# The algebraic representation of semigroups and lattices; representing lattice extensions 

R. BIRKENHEAD, N. SAUER and M. G. STONE

## Introduction

A monoid $S$ and lattice $L$ are jointly algebraic if there is a universal algebra $\mathfrak{U}$ with $S \cong$ End $\mathfrak{A}$ and $L \cong S u \mathfrak{Q}$. For $S$ and $L$ jointly algebraic submonoids of $S$ which are also jointly algebraic with $L$ are studied in [3]. Here we consider certain lattice extensions of $L$ which are also jointly algebraic with $S$. Concrete representations are again used to derive abstract results.

## 1. Concrete representations

As in [3] we say a partial unary algebra $\mathfrak{B}=\langle B ; f\rangle_{f \in S} \cup_{L}$ represents $S$ (a monoid) and $L$ (a compactly generated lattice) on $B$ provided: (i) the operations $f \in S$ form a transformation monoid on $B$ with $f g(b)=f(g(b))$ and id $(b)=b$, for $f, g \in S$, $b \in B$ and, (ii) the operations $p, q \in L$ are partial identity maps on $B$ with range $p \cap$ กrange $q=$ range $p \wedge q$, and the map denoted by $1 \in L$ is the total identity map on $B$. The representation is faithful if for any $f, g \in S$ with $f \neq g$ there is a $b \in B$ with $f(b) \neq g(b)$, and for any $p, q \in L, p \neq q$, we have range $p \neq$ range $q$. We use $\mathfrak{B}^{n}$ to denote the usual $n$-fold direct power of $\mathfrak{B}$.

We shall use systems of equations, $\Sigma$, of the form $f x=g$, with coefficients $f, g \in S \cup L$, as defined in [2]. Spt $\Sigma$ is the support of $\Sigma$, i.e. the set of points on which $\Sigma$ has a solution (cf. [2]). Observe that for a homomorphism $\alpha: \mathfrak{A} \rightarrow \mathfrak{B}$ between partial unary algebras each of which faithfully represents $S$ and $L$ we have that $a \in \operatorname{Spt} \Sigma$ on $\mathfrak{A}$ implies $\alpha(a) \in \operatorname{Spt} \Sigma$ on $\mathfrak{B}$.

Let $B$ be a faithful representation of $S$ and $L$ on $B$.
Definition 1.1. For $C \subseteq B$ the rank of $C$ in $\mathfrak{B}$ is $R(C)=\wedge\{f \mid f \in L$, id $\mid C \subseteq f\}$.

[^0]The rank function $R$ maps subsets of $B$ into the lattice $L$. For convenience we denote $R(\{b\})$ by $R(b)$, for $b \in B$. For a sequence $D \in B^{n}$ we use the lattice join to define the rank of $D$ by

$$
R(\mathbf{D})=\bigvee_{i=1}^{n} R\left(\mathbf{D}_{i}\right) .
$$

Note that for $D$ finite, $D \subseteq B, R(D)=R(D)$ for any $\mathbf{D} \in B^{n}$ with range $\mathbf{D}=D$.
We shall need a form of the concrete representation theorem for endomorphisms and subalgebras found in [2]. The letter $n$ will denote a positive integer, and $D \subset_{f} B$ will abbreviate " $D$ is a finite subset of $B$ ".

Definition 1.2. We say Statement 3 holds for $\mathfrak{B}$, or more briefly $\mathrm{St}_{3} B$ provided given any $b \in B$ and $\mathbf{D} \in B^{n}$ with $R(\mathbf{D}) \geqq R(b)$ there is a homomorphism $\alpha: \mathfrak{B}^{n} \rightarrow \mathfrak{B}$ with $\alpha(\mathbf{D})=b$.

