A Mal'cev type condition for the semi-distributivity of congruence lattices

GÁBOR CZÉDLI

1. Introduction. A variety of algebras is said to be congruence semi-distributive if in the congruence lattices of its algebras the semi-distributive law,

$$(\forall \varphi)(\forall \psi)(\forall \eta)(\varphi \lor \psi = \varphi \lor \eta \Rightarrow \varphi \lor \psi = \varphi \lor (\psi \land \eta)),$$

holds. Jónsson [4, Problem 2.18] and Gumm [3] ask whether there exists a weak Mal'cev condition that characterizes congruence semi-distributivity of varieties. Now, to characterize congruence semi-distributivity of varieties, we intend to present a Mal'cev type condition, which is somewhat weaker than a weak Mal'cev condition in the sense of Jónsson [4].

2. A Mal'cev type condition. First, for any integers $n \ge 1$ and $s_1, ..., s_n > 1$ we define a graph $G(s_1, ..., s_n)$ whose vertices are the integers $0, 1, ..., k(s_1, ..., s_n)$. The edges of $G(s_1, ..., s_n)$ will be denoted by ordered pairs (i, j) with i < j, and will be coloured by the elements of $\Gamma = \{\varphi, \psi, \eta\}$. (The pair (i, j) without providing i < j can mean the edge (j, i) for j < i.)

Let $k(s_1)=s_1$ and define $G(s_1)$ as follows:

(the colours φ and ψ alternate).

Suppose $G(s_1, ..., s_n)$ is already defined and consider the following linear ordering of the edges of $G(s_1, ..., s_n)$:

$$(i_1, j_1) < (i_2, j_2)$$
 iff either $i_1 < i_2$ or $i_1 = i_2$ and $j_1 < j_2$.

Suppose n is odd (even, respectively). Let

$$(i_0, j_0) < (i_1, j_1) < ... < (i_t, j_t)$$

Received October 8, 1979.

268 G. Czédli

 $(i_n, k+r(s_{n+1}-1)+1);$

be the ψ -coloured (η -coloured, resp.) edges of $G(s_1, ..., s_n)$ whose endpoints cannot be connected by a path which consists of edges coloured by the elements of $\Gamma \setminus \{\psi\}$ ($\Gamma \setminus \{\eta\}$, resp.). Now we construct the graph $G(s_1, ..., s_n, s_{n+1})$ by adding new vertices and new edges as follows:

(i) we add $(t+1)(s_{n+1}-1)$ new vertices, i.e.

$$k(s_1, ..., s_n, s_{n+1}) = k(s_1, ..., s_n) + (t+1)(s_{n+1}-1),$$

and for any r, $0 \le r \le t$,

(ii) denoting $k(s_1, ..., s_n)$ by k we add the edges

$$(k+r(s_{n+1}-1)+q, k+r(s_{n+1}-1)+q+1), 1 \le q \le s_{n+1}-2;$$

 $(k+r(s_{n+1}-1)+s_{n+1}-1, j_r),$
among which
 $(i_r, k+r(s_{n+1}-1)+1);$

$$(k+r(s_{n+1}-1)+1),$$

 $(k+r(s_{n+1}-1)+q, k+r(s_{n+1}-1)+q+1), 1 \le q \le s_{n+1}-2, q \text{ even};$
 $(k+r(s_{n+1}-1)+s_{n+1}-1, j_r), \text{ provided } s_{n+1} \text{ is odd},$

are coloured by η (φ , resp.) and the others are coloured by φ (ψ , resp.). For example, G(3, 3, 2) is the following graph.

For $\pi \in \Gamma$ define $\pi(s_1, ..., s_n)$ to be the equivalence relation on the vertex set of $G(s_1, ..., s_n)$ generated by $\{(i, j): (i, j) \text{ is an edge of } G(s_1, ..., s_n) \text{ coloured by } \pi\}$.

