The algebraic representation of semigroups and lattices; representing lattice extensions

R. BIRKENHEAD, N. SAUER and M. G. STONE

Introduction

A monoid S and lattice L are jointly algebraic if there is a universal algebra \mathfrak{A} with $S \cong \text{End } \mathfrak{A}$ and $L \cong \text{Su } \mathfrak{A}$. For S and L jointly algebraic submonoids of S which are also jointly algebraic with L are studied in [3]. Here we consider certain *lattice extensions* of L which are also jointly algebraic with S. Concrete representations are again used to derive abstract results.

1. Concrete representations

As in [3] we say a partial unary algebra $\mathfrak{B} = \langle B; f \rangle_{f \in S \cup L}$ represents S (a monoid) and L (a compactly generated lattice) on B provided: (i) the operations $f \in S$ form a transformation monoid on B with fg(b)=f(g(b)) and $\frac{S}{2}$ id (b)=b, for $f, g \in S$, $b \in B$ and, (ii) the operations $p, q \in L$ are partial identity maps on B with range $p \cap$ \cap range $q = \text{range } p \land q$, and the map denoted by $1 \in L$ is the total identity map on B. The representation is faithful if for any $f, g \in S$ with $f \neq g$ there is a $b \in B$ with $f(b) \neq g(b)$, and for any $p, q \in L, p \neq q$, we have range $p \neq \text{range } q$. We use \mathfrak{B}^n to denote the usual *n*-fold direct power of \mathfrak{B} .

We shall use systems of equations, Σ , of the form fx=g, with coefficients $f, g \in S \cup L$, as defined in [2]. Spt Σ is the *support* of Σ , i.e. the set of points on which Σ has a solution (cf. [2]). Observe that for a homomorphism $\alpha: \mathfrak{A} \to \mathfrak{B}$ between partial unary algebras each of which faithfully represents S and L we have that $a \in \operatorname{Spt} \Sigma$ on \mathfrak{A} implies $\alpha(a) \in \operatorname{Spt} \Sigma$ on \mathfrak{B} .

Let \mathfrak{B} be a faithful representation of S and L on B.

Definition 1.1. For $C \subseteq B$ the rank of C in \mathfrak{B} is $R(C) = \bigwedge \{f | f \in L, id \} C \subseteq f\}$.

Received January 4, and in revised form March 30, 1979.

The rank function R maps subsets of B into the lattice L. For convenience we denote $R(\{b\})$ by R(b), for $b \in B$. For a sequence $\mathbf{D} \in B^n$ we use the lattice join to define the rank of **D** by

$$R(\mathbf{D}) = \bigvee_{i=1}^{n} R(\mathbf{D}_{i}).$$

Note that for D finite, $D \subseteq B$, R(D) = R(D) for any $D \in B^n$ with range D = D.

We shall need a form of the concrete representation theorem for endomorphisms and subalgebras found in [2]. The letter *n* will denote a positive integer, and $D \subset_f B$ will abbreviate "*D* is a finite subset of *B*".

Definition 1.2. We say Statement 3 holds for \mathfrak{B} , or more briefly $\operatorname{St}_3 B$ provided given any $b \in B$ and $\mathbf{D} \in B^n$ with $R(\mathbf{D}) \ge R(b)$ there is a homomorphism $\alpha: \mathfrak{B}^n \to \mathfrak{B}$ with $\alpha(\mathbf{D}) = b$.

Recall from [3] that we write (B, S, L) as a triple to denote a faithful representation of S as a transformation monoid on B and of L as an intersection structure on B. Clearly \mathfrak{B} is a faithful representation of S and L on B if and only if $(B, S, \{f(B) | f \in L\})$ holds. The work in [2] made use of the following Statement 2 concerning (B, S, L): we say $St_2(B, S, L)$ holds provided

$$\forall C \subseteq B \big[C = \bigcup_{D \subset_{\mathfrak{r}} C} \bigcap_{D \subset \operatorname{Spt} \Sigma} \operatorname{Spt} \Sigma \Rightarrow C \in L \big].$$