Recall from [3] that we write ( $B, S, L$ ) as a triple to denote a faithful representation of $S$ as a transformation monoid on $B$ and of $L$ as an intersection structure on $B$. Clearly $\mathfrak{B}$ is a faithful representation of $S$ and $L$ on $B$ if and only if $(B, S,\{f(B) \mid f \in L\})$ holds. The work in [2] made use of the following Statement 2 concerning ( $B, S, L$ ): we say $\mathrm{St}_{2}(B, S, L)$ holds provided

$$
\forall C \cong B\left[C=\bigcup_{D \subset_{\mathrm{f}} c} c \bigcap_{D \in \mathrm{Spt} \Sigma} \operatorname{Spt} \Sigma \Rightarrow C \in L\right] .
$$

Clearly $\mathrm{St}_{2}(B, S,\{f(B) \mid f \in L\})$ is equivalent to Statement $2^{\prime}$ concerning $\mathfrak{B}$, viz

$$
\mathrm{St}_{2}^{\prime} \mathfrak{B}: \forall C \cong B\left[C=\bigcup_{D \subset_{\mathrm{f}} C} \bigcap_{D \subseteq \mathrm{Spt} \Sigma} \operatorname{Spt} \Sigma \Rightarrow \mathrm{id} \upharpoonright C \in L\right]
$$

by virtue of the natural correspondence between subsets of $B$ and their respective partial identities. The form of the representation theorem we need follows from:

Theorem 1.1. $\mathrm{St}_{\mathbf{3}} \mathfrak{B} \Leftrightarrow \mathrm{St}_{2}^{\prime} \mathfrak{B}$.
Proof. Assume $\mathrm{St}_{3} \mathfrak{B}$ holds for $\mathfrak{B}$ and let $C$ satisfy the hypotheses of $\mathrm{St}_{2}^{\prime} \mathfrak{B}$. Note $\operatorname{idf} C \in L$ iff idi $C=\bigvee_{D \in \mathrm{r}} C(D)$ iff $C=\bigcup_{D \in C_{r} C}$ range $R(D)$. Thus to show id) $C \in L$ it suffices to prove that range $R(D)=\bigcap_{D \leq s p t}^{-}$Spt $\Sigma$ for $D$ finite. We have range $R(D)=$ range $\wedge\{Q \mid Q \in L$, id $D \subseteq Q\}=\bigcap_{\text {id } \mid D \subseteq Q \in L}$ range $Q$ and for $Q \in L, D \subseteq$ range $Q=\operatorname{dom} Q=\operatorname{Spt}\left\{Q x^{\Sigma}=Q\right\}$ and hence range $R(D) \supseteqq \bigcap_{D \leqq \operatorname{spt} \Sigma} \operatorname{Spt} \Sigma$. To show the opposite inclusion, fix $b \in$ range $R(D)$ and let $\mathbf{D} \in B^{n}$ with range $\mathbf{D}=D$. Since $b \in$ range $R(D)$ we have $R(b) \leqq R(D)$, thus by $\mathrm{St}_{3} \mathfrak{B}$ there is a homomorphism $\alpha: \mathfrak{B}^{n} \rightarrow \mathfrak{B}$ with $\alpha(\mathbf{D})=b$. Now $D \subseteq \operatorname{Spt} \Sigma$ on $\mathfrak{B}$ implies $\mathbf{D} \in \operatorname{Spt} \Sigma$ on $\mathfrak{B}^{n}$ and applying $\alpha$ we have $\alpha(\mathbf{D})=b \in \operatorname{Spt} \Sigma$ on $\mathfrak{B}$. Thus $D \subseteq \operatorname{Spt} \Sigma \Rightarrow b \in \operatorname{Spt} \Sigma$, and range $R(D) \subseteq \bigcap_{D \cong S p t \Sigma}$ Spt $\Sigma$.

