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The algebraic representation of semigroups and lattices; 
representing lattice extensions 

R. BIRKENHEAD, N. SAUER and M. G. STONE 

Introduction 

A monoid S and lattice L are jointly algebraic if there is a universal algebra 21 
with Ssz End 91 and Z,s=Su9l. For S and L jointly a.\gebra.icjsubmonoids of S 
which are also jointly algebraic with L are studied in [3]. Here we consider certain 
lattice extensions of L which are also jointly algebraic with S. Concrete representa-
tions are again used to derive abstract results. 

1. Concrete representations 

As in [3] we say a partial unary algebra S=(2? ; / ) / € S represents S (a monoid) 
and L (a compactly generated lattice) on B provided: (i) the operations f£S form 
a transformation monoid on B with fg(b)=f(g(b)) andf id (b)=b, for / , g£ S, 
b£B and, (ii) the operations p, q£L are partial identity maps on B with rangepD 
Drange q=range/»A<7, and the map denoted by is the total identity map on 
B. The representation is faithful if for any f g£S with f ^ g there is a b£B with 
f(b)^g(b), and for any p,q£L, p^q, we have range/?grange q. We use S" to 
denote the usual n-fold direct power of S . 

We shall use systems of equations, I , of the form fx—g, with coefficients 
f g€ SUL, as defined in [2]. Spt I is the support of I , i.e. the set of points on 
which E has a solution (cf. [2]). Observe that for a homomorphism a: 
between partial unary algebras each of which faithfully represents S and L we have 
that ad Spt I on 91 implies a (a) 6 Spt I o n ® . 

Let 93 be a faithful representation of S and L on B. 

Def in i t i on 1.1. For CQB the rank of C in S is R(C)= A{f\f£L,id\C<gf). 
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The rank function R maps subsets of B into the lattice L. For convenience we 
denote R({b}) by R(b), for b£B. For a sequence D£B" we use the lattice join to 
define the rank of D by 

J?(D) = V *<Pd. 
¡=1 

Note that for D finite, D<gB, R{D)=R{D) for any D£Bn with rangeD=D. 
We shall need a form of the concrete representation theorem for endomorphisms 

and subalgebras found in [2]. The letter n will denote a positive integer, and Dc(B 
will abbreviate "D is a finite subset of B". 

D e f i n i t i o n 1.2. We say Statement 3 holds for 23, or more briefly St3 B 
provided given any b£B and D£B" with R(D)^R(b) there is a homomorphism 
a: ®"~® with a(D)=6. 

Recall from [3] that we write (B, S, L) as a triple to denote a faithful representa-
tion of iS as a transformation monoid on B and of L as an intersection structure 
on B. Clearly S is a faithful representation of 5 and L on B if and only if 
{B, S, {f(B)\feL}) holds. The work in [2] made use of the following Statement 2 
concerning (B, S, L): we say St2 (B, S, L) holds provided 

V C ^ f i [ C = U D Spt r=»C€L] . 
DCfCDcSpti 

Clearly St2 (B, S, {f(B)\f£L}) is equivalent to Statement 2' concerning 23, viz 

S t£93 :VCgj? [C= IJ f ) Sp t r=> id rC€£] 
B c f C D g S p t i 

by virtue of the natural correspondence between subsets of B and their respective 
partial identities. The form of the representation theorem we need follows from: 

Theorem 1.1. St3 ®<=>Sta ®. 

Proof . Assume St3 23 holds for 23 and let C satisfy the hypotheses of Stg 23. 
Note id \C£L iff id fC= V R(D) iff C= U range R{D). Thus to show 

D<=fC D c f C 
id \C£L it suffices to prove that range R(D) = P) Spt I for D finite. We have 

D g S p t J 
range R (D) = range f\{Q\Q£L, i d r Z ) g 0 } = f l range Q and for Q£L,DQ 

i d | DSQ£L 

range Q=dom Q = Spt {Qx1=Q) and hence range R(D)^> f | Spt I. To show the 
DESpt I 

opposite inclusion, fix ¿grange R(D) and let D£Bn with range D = D. Since 
¿grange R(D) we have R(b)^R(D), thus by St3 23 there is a homomorphism 
a: ® " - ® with a(D)=6.. Now Z>g Spt I on 93 implies DgSpti : on ®" and 
applying a we have a(D)=¿6Spt I on ®. Thus D ^ S p t I=>b£Spt I , and 
range R(D)Q f | Spt I . 