Clearly St₂ (B, S, { $f(B)|f\in L$ }) is equivalent to Statement 2' concerning \mathfrak{B} , viz

$$\operatorname{St}_{2}^{\prime}\mathfrak{B}: \forall C \subseteq B[C = \bigcup_{D \subset_{\mathfrak{c}} C} \bigcap_{D \subseteq \operatorname{Spt} \Sigma} \operatorname{Spt} \Sigma \Rightarrow \operatorname{id} C \in L]$$

by virtue of the natural correspondence between subsets of B and their respective partial identities. The form of the representation theorem we need follows from:

Theorem 1.1. $St_3 \mathfrak{B} \Leftrightarrow St'_2 \mathfrak{B}$.

Proof. Assume St₃ \mathfrak{B} holds for \mathfrak{B} and let C satisfy the hypotheses of St'₂ \mathfrak{B} . Note id $C \in L$ iff id $C = \bigvee_{\substack{D \subset rC \\ D \subset rC}} R(D)$ iff $C = \bigcup_{\substack{D \subset rC \\ D \subset rC}} \operatorname{range} R(D)$. Thus to show id $C \in L$ it suffices to prove that range $R(D) = \bigcap_{\substack{D \subseteq \operatorname{Spt} \Sigma \\ \operatorname{range} Q}} \operatorname{Spt} \Sigma$ for D finite. We have range $R(D) = \operatorname{range} \wedge \{Q | Q \in L, \operatorname{id} D \subseteq Q\} = \bigcap_{\substack{id \mid D \subseteq Q \in L \\ \operatorname{range} Q = \operatorname{dom} Q = \operatorname{Spt} \{Qx^{\Sigma} = Q\}$ and hence range $R(D) \supseteq \bigcap_{\substack{D \subseteq \operatorname{Spt} \Sigma}} \operatorname{Spt} \Sigma$. To show the opposite inclusion, fix $b \in \operatorname{range} R(D)$ and let $\mathbf{D} \in B^n$ with range $\mathbf{D} = D$. Since $b \in \operatorname{range} R(D)$ we have $R(b) \leq R(\mathbf{D})$, thus by St₃ \mathfrak{B} there is a homomorphism $\alpha \colon \mathfrak{B}^n \to \mathfrak{B}$ with $\alpha(\mathbf{D}) = b$. Now $D \subseteq \operatorname{Spt} \Sigma$ on \mathfrak{B} implies $\mathbf{D} \in \operatorname{Spt} \Sigma$ on \mathfrak{B}^n and applying α we have $\alpha(\mathbf{D}) = b \in \operatorname{Spt} \Sigma$ on \mathfrak{B} . Thus $D \subseteq \operatorname{Spt} \Sigma \Rightarrow b \in \operatorname{Spt} \Sigma$, and range $R(D) \subseteq \bigcap_{D \subseteq \operatorname{Spt} \Sigma}$.