Conversely assume $\mathrm{St}_{2}^{\prime} \mathfrak{B}$. Let $b \in B, \mathbf{D} \in B^{n}$ with $R(b) \leqq R(\mathrm{D})$; we show for any system of equations $\Sigma$ over $S$ and $L$ that $\mathrm{D} \in \operatorname{Spt} \Sigma$ on $B^{n} \Rightarrow b \in \operatorname{Spt} \Sigma$ on $B$. To see this observe that $\mathrm{St}_{2}$ says for $\bar{C}=\underset{D C_{\mathrm{f}} C}{ } \bigcup_{D \cong S_{p t .}} \operatorname{Spt} \Sigma$, that $\bar{C}=C$ implies $C \in\{f(B) \mid f \in L\}$. Also $\bar{C}=\bar{C}$ since the indicated bar operation is a closure operator (cf. Lemma $\bar{S}^{\prime}$ of [2]). Thus $\bar{C} \in\{f(B) \mid f \in L\}$ and hence $\mathrm{id} \mid \bar{C} \in L$. Now since $R(b) \leqq$ $\leqq R(D)$, where $D=$ range $D$, we have $b \in$ range $R(D)=\bigcap_{\text {id } \mid \subseteq \subseteq \in L}$ range $Q$. But $\operatorname{id}|D \subseteq \operatorname{id}| \bar{D} \in L$, therefore $\quad b \in$ range id $\mid \bar{D}$, i.e. $\quad b \in \bar{D}=\bigcup_{E C_{\mathfrak{f}} D} \bigcap_{D \leqq \operatorname{spt} \Sigma} \operatorname{Spt} \Sigma=$ $=\bigcup_{D \subseteq \operatorname{Spt} \Sigma} \operatorname{Spt} \Sigma$ since $D$ is finite. Thus $b \in \operatorname{Spt} \Sigma$ whenever $D \subseteq \operatorname{Spt} \Sigma$ and the assertion $\left[\mathbf{D} \in \operatorname{Spt} \Sigma\right.$ on $B^{n} \Rightarrow b \in \operatorname{Spt} \Sigma$ on $\left.B\right]$ follows. To show $\mathrm{St}_{3}$ holds we obtain the required homomorphism as follows: consider the system of equations whose variables are indexed by $B^{n}$, and let $f x_{\mathbf{h}}=x_{\mathbf{k}} \in \Sigma$ iff $f(\mathbf{h})=\mathbf{k}$, where $f \in S \cup L$. Thus $\Sigma$ is the full diagram of $S$ and $L$ on $\mathfrak{B}^{n}$. Let $\Gamma=\Sigma \cup\left\{i d x_{\mathbf{D}}=\mathrm{id}\right\}$. Choose $\boldsymbol{\beta}$, an assignment of the variables of $\Sigma$ to be $\beta\left(x_{\mathrm{e}}\right)=\mathbf{e}$, i.e. every variable is assigned to a constant map. Clearly $\boldsymbol{\beta}$ satisfies $\Gamma$ at $\mathbf{D}$, hence $\mathbf{D} \in \operatorname{Spt} \Gamma$ on $\mathfrak{B}^{n}$. Then by the above argument $b \in \operatorname{Spt} \Gamma$ on $\mathfrak{B}$. Let $\hat{\beta}$ be an assignment which satisfies $\Sigma$ on $\mathfrak{B}$. Then $\hat{\beta}\left(x_{\mathbf{D}}\right)(b)=b$ since id $x_{\mathbf{D}}=\operatorname{id} \in \Gamma$. Let $\alpha: \mathfrak{B}^{n} \rightarrow \mathfrak{B}$ be given by $\alpha(\mathbf{e})=\hat{\beta}\left(x_{\mathrm{e}}\right)(b)$, thus $\ddot{\alpha}(\mathbf{D})=b$. It is easy to verify that $\alpha$ is a homomorphism.

Corollary 1.1. For a monoid $S$ and a compactly generated lattice $L, S$ and $L$ are jointly algebraic iff there is a faithfill representation $\mathfrak{B}=\langle B, f\rangle_{f \in S \cup_{L}}$ in which $S$ is locally closed, and each compact $t \in L$ is singly generated (viz $t=\bigwedge_{a \in p \in L} p$ for some $\alpha \in B$ ) and $\mathfrak{B}$ satisfies the mapping condition $\mathrm{St}_{3}$