C g S p t i 
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Conversely assume St'2©. Let b£B, T>eB" with R(b)^R(D); we show for 
any system of equations I over S and L that DgSpt I on B"=>b£ Spt I on B. 
To see this observe, that St2 says for C= (J P| Spt I , that C=.C implies 

_ _ B C f C D S S p t i 

Cg {/(/?)]/£ £}. Also C=C since the indicated bar operation is a closure operator 
(cf. Lemma 5 of [2]). Thus C£{f(B)\f£L} and'hence id\C£L. Now since R(b)^ 
S.R(D), where Z)=range D, we have ¿grange R(D)= f ) range Q. But 

_ _ _ i d ( D g Q € L ' 
idfX>^idfD6L, therefore ¿grange idf£>, i.e. b£D = U f ) Spt 1 = 

E c r f l D g S p t i 
= 1J Spt 1 since D is finite. Thus Spt I whenever D £ Spt I and the 

D E S p t l 

assertion [DgSpt Z on 5"=>-66Spt I on B] follows. To show St3 holds we obtain 
the required homomorphism as follows: consider the system of equations whose 
variables are indexed by B", and let fxh~xk^I iff / (h)=k, where / 6 S U L . Thus 
I is.the full diagram of S and L on SB". Let T=IU {id xD=id}. Choose p, an 
assignment of the variables of I to be P(xe)=e, i.e. every variable is assigned to a 
constant map. Clearly ft satisfies f at D, hence Dg Spt r on©". Then by the above 
argument ¿ g S p t r on SB. Let ft be an assignment which satisfies I on ©. Then 
[i(xD)(b)=b since i d x D = i d £ / \ Let a: ©"^© be given by ,a(e) = /J(xe)(6), thus 
a(D) = 6. It is easy to verify that a is a homomorphism. • 

Coro l l a ry 1.1. For a monoid S and a compactly generated lattice L, S and L 
are jointly algebraic iff there is a faithful representation ® = (5,/)ygsUL in which S 
is locally closed, and each compact t£L is singly generated (viz t= f\ p for 

aipiL 
some agjB) and © satisfies the mapping condition St3 

Proof . Let S, L be jointly algebraic. By Theorem 2 of [3] there is. an algebra 
JSfwith each compact subalgebra singleton generated and End =S?= S, Su JSf^L. 
Thus there is a representation of the required sort. Conversely if © is a faithful 
representation of S and L satisfying the three conditions above, observe using the 
proof of Theorem 1 of [3] that the representation on the foliation C&(B), I.e. S, L) 
is algebraic. We need for that proof, besides the explicitly given conditions, only 
the fact that St2 S holds; but from Theorem 1 above we have St3©=>St2S. 
Hence our hypothesis regarding the mapping condition can be used to replace the 
(stronger) assumption in the earlier paper that © itself was algebraic. Finally 
S is locally closed in $(23) whenever S is locally closed in © (see [3] for 5(©), the 
foliation of ©). Hence (%(B), S, L) is itself algebraic, and S, L are jointly alge-
braic. • . 

, . .Note.that .the representation © itself need not be.a concrete realization of S 
and L as End 91 and Su 91 for any algebra 91: the assertion merely guarantees 
the existence of some such representation. 

2» 
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2. Algebraic lattice extensions 

If H is a lattice we denote by Hk the compact elements of H. An ideal JQ H is 
compactly embedded in H provided the map n\ H—J given by nx=\J j preserves lej 
joins and compactness. J u JSX 

Theorem 2.1. If S and L are jointly algebraic and L^J for some ideal J^H 
which is compactly embedded in H, then S and H are jointly algebraic. 

Proof . We may assume that S=End 31 and £ = / = S u 2 l for some algebra 
%={A\P), and further that each p£LK is singleton generated (see [3]). Let 21 
be the partial unary algebra = <̂ 4 ; / ) / e s U i of the faithful algebraic representa-
tion (A, S,L). For each p€LK fix p*£A so that the subalgebra of 91 generated 
by P*,[P*] =P- W e represent S and H (faithfully) on the disjoint union AUHK 

and verify that the representation is locally closed and satisfies St3 and each com-
pact t£H is singly generated. From Corollary 1.1 it follows that S and H are 
jointly algebraic. 