Conversely assume $\operatorname{St}_2' \mathfrak{B}$. Let $b \in B$, $\mathbf{D} \in B^n$ with $R(b) \leq R(\mathbf{D})$; we show for any system of equations Σ over S and L that $\mathbf{D} \in \operatorname{Spt} \Sigma$ on $B^n \Rightarrow b \in \operatorname{Spt} \Sigma$ on B. To see this observe that St₂ says for $\overline{C} = \bigcup_{D \subset f^C} \bigcap_{D \subseteq Spt \Sigma} Spt \Sigma$, that $\overline{C} = C$ implies $C \in \{f(B) | f \in L\}$. Also $\overline{C} = \overline{C}$ since the indicated bar operation is a closure operator (cf. Lemma 5 of [2]). Thus $\overline{C} \in \{f(B) | f \in L\}$ and hence $\operatorname{id} | \overline{C} \in L$. Now since $R(b) \leq C \in L$. $\leq R(D)$, where $D = \text{range } \mathbf{D}$, we have $b \in \text{range } R(D) = \bigcap_{\substack{\text{id} \mid D \subseteq Q \in L}} \text{range } Q$. But therefore $b \in \text{range id} \ \overline{D}$, i.e. $b \in \overline{D} = \bigcup_{E \subset \mathfrak{c}} \bigcap_{D \subseteq \operatorname{Spt} \Sigma} \operatorname{Spt} \Sigma =$ $\operatorname{id} D \subseteq \operatorname{id} \overline{D} \in L$, $= \bigcup_{D \subseteq \operatorname{Spt} \Sigma} \operatorname{Spt} \Sigma \text{ since } D \text{ is finite. Thus } b \in \operatorname{Spt} \Sigma \text{ whenever } D \subseteq \operatorname{Spt} \Sigma$ assertion [D \in Spt Σ on $B^n \Rightarrow b \in$ Spt Σ on B] follows. To show St₃ holds we obtain the required homomorphism as follows: consider the system of equations whose variables are indexed by B^n , and let $f_{x_h} = x_k \in \Sigma$ iff f(h) = k, where $f \in S \cup L$. Thus Σ is the full diagram of S and L on \mathfrak{B}^n . Let $\Gamma = \Sigma \cup \{ \text{id } x_p = \text{id} \}$. Choose β , an assignment of the variables of Σ to be $\beta(x_{a})=e$, i.e. every variable is assigned to a constant map. Clearly β satisfies Γ at **D**, hence $\mathbf{D} \in \operatorname{Spt} \Gamma$ on \mathfrak{B}^n . Then by the above argument $b \in \operatorname{Spt} \Gamma$ on \mathfrak{B} . Let $\hat{\beta}$ be an assignment which satisfies Σ on \mathfrak{B} . Then $\hat{\beta}(x_{\mathbf{D}})(b) = b$ since id $x_{\mathbf{D}} = \mathrm{id} \in \Gamma$. Let $\alpha \colon \mathfrak{B}^n \to \mathfrak{B}$ be given by $\alpha(\mathbf{e}) = \hat{\beta}(x_{\mathbf{e}})(b)$, thus $\alpha(\mathbf{D}) = b$. It is easy to verify that α is a homomorphism.

Corollary 1.1. For a monoid S and a compactly generated lattice L, S and L are jointly algebraic iff there is a faithful representation $\mathfrak{B} = \langle B, f \rangle_{f \in S \cup L}$ in which S is locally closed, and each compact $t \in L$ is singly generated (viz $t = \bigwedge_{a \in p \in L} p$ for some $\alpha \in B$) and \mathfrak{B} satisfies the mapping condition St_3

Proof. Let S, L be jointly algebraic. By Theorem 2 of [3] there is an algebra \mathscr{L} with each compact subalgebra singleton generated and End $\mathscr{L} \cong S$, Su $\mathscr{L} \cong L$. Thus there is a representation of the required sort. Conversely if \mathfrak{B} is a faithful representation of S and L satisfying the three conditions above, observe using the *proof* of Theorem 1 of [3] that the representation on the foliation ($\mathfrak{F}(B)$, l.c. S, L) is algebraic. We need for that proof, besides the explicitly given conditions, only the fact that St₂ \mathfrak{B} holds; but from Theorem 1 above we have St₃ $\mathfrak{B} \Rightarrow$ St₂ \mathfrak{B} . Hence our hypothesis regarding the mapping condition can be used to replace the (stronger) assumption in the earlier paper that \mathfrak{B} itself was algebraic. Finally S is locally closed in $\mathfrak{F}(\mathfrak{B})$, S, L) is itself algebraic, and S, L are jointly algebraic. \Box

Note that the representation \mathfrak{B} itself need not be a concrete realization of S and L as End \mathfrak{A} and Su \mathfrak{A} for any algebra \mathfrak{A} : the assertion merely guarantees the existence of some such representation.

2*

2. Algebraic lattice extensions

If H is a lattice we denote by H_k the compact elements of H. An ideal $J \subseteq H$ is compactly embedded in H provided the map $\pi: H \rightarrow J$ given by $\pi x = \bigvee_{\substack{j \in J \\ j \leq x}} j$ preserves joins and compactness.

Theorem 2.1. If S and L are jointly algebraic and $L \cong J$ for some ideal $J \subseteq H$ which is compactly embedded in H, then S and H are jointly algebraic.