For $m \ge 1$ let $U(m, s_1, ..., s_n)$ denote the following strong Mal'cev condition: There exist $k(s_1, ..., s_n)+1$ -ary terms $f_0, f_1, ..., f_m$ such that the identities

$$f_0(x_i: i \le k) = x_0, \quad f_m(x_i: i \le k) = x_1,$$

 $f_j(x_{i\varphi}: i \le k) = f_{j+1}(x_{i\varphi}: i \le k) \quad \text{for } j \text{ even}, \quad 0 \le j \le m-1,$
 $f_j(x_{i\psi}: i \le k) = f_{j+1}(x_{i\psi}: i \le k) \quad \text{for } j \text{ odd}, \quad 0 \le j \le m-1, \quad \text{and}$
 $f_i(x_{i\eta}: i \le k) = f_{j+1}(x_{i\eta}: i \le k) \quad \text{for } j \text{ odd}, \quad 0 \le j \le m-1.$

hold, where $k=k(s_1,...,s_n)$ and $f_j(x_i\colon i\leq k)$ stands for $f_j(x_0,x_1,...,x_k)$. Here, for $\pi\in\Gamma$ and $i\leq k(s_1,...,s_n)$, $i\pi$ denotes the smallest integer j $(0\leq j\leq k(s_1,...,s_n))$ for which $(i,j)\in\pi(s_1,...,s_n)$. Now we can formulate the following

Theorem. For any variety V of algebras the following two conditions are equivalent:

- (i) V is congruence semi-distributive;
- (ii) For any infinite sequence $s = (s_1, s_2, s_3, ...)$ of integers $(s_i > 1, i = 1, 2, 3, ...)$ there exist integers $m, n \ge 1$ such that $U(m, s_1, ..., s_n)$ holds in V.
- 3. The proof of the Theorem. In order to prove our theorem, we need several statements.
- (i) implies (ii). Let V be a congruence semi-distributive variety of similarity type τ . Suppose $\mathbf{s} = (s_1, s_2, ...)$ is an infinite sequence of integers $s_i > 1$ (i = 1, 2, ...). Note that for n < t, $G(s_1, ..., s_n)$ is a subgraph of $G(s_1, ..., s_t)$, i.e., for $i, j \le k(s_1, ..., s_n)$ (i, j) is a π -coloured edge in $G(s_1, ..., s_n)$ iff it is a π -coloured edge in $G(s_1, ..., s_t)$. Let $G(\mathbf{s})$ be the direct union of the graphs $G(s_1, ..., s_n)$ $(n \ge 1)$ and let $X = X(\mathbf{s}) = \{0, 1, 2, ...\}$ denote the vertex set of $G(\mathbf{s})$. For $\pi \in \Gamma$ let $\pi(\mathbf{s}) = \bigcup_{n=1}^{\infty} \pi(s_1, ..., s_n)$.

Claim 1. For $n \le t$ and $\pi \in \Gamma$, both $\pi(s_1, ..., s_t)$ and $\pi(s)$ restricted to $\{0, 1, ..., k(s_1, ..., s_n)\}$ are $\pi(s_1, ..., s_n)$.

This claim is an easy consequence of the definitions. By Claim 1, for any $\pi \in \Gamma$, $\pi(s)$ is an equivalence relation. Since

$$\varphi(s_1, ..., s_n) \vee \psi(s_1, ..., s_n) \subseteq \varphi(s_1, ..., s_{n+1}) \vee \eta(s_1, ..., s_{n+1}) \subseteq \varphi(s_1, ..., s_{n+2}) \vee \psi(s_1, ..., s_{n+2})$$

is also obvious from our definitions, we have

Claim 2. $\varphi(s) \lor \psi(s) = \varphi(s) \lor \eta(s)$ in the lattice of equivalence relations on X.

Now consider F(X), the free algebra in V generated by X. For any $\pi \in \Gamma$ let $\hat{\pi}$ denote the congruence of F(X) generated by the relation $\pi(s)$. Claim 2 together with the well-known descriptions of the join of congruences and the congruence generated by a relation (cf. Grärzer [2], Lemma 2 and Theorem 4 in § 10, Chapter 1) immediately imply

Claim 3. $\hat{\varphi} \lor \hat{\psi} = \hat{\varphi} \lor \hat{\eta}$ in the congruence lattice of F(X).

