 2. 
n=0 n=0 

This concludes the proof. 

References 

[1] J. AGLER, An invariant subspace theorem, Bull. Amer. Math. Soc., 1 (1979), 425—427. 
[2] C . APOSTOL, Ultraweakly closed operator algebras, J. Operator Theory, 2 ( 1 9 7 9 ) , 4 9 — 6 1 . 

[3] L. BROWN—A. SHIELDS—K. ZELLER, On absolutely convergent exponential sums, Trans-
actions Amer. Math. Soc., 96 (1960), 162—183. 

[4] S. BROWN, Some invariant subspaces for subnormal operators, Integral Equations and Opera-
tor Theory, 1 (1978), 310—333. 

[5] S. BROWN—B. CHEVREAU—C. PEARCY, Contractions with rich spectrum have invariant sub-
spaces, J. Operator Theory, 1 (1979), 123—136. 

[6] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall (Englewood Cliffs, N. J., 
1 9 6 2 ) . 

[7] I. STAMPFLI, An extension of Scott Brown's invariant subspace theorem: .fir-spectral sets, 
J. Operator Theory, 3 (1980), 3—21. 

[8] B . S Z . - N A G Y — C . FOIA§, Harmonic Analysis of Operators on Hilbert space, North-Holland/Aka-
démiai Kiadó (Amsterdam/Budapest, 1970). 

[9] B. SZ.-NAGY—C. FOIAJ, The functional model of a contraction and the space Lx!Hl, Acta 
Sci. Math., 41 (1979), 403—410. 

[10] C. FOIA§ —C. PEARCY—B. SZ.-NAGY, The functional model of a contraction and the space Ll, 
Acta Sci. Math., 42 (1980), 201—204. 

(H. B. and C. M. P.) 
UNIVERSITY OF MICHIGAN 
A N N ARBOR, MI 48109, U S A 

(C. F.) 
I N D I A N A UNIVERSITY 
BLOOMINGTON, IN 47401, U S A 
and 
UNIVERSITÉ D E PARIS-SUD 
91405 ORSAY, FRANCE 

(B. SZ.-N.) 
BOLYAI INSTITUTE, 
UNIVERSITY SZEGED 
6720 SZEGED, H U N G A R Y 