Proof. We may assume that $S = \text{End }\mathfrak{A}$ and $L = J = \text{Su }\mathfrak{A}$ for some algebra $\mathfrak{A} = \langle A; P \rangle$, and further that each $p \in L_K$ is singleton generated (see [3]). Let \mathfrak{A} be the partial unary algebra $\mathfrak{A} = \langle A; f \rangle_{f \in S \cup L}$ of the faithful algebraic representation (A, S, L). For each $p \in L_K$ fix $p^* \in A$ so that the subalgebra of \mathfrak{A} generated by $p^*, [p^*] = p$. We represent S and H (faithfully) on the disjoint union $A \bigcup H_K$ and verify that the representation is locally closed and satisfies St₃ and each compact $t \in H$ is singly generated. From Corollary 1.1 it follows that S and H are jointly algebraic.

Definition 2.1. Let $B = A \bigcup H_K$ and let r map B to H as follows: for $b \in B$

$$r(b) = \begin{cases} b & (b \in H_k) \\ \bigwedge_{\substack{a \in p \\ p \in L}} p & (b = a \in A). \end{cases}$$

Further define for $q \in H$, $B_q = \{b \in B | r(b) \le q\}$ and for $f \in S$, $f \ne id$ let

$$f(x) = \begin{cases} f(x) & (x \in A) \\ f((\pi x)^*) & (x \in H_k). \end{cases}$$

Lemma 2.1. The partial unary algebra $\mathfrak{B} = \langle B; f \rangle_{f \in S \cup H}$ corresponding to $(B, S, \{B_q | q \in H\})$ for $q \in H$ and $f \in S$, as given in Definition 2.1, is a faithful representation of S and H and each compact $t \in H$ is singly generated.

Proof. Immediate.

Lemma 2.2. The function r(b) of Definition 2.1 assigns to each $b \in B$ the rank $\{b\}$ in the representation \mathfrak{B} , i.e. r(b)=R(b).

Proof. Easy.

In the following lemma $[A]^{\mathfrak{B}}$ is the subalgebra of \mathfrak{B} generated by A.

Lemma 2.3. The map $\varepsilon: \mathfrak{B}^n \to ([A]^{\mathfrak{B}})^n$ defined by $(\varepsilon \mathbf{D})_i = \varepsilon(\mathbf{D}_i)$ where $\varepsilon(x) = \begin{cases} x & (x \in A) \\ (\pi x)^* & (x \in H_k) \end{cases}$ is a homomorphism.

The algebraic representation of semigroups and lattices; representing lattice extensions 259

Proof. Clearly $R(\varepsilon \mathbf{D}_i) \leq R(\mathbf{D}_i)$ and thus $R(\varepsilon \mathbf{D}) \leq R(\mathbf{D})$, so ε preserves partial identity maps. Furthermore if $f \in S$, $f \neq id$ and $\mathbf{D} = (p_1, ..., p_r, a_1, ..., a_t)$ then $f(\varepsilon(p_1, ..., a_t)) = f(\varepsilon p_1, ..., a_t) = (f(\varepsilon p_1)^*, ..., f(a_t)) = (f(p_1), ..., f(a_t)) = \varepsilon f(p_1, ..., a_t)$. Hence ε is substitutive over f. Clearly ε is substitutive over f = id, hence ε is a homomorphism. \Box

Lemma 2.4. If $b \in B \cap A$ and $\mathbf{D} \in B^n$ with $R(\mathbf{D}) \ge R(b)$ then there is a homomorphism $\Gamma: \mathfrak{B}^n \to \mathfrak{B}$ with $\Gamma(\mathbf{D}) = b$.