Proof. Let $S, L$ be jointly algebraic. By Theorem 2 of [3] there is an algebra $\mathscr{L}$ with each compact subalgebra singleton generated and End $\mathscr{L} \cong S, \mathrm{Su} \mathscr{L} \cong L$. Thus there is a representation of the required sort. Conversely if $\mathfrak{B}$ is a faithful representation of $S$ and $L$ satisfying the three conditions above, observe using the proof of Theorem 1 of [3] that the representation on the foliation ( $\mathcal{F}(B)$, l.c. $S, L$ ) is algebraic. We need for that proof, besides the explicitly given conditions, only the fact that $\mathrm{St}_{2} \mathfrak{B}$ holds; but from Theorem 1 above we have $\mathrm{St}_{3} \mathfrak{B} \Rightarrow \mathrm{St}_{2} \mathfrak{B}$. Hence our hypothesis regarding the mapping condition can be used to replace the (stronger) assumption in the earlier paper that $\mathfrak{B}$ itself was algebraic. Finally $S$ is locally closed in $\mathfrak{F}(\mathfrak{B})$ whenever $S$ is locally closed in $\mathfrak{B}$ (see [3] for $\mathfrak{F}(\mathfrak{B})$, the foliation of $\mathfrak{B}$ ). Hence $(\mathfrak{F}(B), S, L)$ is itself algebraic, and $S, L$ are jointly algebraic.

Note that the representation $\mathfrak{B}$ itself need not be a concrete realization of $S$ and $L$ as End $\mathfrak{G}$ and $\mathrm{Su} \mathfrak{A}$ for any algebra $\mathfrak{A}$ : the assertion merely guarantees the existence of some such representation.

## 2. Algebraic lattice extensions

If $H$ is a lattice we denote by $H_{k}$ the compact elements of $H$. An ideal $J \subseteq H$ is compactly embedded in $H$ provided the map $\pi: H \rightarrow J$ given by $\pi x=\underset{\substack{j \in J \\ j \equiv x}}{ } j$ preserves
joins and compactness.

Theorem 2.1. If $S$ and $L$ are jointly algebraic and $L \cong J$ for some ideal $J \subseteq H$ which is compactly embedded in $H$, then $S$ and $H$ are jointly algebraic.

Proof. We may assume that $S=$ End $\mathfrak{H}$ and $L=J=S u \mathfrak{Q}$ for some algebra $\mathfrak{Y}=\langle A ; P\rangle$, and further that each $p \in L_{K}$ is singleton generated (see [3]). Let $\hat{\mathfrak{U}}$ be the partial unary algebra $\hat{\mathfrak{U}}=\langle A ; f\rangle_{f \in S U_{L}}$ of the faithful algebraic representation $(A, S, L)$. For each $p \in L_{K}$ fix $p^{*} \in A$ so that the subalgebra of $\mathfrak{H}$ generated by $p^{*},\left[p^{*}\right]=p$. We represent $S$ and $H$ (faithfully) on the disjoint union $A \cup \cup H_{K}$ and verify that the representation is locally closed and satisfies $\mathrm{St}_{3}$ and each compact $t \in H$ is singly generated. From Corollary 1.1 it follows that $S$ and $H$ are jointly algebraic.

Definition 2.1. Let $B=\dot{\cup} \dot{\cup} H_{K}$ and let $r$ map $B$ to $H$ as follows: for $b \in B$

$$
r(b)= \begin{cases}b & \left(b \in H_{k}\right) \\ \wedge_{\substack{a \in p \\ p \in L}} p & (b=a \in A)\end{cases}
$$

Further define for $q \in H, B_{q}=\{b \in B \mid r(b) \leqq q\}$ and for $f \in S, f \neq$ id let

$$
f(x)= \begin{cases}f(x) & (x \in A) \\ f\left((\pi x)^{*}\right) & \left(x \in H_{k}\right)\end{cases}
$$

Lemma 2.1. The partial unary algebra $\mathfrak{B}=\langle B ; f\rangle_{f \in S U H}$ corresponding to (B, $S,\left\{B_{q} \mid q \in H\right\}$ ) for $q \in H$ and $f \in S$, as given in Definition 2.1, is a faithful representation of $S$ and $H$ and each compact $t \in H$ is singly generated.

Proof. Immediate.
Lemma 2.2. The function $r(b)$ of Definition 2.1 assigns to each $b \in B$ the rank $\{b\}$ in the representation $\mathfrak{B}$, i.e. $r(b)=R(b)$.