D e f i n i t i o n 2.1. Let B=A(jHK and let r map B to H as follows: for b£B 

r{b) = 
b (b(LHk) 
A P (b = a£A). 

a£p 
PÎ.L 

Further define for q£H, Bq={b£B\r(b)?Sq} and for /gS./Vsid let 

f ( ^ = f / W 
n \f((nxy)(xeHk). 

Lemma 2.1. The partial unary algebra 23 = (£ ; / ) / . 6 S U / / corresponding to 
(B, S, {Bq\q£H}) for qdH and fd S, as given in Definition 2.1, is a faithful representa-
tion of S and H and each compact t£ H is singly generated. 

Proof . Immediate. • 

Lemma 2.2. The function r(b) of Definition 2.1 assigns to each b£B the rank 
{6} in the representation 23, i.e. r(b)=R(b). 

Proof . Easy. • 

In the following lemma [Af3 is the subalgebra of 23 generated by A. 

Lemma 2.3. The map e: defined by (eD); = e(D,) where 
x (x£A) 

is a homomorphism. 
(nx)* (xeHk) 
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Proof . Clearly and thus i?(eD)^J?(D), so e preserves partial 
identity maps. Furthermore if f£S, f^id and D=(p1, ...,pr, ax, ..., a,) then 
/ ( e (p 1 ; ..., at))=f(ePl, •••, at)={f(sPi)*> —,f(fld)=(f(pd, •••>f(at))=ief(Pi> a,). 
Hence e is substitutive over/. Clearly £ is substitutive over / = i d , hence E is a homo-
morphism. • 

L e m m a 2.4. If b£BHA and D£B" with R(D)^R(b) then there is a homo-
morphism f : ©"-© with r(D)=b. 

Proof . First we prove that for D = (plt ...,pr, ax, ..., a,) 

[i?(D) s R(b) => R(eD) S R(b)]. 

To see this note R(D)^R(b)=>TtR(D) ^ R ( b ) since it is fixed on J, and it join 
preserving implies nR(D)^nR(b)=R(b). But TZR(D)=R(ED), as follows: i?(fiD) = 

=R(eplt ...,spr, tax, ...,eat)=R(npl, ...,np*, ax, ..., ^ ( y ^ ^ K ) ^ _ . V = 

=( fV ¿ 7 ^ ( 0 , ) } = * ( ( ¿ / » ^ ( . ^ ( « ^ ^ ( D ) . Hence 

[i?(D) ^ R(b) R(sD) = nR(T)) ^ #(2>)]-

To complete the proof of Lemma 2.4 we use the fact that 21 is jointly algebraic 
concrete representation of S and L and hence satisfies St2 (cf. Theorem 3 of [2]), 
and thus by Theorem 1.1 21 satisfies St3 91. So there is a homomorphism y: 2i"-«-2I 
with y(eD)=£. Note the map y is in fact a homomorphism y: ((/4]®")—[̂ 4]® since 
clearly / l € S u S and y admits each f£SUL; moreover Va£AR(a)ZL thus 
R(y(a))^R(a) so y admits partial identities f£H—L as well. 

Finally let r=yoe. Clearly r has the required properties, and this completes 
the proof of Lemma 2.4. • 

Lemma 2.5. If b£B—A and R{D)^R(b) then there is a homomorphism 
v: © " - © with v(D)=b. 

Proof . Let i?(D)si?(b) for some D£B" and some b£B-A. We may 
assume (since and thus R{b)£J (J is an ideal of H), 
in which case be A). Thus D ^ / E for any E £B" (unless E = D 
H), and / = id). Observe that R(D)^R(b)=r(b)=b^iib=R((nb)*), so by 
Lemma 2.4 there is a homomorphism T: ©"—23 with r(D)=(nb)*. Define 

iT(E) ( E ^ D ) 
v: ©"-23 as follows for E£B": v ( E ) = | ^ ( e _ D ) C l e a r l y 

so v preserves the partial identity operations idf Bq. To see that v is a homomorphism 
it remains only to check that v( /E)=/ (vE) for f£S. This is clearly so for / = i d , 
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so assume id. Then 

f /(vE) if ET^D r/(vE) if ET^D 

Combining Lemmas 2.4 and 2.5 we see that St3 holds for 23. It remains to show 
that the representation of S is locally closed. 