Proof. First we prove that for $\mathbf{D} = (p_1, ..., p_r, a_1, ..., a_t)$

$$[R(\mathbf{D}) \ge R(b) \Rightarrow R(\varepsilon \mathbf{D}) \ge R(b)].$$

To see this note $R(\mathbf{D}) \ge R(b) \Rightarrow \pi R(\mathbf{D}) \ge R(b)$ since π is fixed on J, and π join preserving implies $\pi R(\mathbf{D}) \ge \pi R(b) = R(b)$. But $\pi R(\mathbf{D}) = R(\varepsilon \mathbf{D})$, as follows: $R(\varepsilon \mathbf{D}) =$ $= R(\varepsilon p_1, ..., \varepsilon p_r, \varepsilon a_1, ..., \varepsilon a_i) = R(\pi p_1^*, ..., \pi p_r^*, a_1, ..., a_i) = \left(\bigvee_{i=1}^r R(\pi p_1^*)\right) \lor \left(\bigvee_{i=1}^i R(a_i)\right) =$ $= \left(\bigvee_{i=1}^r \pi p_i\right) \lor \left(\bigvee_{i=1}^r \pi R(a_i)\right) = \pi \left(\left(\bigvee_{i=1}^r p_i\right) \lor \left(\bigvee_{i=1}^r R(a_i)\right)\right) = \pi R(\mathbf{D})$. Hence $[R(\mathbf{D}) \ge R(b) \Rightarrow R(\varepsilon \mathbf{D}) = \pi R(\mathbf{D}) \ge R(b)].$

To complete the proof of Lemma 2.4 we use the fact that $\hat{\mathfrak{A}}$ is jointly algebraic concrete representation of S and L and hence satisfies $\operatorname{St}_2 \hat{\mathfrak{A}}$ (cf. Theorem 3 of [2]), and thus by Theorem 1.1 $\hat{\mathfrak{A}}$ satisfies $\operatorname{St}_3 \hat{\mathfrak{A}}$. So there is a homomorphism $\gamma: \hat{\mathfrak{A}}^n \to \hat{\mathfrak{A}}$ with $\gamma(\epsilon \mathbf{D}) = b$. Note the map γ is in fact a homomorphism $\gamma: ([A]^{\otimes n}) \to [A]^{\otimes}$ since clearly $A \in \operatorname{Su} \mathfrak{B}$ and γ admits each $f \in S \cup L$; moreover $\forall a \in A \ R(a) \in L$ thus $R(\gamma(a)) \leq R(a)$ so γ admits partial identities $f \in H - L$ as well.

Finally let $\Gamma = \gamma \circ \epsilon$. Clearly Γ has the required properties, and this completes the proof of Lemma 2.4. \Box

Lemma 2.5. If $b \in B - A$ and $R(\mathbf{D}) \ge R(b)$ then there is a homomorphism $v: \mathfrak{B}^n \to \mathfrak{B}$ with $v(\mathbf{D}) = b$.

Proof. Let $R(\mathbf{D}) \ge R(\mathbf{b})$ for some $\mathbf{D} \in B^n$ and some $b \in B - A$. We may assume $\mathbf{D} \notin A^n$ (since $\mathbf{D} \in A^n \Rightarrow R(\mathbf{D}) \in J$ and thus $R(b) \in J$ (*J* is an ideal of *H*), in which case $b \in A$). Thus $\mathbf{D} \ne f \mathbf{E}$ for any $\mathbf{E} \in B^n$ (unless $\mathbf{E} = \mathbf{D}$ *H*), and f = id). Observe that $R(\mathbf{D}) \ge R(b) = r(b) = b \ge \pi b = R((\pi b)^*)$, so by Lemma 2.4 there is a homomorphism $\Gamma: \mathfrak{B}^n \to \mathfrak{B}$ with $\Gamma(\mathbf{D}) = (\pi b)^*$. Define $v: \mathfrak{B}^n \to \mathfrak{B}$ as follows for $\mathbf{E} \in B^n: v(\mathbf{E}) = \begin{cases} \Gamma(\mathbf{E}) \ (\mathbf{E} \ne \mathbf{D}) \\ b \ (\mathbf{E} = \mathbf{D}) \end{cases}$. Clearly $R(v\mathbf{E}) \le R(\mathbf{E})$, so v preserves the partial identity operations $id \upharpoonright B_q$. To see that v is a homomorphism it remains only to check that $v(f\mathbf{E}) = f(v\mathbf{E})$ for $f \in S$. This is clearly so for f = id, so assume $f \neq id$. Then