Proof. Easy.
In the following lemma $[A]^{\mathfrak{B}}$ is the subalgebra of $\mathfrak{B}$ generated by $A$.
Lemma 2.3. The map $\varepsilon: \mathfrak{B}^{n} \rightarrow\left([A]^{\mathfrak{B}}\right)^{n}$ defined by $(E \mathbf{D})_{i}=\varepsilon\left(\mathbf{D}_{i}\right)$ where $\varepsilon(x)=\left\{\begin{array}{cc}x & (x \in A) \\ (\pi x)^{*} & \left(x \in H_{k}\right)\end{array}\right.$ is a homomorphism.

Proof. Clearly $R\left(\varepsilon \mathbf{D}_{i}\right) \leqq R\left(\mathbf{D}_{i}\right)$ and thus $R(\mathrm{ED}) \leqq R(\mathbf{D})$, so $\varepsilon$ preserves partial identity maps. Furthermore if $f \in S, f \neq \mathrm{id}$ and $\mathbf{D}=\left(p_{1}, \ldots, p_{r}, a_{1}, \ldots, a_{t}\right)$ then $f\left(\varepsilon\left(p_{1}, \ldots, a_{t}\right)\right)=f\left(\varepsilon p_{1}, \ldots, a_{t}\right)=\left(f\left(\varepsilon p_{1}\right)^{*}, \ldots, f\left(a_{t}\right)\right)=\left(f\left(p_{1}\right), \ldots, f\left(a_{t}\right)\right)=\varepsilon f\left(p_{1}, \ldots, a_{t}\right)$. Hence $\varepsilon$ is substitutive over $f$. Clearly $\varepsilon$ is substitutive over $f=\mathrm{id}$, hence $\varepsilon$ is a homomorphism.

Lemma 2.4. If $b \in B \cap A$ and $\mathbf{D} \in B^{n}$ with $R(\mathbf{D}) \geqq R(b)$ then there is a homomorphism $\Gamma: \mathfrak{B}^{n} \rightarrow \mathfrak{B}$ with $\Gamma(\mathbf{D})=b$.

Proof. First we prove that for $\mathbf{D}=\left(p_{1}, \ldots, p_{r}, a_{1}, \ldots, a_{t}\right)$

$$
[R(\mathbf{D}) \geqq R(b) \Rightarrow R(\varepsilon \mathbf{D}) \geqq R(b)] .
$$

To see this note $R(\mathbf{D}) \geqq R(b) \Rightarrow \pi R(\mathbf{D}) \geqq R(b)$ since $\pi$ is fixed on $J$, and $\pi$ join preserving implies $\pi R(\mathbf{D}) \geqq \pi R(b)=R(b)$. But $\pi R(\mathbf{D})=R(\varepsilon \mathbf{D})$, as follows: $R(\varepsilon \mathbf{D})=$

$$
\begin{gathered}
=R\left(\varepsilon p_{1}, \ldots, \varepsilon p_{r}, \varepsilon a_{1}, \ldots, \varepsilon a_{t}\right)=R\left(\pi p_{1}^{*}, \ldots, \pi p_{r}^{*}, a_{1}, \ldots, a_{i}\right)=\left({\left.\underset{i=1}{\vee} R\left(\pi p_{1}^{*}\right)\right) \vee\left({\underset{V}{V}}_{t} R\left(a_{i}\right)\right)=}_{=\left(\bigvee_{i=1}^{\vee} \pi p_{i}\right) \vee\left(\bigvee_{i=1}^{*} \pi R\left(a_{i}\right)\right)=\pi\left(\left(\bigvee_{i=1}^{r} p_{i}\right) \vee\left(\bigvee_{i=1}^{\dot{V}} R\left(a_{i}\right)\right)\right)=\pi R(\mathbf{D}) . \text { Hence }}^{[R(\mathbf{D}) \geqq R(b) \Rightarrow R(\varepsilon \mathbf{D})=\pi R(\mathbf{D}) \geqq R(b)] .}\right.
\end{gathered}
$$