Since $0 \equiv 1$ $(\hat{\varphi} \vee \hat{\psi})$ in F(X), from Claim 3 and from the assumption made on **V** we obtain $0 \equiv 1$ $(\hat{\varphi} \vee (\hat{\psi} \vee \hat{\eta}))$. Therefore there are elements $a_0, ..., a_m$ in F(X) such that

(1)
$$a_0 = 0, \quad a_m = 1$$

$$a_j \equiv a_{j+1}(\hat{\varphi}) \quad \text{for } j \text{ even}$$

$$a_j \equiv a_{j+1}(\hat{\psi}) \quad \text{for } j \text{ odd}$$

$$a_i \equiv a_{j+1}(\hat{\eta}) \quad \text{for } j \text{ odd}.$$

270 G. Czédli

Since X generates F(X), there is a finite subset of X that generates a subalgebra containing all the a_j $(0 \le j \le m)$. Hence there are $n \ge 1$ and $(k(s_1, ..., s_n) + 1)$ -ary terms in V such that

(2)
$$a_i = f_i(i: i \le k(s_1, ..., s_n))$$

holds for all $j \le m$ in V. For $\pi \in \Gamma$ let

$$X_{\pi} = \{x_i : i \in X \text{ and } (i, j) \in \pi(s) \text{ implies } i \leq j\}$$

and define an onto mapping $g_{\pi} \colon X \to X_{\pi}$ by $ig_{\pi} = x_j$ iff $j = \min \{t \colon (t, i) \in \pi(s)\}$. Let us denote by W(Y) and $W(Y_{\pi})$ the absolutely free algebras of type τ generated by $Y = \{y_i \colon i \in X\}$ and $Y_{\pi} = \{y_i \colon x_i \in X_{\pi}\}$, respectively. Let $F(X_{\pi})$ be the free V-algebra generated by X_{π} . We consider the natural homomorphisms $u \colon W(Y) \to F(X)$ and $v \colon W(Y_{\pi}) \to F(X_{\pi})$ defined by $y_i u = i \ (i \in X)$ and $y_i v = x_i \ (x_i \in X_{\pi})$. Let $p \colon F(X) \to F(X_{\pi})$ and $q \colon W(Y) \to W(Y_{\pi})$ be the unique homomorphisms for which $ip = ig_{\pi}$ $(i \in X)$ and $y_i q = y_{ig_{\pi}} \ (i \in X)$. Then the diagram

$$W(Y) \xrightarrow{q} W(Y_{\pi})$$

$$\downarrow^{u} \qquad \qquad \downarrow^{v}$$

$$F(X) \xrightarrow{p} F(X_{\pi})$$

commutes. Furthermore, we have $\hat{\pi} \subseteq \text{Ker } p \text{ since } \pi(s) = \text{Ker } g_{\pi}$.

Now, by (1) and (2), the identities $f_0(x_i: i \le k(s_1, ..., s_n)) = x_0$ and

$$f_m(x_i: i \leq k(s_1, ..., s_n)) = x_1$$

are evidently satisfied in V. For the rest of the identities in $U(m, s_1, ..., s_n)$, let $\pi \in \Gamma$ and let $a_j \equiv a_{j+1}(\hat{\pi})$ be one of the formulae listed in (1). Denoting $k(s_1, ..., s_n)$ by k, we can compute:

$$f_{j}(x_{i\pi}: i \leq k) = f_{j}(y_{i\pi}v: i \leq k) = f_{j}(y_{ig_{\pi}}v: i \leq k), \text{ by Claim 1,}$$

$$= f_{j}(y_{i}qv: i \leq k)$$

$$= f_{j}(y_{i}up: i \leq k), \text{ by the commutativity of the diagram,}$$

$$= f_{j}(ip: i \leq k) = f_{j}(i: i \leq k)p = a_{j}p = a_{j+1}p, \text{ since } \hat{\pi} \subseteq \text{Ker } p,$$

$$= f_{j+1}(i: i \leq k)p = f_{j+1}(ip: i \leq k) = f_{j+1}(y_{i}up: i \leq k)$$

$$= f_{j+1}(y_{i}qv: i \leq k), \text{ by the commutativity of the diagram,}$$

$$= f_{j+1}(y_{ig_{\pi}}v: i \leq k)$$

$$= f_{j+1}(y_{i\pi}v: i \leq k), \text{ by Claim 1,}$$

$$= f_{i+1}(x_{i\pi}: i \leq k).$$

Therefore the identity $f_j(x_{i\pi}: i \le k) = f_{j+1}(x_{i\pi}: i \le k)$ holds in $F(X_{\pi})$, whence it holds in V as well. Hence V satisfies (ii).