$$\nu(f\mathbf{E}) = \Gamma(f\mathbf{E}) = f(\Gamma\mathbf{E}) = \begin{cases} f(\nu\mathbf{E}) & \text{if } \mathbf{E} \neq \mathbf{D} \\ f((\pi b)^*) & \text{if } \mathbf{E} = \mathbf{D} \end{cases} = \begin{cases} f(\nu\mathbf{E}) & \text{if } \mathbf{E} \neq \mathbf{D} \\ f(b) & \text{if } \mathbf{E} = \mathbf{D} \end{cases} = f(\nu\mathbf{E}). \square$$

Combining Lemmas 2.4 and 2.5 we see that St_3 holds for \mathfrak{B} . It remains to show that the representation of S is locally closed.

Let h be in the local closure of S as represented in \mathfrak{B} . Since the representation of S in \mathfrak{A} is algebraic it must be locally closed, and hence h!A=f!A for some $f \in S$. Now suppose $b \in H_K$. $h!\{b, (\pi b)^*\}=g!\{b, (\pi b)^*\}$ for some $g \in S$ and thus $h(b)=g(b)=g((\pi b)^*)=h((\pi b)^*)=f((\pi b)^*)=f(b)$. Consequently h=f, and S is locally closed, which completes the proof of Theorem 2.1. \Box

3. Representation of ordinal sums

Given two lattices L, T we identify the 0 of L with the 1 of T to obtain a new lattice T+L the ordinal sum of T and L, in the usual way. Thus the new lattice has as elements $T \cup L$ with the identification $\{0_L\} = \{1_T\}$ and the ordering given by $t \leq l \ \forall t \in T, \ \forall l \in L$ and $t_1 \leq t_2(l_1 \leq l_2)$ iff $t_1 \leq t_2$ in T $(l_1 \leq l_2)$ in L).

Corollary 3.1. If S and L are jointly algebraic and the 1 in L is compact (or in particular if L is finite), then S and L+T are jointly algebraic, for any compactly generated lattice T.

Proof. In Theorem 2.1 let $J=L\subseteq L+T$. \Box

Corollary 3.1 says roughly that one can add on above an algebraic lattice. The following theorem will allow us to add on below as well.

Theorem 3.2. If S and L are jointly algebraic then S and T + L are also jointly algebraic for any compactly generated lattice T.

Proof: We may assume that $S = \text{End }\mathfrak{A}$, $L = \text{Su }\mathfrak{A}$ for some algebra $\mathfrak{A} = \langle A; \mathfrak{P} \rangle$ where the minimal subalgebra of $\text{Su }\mathfrak{A}$ is non-empty (otherwise we may use the following argument (due to M. Gould). Let $B = A \cup \{a, b\}$, and let Q be the unary operation defined by Q(x) = x for $x \in A$, Q(a) = b, Q(b) = a. For $P \in \mathfrak{P}$ and x with range $x \cap \{a, b\} \neq \emptyset$ let P(x) = a. Clearly End $\mathfrak{A} \cong \text{End }\mathfrak{B}$, $\text{Su }\mathfrak{A} \cong \cong \text{Su }\mathfrak{B}$, where $\mathfrak{B} = \langle B, \mathfrak{P} \cup \{Q, a, b\}\}$. We present S and T + L on the disjoint union $B = A \cup T$ and apply Corollary 1.1 to conclude that S and T + L are jointly algebraic. Let $\mathfrak{B} = \langle B, f \rangle_{f \in S \cup (T+L)}$ with $f \in S \cup L$ given by $f(a) = \begin{cases} f(a) & (x = a \in A \land t) \\ t & (x = t \in T) \end{cases}$

and $f \in T - \{1_T\}$ given by $f(x) = \begin{cases} t & (x = t \le f \text{ in } T) \\ \text{undefined } (x = t \ne f) & \text{and } f = 1_T \text{ given by} \\ \text{undefined } (x = a \in A) \end{cases}$ $f(x) = \begin{cases} t & (x = t \in T) \\ x & (x \in [\emptyset]^{\mathfrak{A}}) \\ \text{undefined otherwise} \end{cases}$ It is routine to verify that \mathfrak{B} is a faithful representation of S and $T \neq T$.