To complete the proof of Lemma 2.4 we use the fact that $\hat{\mathfrak{A}}$ is jointly algebraic concrete representation of $S$ and $L$ and hence satisfies $\mathrm{St}_{2} \hat{\mathfrak{Q}}$ (cf. Theorem 3 of [2]), and thus by Theorem $1.1 \hat{\mathfrak{Q} \hat{y}}$ satisfies $\mathrm{St}_{3} \hat{\mathfrak{U}}$. So there is a homomorphism $\gamma: \hat{\mathfrak{A}}^{n} \rightarrow \hat{\mathfrak{U}}$ with $\gamma(\varepsilon \mathbf{D})=b$. Note the map $\gamma$ is in fact a homomorphism $\gamma:\left([A]^{1{ }^{1 n}}\right) \rightarrow[A]^{\mathfrak{3}}$ since clearly $A \in S u \mathfrak{B}$ and $\gamma$ admits each $f \in S \cup L$; moreover $\forall a \in A R(a) \in L$ thus $R(\gamma(a)) \leqq R(a)$ so $\gamma$ admits partial identities $f \in H-L$ as well.

Finally let $\Gamma=\gamma \circ \varepsilon$. Clearly $\Gamma$ has the required properties, and this completes the proof of Lemma 2.4.

Lemma 2.5. If $b \in B-A$ and $R(\mathbf{D}) \geqq R(b)$ then there is a homomorphism $\nu: \mathfrak{B}^{n} \rightarrow \mathfrak{B}$ with $\nu(\mathbf{D})=b$.

Proof. Let $R(\mathbf{D}) \geqq R(\mathbf{b})$ for some $\mathbf{D} \in B^{n}$ and some $b \in B-A$. We may assume $\mathbf{D} ₫ A^{n}$ (since $\mathbf{D} \in A^{n} \Rightarrow R(\mathbf{D}) \in J$ and thus $R(b) \in J$ ( $J$ is an ideal of $H$ ), in which case $b \in A$ ). Thus $\mathbf{D} \neq f \mathbf{E}$ for any $\mathbf{E} \in B^{n}$ (unless $\mathbf{E}=\mathbf{D}$ $H)$, and $f=\mathrm{id})$. Observe that $R(\mathbf{D}) \geqq R(b)=r(b)=b \geqq \pi b=R\left((\pi b)^{*}\right)$, so by Lemma 2.4 there is a homomorphism $\Gamma: \mathfrak{B}^{n} \rightarrow \mathfrak{B}$ with $\Gamma(\mathbf{D})=(\pi b)^{*}$. Define $v: \mathfrak{B}^{n} \rightarrow \mathfrak{B}$ as follows for $\mathbf{E} \in B^{n}: v(\mathbf{E})=\left\{\begin{array}{cc}\Gamma(\mathbf{E}) & (\mathbf{E} \neq \mathbf{D}) \\ b & (\mathbf{E}=\mathbf{D})\end{array}\right.$. Clearly $R(v \mathbf{E}) \leqq R(\mathbf{E})$, so $v$ preserves the partial identity operations id $\dagger B_{q}$. To see that $v$ is a homomorphism it remains only to check that $v(f \mathbf{E})=f(v \mathbf{E})$ for $f \in S$. This is clearly so for $f=\mathrm{id}$;
so assume $f \neq \mathrm{id}$. Then
$v(f \mathbf{E})=\Gamma(f \mathbf{E})=f(\Gamma \mathbf{E})=\left\{\begin{array}{cll}f(\nu \mathbf{E}) & \text { if } & \mathbf{E} \neq \mathbf{D} \\ f\left((\pi b)^{*}\right) & \text { if } & \mathbf{E}=\mathbf{D}\end{array}=\left\{\begin{array}{ccc}f(\nu \mathbf{E}) & \text { if } & \mathbf{E} \neq \mathbf{D} \\ f(b) & \text { if } & \mathbf{E}=\mathbf{D}\end{array}=f(\nu \mathbf{E})\right.\right.$.

Combining Lemmas 2.4 and 2.5 we see that $\mathrm{St}_{3}$ holds for $\mathfrak{B}$. It remains to show that the representation of $S$ is locally closed.