Let h be in the local closure of S as represented in 23. Since the representa-
tion of S in 21 is algebraic it must be locally closed, and hence h\A=f\A for some 
/ 6 5 . Now suppose b£HK. h\{b, (716)*}=^)06)*} for some g ^ S and thus 
h(b)=g(b)=g((11b)*)=h{{nbf) =f((nbf) =f(b). Consequently h—f, and S is 
locally closed, which completes the proof of Theorem 2.1. • 

3. Representation of ordinal sums 

Given two lattices L, T we identify the 0 of L with the 1 of T to obtain a new 
lattice T+L the ordinal sum of T and L, in the usual way. Thus the new lattice 
has as elements TUL with the identification {0L}= {1T} and the ordering given 
by t^l \/t£T, VleL and t^t^l^Q iff t^t2 in T (l^l2 in L). 

Coro l l a ry 3.1. If S and L are jointly algebraic and the 1 in L is compact (or 
in particular if Lis finite), then S and L+T are jointly algebraic, for any compactly 
generated lattice T. 

Proof . In Theorem 2.1 let J=L<==L+T. • 

Corollary 3.1 says roughly that one can add on above an algebraic lattice. 
The following theorem will allow us to add on below as well. 

Theorem 3.2. If S and L are jointly algebraic then S and T+L are also 
jointly algebraic for any compactly generated lattice T. 

P r o o f - W e may assume that End 2f, L = S u 2 l for some algebra 
11=(A; ^3) where the minimal subalgebra of Su 21 is non-empty (otherwise we 
may use the following argument (due to M. Gould). Let B—AU {a, b), and let 
Q be the unary operation defined by Q(x)=x for x£A, Q(a)=b, Q(6)=a. For 

and x with range xD {a, b}^0 let P(x)=d. Clearly End 21 s= End 23, Su 2Iss 
^Su 23, where .23 = (B, {Q,a,b)}). We present S and T+L on the disjoint 
union B=A\J T and apply Corollary 1.1 to conclude that S and T+L are jointly 

algebraic. Let, , ©=.(5, / )y € S U ( r+L ) with feSUL given by / ( a ) = j ^ u - ^ T ) 
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and / £ T— {l r} given by f(x)= 

/ (*) = 

t (x = tsf in T) 
undefined (x = t t ^ f ) and / = l r given by 
undefined (x = a£A) 

t (x=t£T) 
x (x£[0)ai) . It is routine to verify that © is a faithful representa-
undefined otherwise 

tion of S and T+L on B. We shall show St3 S holds. First let b£T and D£B" 
with R(D)s=R(b). Define y: Bn~B as follows for E£Bn. 

y(E) = b if i?(E) Sr R(b), y(E)= R(E) if R(E) £ R(b). 

Clearly y preserves f£T+L. Furthermore for f£S since y(E)£T we have fy(E) = 
= y ( E ) = y f ( E ) (if Ef_Tn we have / (E)=E, if E^T", say E ¿ A then R(E)^ 
SR(b) so y(E)=b and y(/E)=b as well since / (E)$ T" either). Now let b£A 
with R(D)*£R(b). Thus D meets A", that is I={i\i^iSn,Di£A}^9. Let m=\I\. 
Let Dni, ..., be the coordinate projections of D which are in A. The map 
a: 93"—©m with (crE)i=E„( is a homomorphism. Now St3 91 holds for 
91 = (A,f)nsUL with 5=End 91 and Z,= {idfC|C£Su 91} since L=Su 91 Hence 
there is a homomorphism e: 9Im—93 with e(cr(D))=6 (clearly R(D)^R(b) in 
©implies R(a(D))^R(b) in 91). Now let v: © m - © be as follows: 

-I4 
lOi 

3(E) if E£A" 
n otherwise 

The map v is a homomorphism and the composition voa: ©"—© with voa(D)=b 
is the required homomorphism. 

Once again all that remains is to show that the representation of S is locally 
closed. This follows immediately from the fact that S is locally closed in 91. Further-
more without loss of generality each compact /£Su 91 is singly generated, and it 
follows that each compact td H is singly generated. This completes the proof of 
Theorem 3.2. 
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