tion of S and T + L on B. We shall show St₃ B holds. First let $b \in T$ and $D \in B^n$ with $R(D) \ge R(b)$. Define $\gamma: B^n \to B$ as follows for $\mathbf{E} \in B^n$.

$$\gamma(\mathbf{E}) = b$$
 if $R(\mathbf{E}) \ge R(b)$, $\gamma(\mathbf{E}) = R(\mathbf{E})$ if $R(\mathbf{E}) \geqq R(b)$.

Clearly γ preserves $f \in T + L$. Furthermore for $f \in S$ since $\gamma(\mathbf{E}) \in T$ we have $f\gamma(\mathbf{E}) =$ $=\gamma(\mathbf{E})=\gamma f(\mathbf{E})$ (if $\mathbf{E}\in T^n$ we have $f(\mathbf{E})=\mathbf{E}$, if $\mathbf{E}\notin T^n$, say $\mathbf{E}_i\in A$ then $R(\mathbf{E})\geq 1$ $\geq R(b)$ so $\gamma(E) = b$ and $\gamma(fE) = b$ as well since $f(E) \notin T^n$ either). Now let $b \in A$ with $R(\mathbf{D}) \ge R(b)$. Thus **D** meets A^n , that is $I = \{i \mid 1 \le i \le n, \mathbf{D} \in A\} \ne \emptyset$. Let m = |I|. Let $\mathbf{D}_{n_1}, ..., \mathbf{D}_{n_m}$ be the coordinate projections of **D** which are in *A*. The map $\sigma: \mathfrak{B}^n \to \mathfrak{B}^m$ with $(\sigma \mathbf{E})_i = \mathbf{E}_{n_i}$ is a homomorphism. Now St₃ $\hat{\mathfrak{U}}$ holds for $\hat{\mathfrak{A}} = \langle A, f \rangle_{f \in S \cup L}$ with $S = \text{End} \mathfrak{A}$ and $L = \{ \text{id} | C | C \in \text{Su} \mathfrak{A} \}$ since $L = \text{Su} \mathfrak{A}$ Hence there is a homomorphism $\varepsilon: \hat{\mathfrak{A}}^m \to \hat{\mathfrak{B}}$ with $\varepsilon(\sigma(\mathbf{D})) = b$ (clearly $R(\mathbf{D}) \ge R(b)$ in \mathfrak{B} implies $R(\sigma(\mathbf{D})) \ge R(b)$ in $\hat{\mathfrak{A}}$). Now let $v: \mathfrak{B}^m \to \mathfrak{B}$ be as follows:

$$\mathbf{v}(\mathbf{E}) = \begin{cases} \varepsilon(\mathbf{E}) & \text{if } \mathbf{E} \in A^m \\ \mathbf{0}_T & \text{otherwise} \end{cases}$$

The map v is a homomorphism and the composition $v \circ \sigma$: $\mathfrak{B}^n \to \mathfrak{B}$ with $v \circ \sigma(D) = b$ is the required homomorphism.

Once again all that remains is to show that the representation of S is locally closed. This follows immediately from the fact that S is locally closed in $\hat{\mathfrak{A}}$. Furthermore without loss of generality each compact $t \in Su \mathfrak{A}$ is singly generated, and it follows that each compact $t \in H$ is singly generated. This completes the proof of Theorem 3.2.

References

- [1] B. JÓNSSON, Topics in Universal Algebra, Springer-Verlag (New York, 1972).
- [2] N. SAUER, and M. G. STONE, Endomorphism and subalgebra structure; a concrete characterization, Acta Sci. Math., 38 (1977), 397-402.
- [3] N. SAUER and M. G. STONE, The algebraic representation of semigroups and lattices; representing subsemigroups, Acta Sci. Math., 42 (1980), 313-323.

THE UNIVERSITY OF CALGARY CALGARY, CANADA