Let $h$ be in the local closure of $S$ as represented in $\mathfrak{B}$. Since the representation of $S$ in $\mathfrak{H}$ is algebraic it must be locally closed, and hence $h \uparrow A=f \uparrow A$ for some $f \in S$. Now suppose $b \in H_{K} . h \uparrow\left\{b,(\pi b)^{*}\right\}=g \dagger\left\{b,(\pi b)^{*}\right\}$ for some $g \in S$ and thus $h(b)=g(b)=g\left((\pi b)^{*}\right)=h\left((\pi b)^{*}\right)=f\left((\pi b)^{*}\right)=f(b)$. Consequently $h=f$, and $S$ is locally closed, which completes the proof of Theorem 2.1.

## 3. Representation of ordinal sums

Given two lattices $L, T$ we identify the 0 of $L$ with the 1 of $T$ to obtain a new lattice $T \dot{+} L$ the ordinal sum of $T$ and $L$, in the usual way. Thus the new lattice has as elements $T \cup L$ with the identification $\left\{0_{L}\right\}=\left\{1_{T}\right\}$ and the ordering given by $t \leqq l \forall t \in T, \forall l \in L$ and $t_{1} \leqq t_{2}\left(l_{1} \leqq l_{2}\right)$ iff $t_{1} \leqq t_{2}$ in $T\left(l_{1} \leqq l_{2}\right.$ in $L$ ).

Corollary 3.1. If $S$ and $L$ are jointly algebraic and the 1 in $L$ is compact (or in particular if $L$ is finite), then $S$ and $L \dot{+} T$ are jointly algebraic, for any compactly generated lattice $T$.

Proof. In Theorem 2.1 let $J=L \subseteq L \dot{+} T$.
Corollary 3.1 says roughly that one can add on above an algebraic lattice. The following theorem will allow us to add on below as well.

Theorem 3.2. If' $S$ and $L$ are jointly algebraic then $S$ and $T+L$ are also jointly algebraic for any compactly generated lattice $T$.

Proof: We may assume that $S=$ End $\mathfrak{H}, L=\operatorname{Su} \mathfrak{A}$ for some algebra $\mathfrak{Q}=\langle A ; \mathfrak{P}\rangle$ where the minimal subalgebra of $\mathrm{Su} \mathfrak{A}$ is non-empty (otherwise we may use the following argument (due to M . Gould). Let $B=A \cup\{a, b\}$, and let $Q$ be the unary operation defined by $Q(x)=x$ for $x \in A, Q(a)=\dot{b}, Q(b)=a$. For $P \in \mathfrak{P}$ and $x$ with range $x \cap\{a, b\} \neq 0$ let $P(x)=a ̈$. Clearly End $\mathfrak{H} \cong$ End $\mathfrak{B}, \mathrm{Su} \cdot \mathfrak{H} \cong$ $\cong S u \mathfrak{B}$, where $\mathfrak{B}=\langle B, \mathfrak{P} \cup\{Q, a, b\rangle\}$ ). We present $S$ and $T \dot{+} L$ on the disjoint union $B=A \dot{\cup} T$ and apply Corollary 1.1 to conclude that $S$ and $T+L$ are jointly algebraic. Let,$\dot{B}=\langle B, f\rangle_{S \in S \cup(T+L)}$ with $f \in S \cup L$ given by $f(a)=\left\{\begin{array}{cc}f(a) & (x=a \in A \\ t & (x=t \in T)\end{array}\right.$
and $f \in T-\left\{1_{T}\right\}$ given by $f(x)=\left\{\begin{array}{ll}t & (x=t \leqq f \text { in } T) \\ \text { undefined } & (x=t \quad t ⿻ 肀 二 \\ \text { undefined } & (x=a \in A)\end{array}\right.$ and $f=1_{T}$ given by $f(x)=\left\{\begin{array}{l}t(x=t \in T) \\ x\left(x \in[\emptyset)^{2 r}\right) \\ \text { undefined otherwise }\end{array}\right.$.
tion of $S$ and $T+L$ on $B$ ．We shall show $\mathrm{St}_{3} \mathfrak{B}$ holds．First let $b \in T$ and $D \in B^{n}$ with $R(D) \geqq R(b)$ ．Define $\gamma: B^{n} \rightarrow B$ as follows for $\mathbf{E} \in B^{n}$ ．

$$
\gamma(\mathbf{E})=b \quad \text { if } \quad R(\mathbf{E}) \geqq R(b), \quad \gamma(\mathbf{E})=R(\mathbf{E}) \quad \text { if } \quad R(\mathbf{E}) \neq R(b) .
$$

Clearly $\gamma$ preserves $f \in T \dot{+} L$ ．Furthermore for $f \in S$ since $\gamma(\mathbf{E}) \in T$ we have $f \gamma(\mathbf{E})=$ $=\gamma(\mathbf{E})=\gamma f(\mathbf{E})$（if $\mathbf{E} \in T^{n}$ we have $f(\mathbf{E})=\mathbf{E}$ ，if $\mathbf{E} \notin T^{n}$ ，say $\mathbf{E}_{i} \in A$ then $R(\mathbf{E}) \geqq$ $\geqq R(b)$ so $\gamma(\mathbf{E})=b$ and $\gamma(f \mathbf{E})=b$ as well since $f(\mathbf{E}) \notin T^{n}$ either）．Now let $b \in A$ with $R(\mathbf{D}) \geqq R(b)$ ．Thus $\mathbf{D}$ meets $A^{n}$ ，that is $I=\left\{i \mid 1 \leqq i \leqq n, \mathbf{D}_{i} \in A\right\} \neq \emptyset$ ．Let $m=|I|$ ． Let $\mathbf{D}_{n_{1}}, \ldots, \mathbf{D}_{n_{m}}$ be the coordinate projections of $\mathbf{D}$ which are in $A$ ．The map $\sigma: \mathfrak{B}^{n} \rightarrow \mathfrak{B}^{m}$ with $(\sigma \mathbf{E})_{i}=\mathbf{E}_{n_{i}}$ is a homomorphism．Now $\mathrm{St}_{3} \hat{\mathfrak{H}}$ holds for $\hat{\mathfrak{A}}=\langle A, f\rangle_{f \in S \cup L}$ with $S=$ End $\mathfrak{H}$ and $L=\{\mathrm{id}|C| C \in \mathrm{Su} \mathfrak{A}\}$ since $L=\mathrm{Su} \mathfrak{A}$ Hence there is a homomorphism $\varepsilon: \hat{\mathfrak{Y}}^{m} \rightarrow \hat{\mathfrak{B}}$ with $\varepsilon(\sigma(\mathbf{D}))=b$（clearly $R(\mathbf{D}) \geqq R(b)$ in $\mathfrak{B}$ implies $R(\sigma(\mathbf{D})) \geqq R(b)$ in $\hat{\mathfrak{A}})$ ．Now let $v: \mathfrak{B}^{m} \rightarrow \mathfrak{B}$ be as follows：

$$
\nu(\mathbf{E})=\left\{\begin{array}{l}
\varepsilon(\mathbf{E}) \quad \text { if } \quad \mathbf{E} \in A^{m} \\
0_{T} \quad \text { otherwise }
\end{array}\right.
$$

The map $v$ is a homomorphism and the composition $\nu \circ \sigma: \mathfrak{B}^{n} \rightarrow \mathfrak{B}$ with $v \circ \sigma(D)=b$ is the required homomorphism．

Once again all that remains is to show that the representation of $S$ is locally closed．This follows immediately from the fact that $S$ is locally closed in $\hat{\mathfrak{A}}$ ．Further－ more without loss of generality each compact $t \in \mathrm{Su} \mathfrak{A}$ is singly generated，and it follows that each compact $t \in H$ is singly generated．This completes the proof of Theorem 3．2．

## References

［1］B．Jónsson，Topics in Universal Algebra，Springer－Verlag（New York，1972）．
［2］N．Sauer，and M．G．Stone，Endomorphism and subalgebra structure；a concrete character－ ization，Acta Sci．Math．， 38 （1977），397－402．
［3］N．Sauer and M．G．Stone，The algebraic representation of semigroups and lattices；repre－ senting subsemigroups，Acta Sci．Math．， 42 （1980），313－323．


[^0]:    Received January 4, and in revised form March 30, 1979.