To prove the converse, let V be a variety satisfying (ii). Let $\hat{\varphi}$, $\hat{\psi}$, $\hat{\eta}$ be congruences of an algebra A in V such that $\hat{\varphi} \lor \hat{\psi} = \hat{\varphi} \lor \hat{\eta}$. We have to show that $\hat{\varphi} \lor \hat{\psi} \subseteq \hat{\varphi} \lor (\hat{\psi} \land \hat{\eta})$, which is clearly equivalent to $\hat{\varphi} \lor \hat{\psi} = \hat{\varphi} \lor (\hat{\psi} \land \hat{\eta})$. Let a_0 , a_1 be arbitrary elements of A that are congruent modulo $\hat{\varphi} \lor \hat{\psi}$. We define an infinite sequence s and assign an element a_i in A to each vertex i of G(s) by means of induction. Let $s_1 \ge 2$ be the smallest integer for which $(a_0, a_1) \in \hat{\varphi} \circ \hat{\psi} \circ \hat{\varphi} \circ \hat{\psi} \circ \dots$ $(s_1 \text{ factors})$ and let us choose elements a_i $(2 \le j \le k(s_1) = s_1)$ from A such that

$$(a_0, a_2) \in \hat{\varphi},$$

 $(a_j, a_{j+1}) \in \hat{\varphi}$ for j odd, $3 \leq j < s_1,$
 $(a_{s_1}, a_1) \in \hat{\varphi}$ provided s_1 is odd,
 $(a_j, a_{j+1}) \in \hat{\psi}$ for j even, $2 \leq j < s_1,$
 $(a_{s_1}, a_1) \in \hat{\psi},$ provided s_1 is even.

Then $G(s_1)$ and the elements chosen from A have the following property:

(3) if the graph has an edge (i, j) coloured by π then $(a_i, a_j) \in \hat{\pi}$.

Suppose $s_1, ..., s_n$ and a_j $(j \le k(s_1, ..., s_n))$ are already defined. Then let $s_{n+1} \ge 2$ be the smallest integer such that $G(s_1, ..., s_n, s_{n+1})$ has property (3) with appropriate further elements $a_i \in A$ $(k(s_1, ..., s_n, s_{n+1})$ associated with the new vertices. There exist such an integer s_{n+1} and such elements $a_i \in A$, since whenever we have elements b, c, d and e in A with $(b, c) \in \hat{\psi}$ and $(d, e) \in \hat{\eta}$ then, by $\hat{\psi} \subseteq \hat{\phi} \lor \hat{\eta}$ and $\hat{\eta} \subseteq \hat{\phi} \lor \hat{\psi}$, there are integers t, t' such that $(b, c) \in \hat{\phi} \circ \hat{\eta} \circ \hat{\phi} \circ \hat{\eta} \circ ...$ (t factors) and $(d, e) \in \hat{\phi} \circ \hat{\psi} \circ \hat{\phi} \circ \hat{\psi} \circ ...$ (t' factors).

Let m and n be the integers that exist by (ii) for the sequence $s = (s_1, s_2, s_3, ...)$ constructed above and let $f_0, f_1, ..., f_m$ be $(k(s_1, ..., s_n) + 1)$ -ary terms satisfying the identities of $U(m, s_1, ..., s_n)$ throughout V. Let k stand for $k(s_1, ..., s_n)$. It remains to show that

$$f_{j}(a_{i}: i \leq k) \equiv f_{j+1}(a_{i}: i \leq k) \; (\hat{\varphi}) \quad \text{for } j \text{ even,}$$

$$(4) \qquad f_{j}(a_{i}: i \leq k) \equiv f_{j+1}(a_{i}: i \leq k) \; (\hat{\psi}) \quad \text{for } j \text{ odd and}$$

$$f_{j}(a_{i}: i \leq k) \equiv f_{j+1}(a_{i}: i \leq k) \; (\hat{\eta}) \quad \text{for } j \text{ odd.}$$

Indeed, then $(a_0, a_1) = (f_0(a_i: i \le k), f_m(a_i: i \le k)) \in \hat{\phi} \circ (\hat{\psi} \land \hat{\eta}) \circ \hat{\phi} \circ (\hat{\psi} \land \hat{\eta}) \circ \dots$ (*m* factors) $\subseteq \hat{\phi} \lor (\hat{\psi} \land \hat{\eta})$, completing the proof. Since $(a_i, a_{i\pi}) \in \hat{\pi}$ ($\pi \in \Gamma$) follows from (3), for *j* even we can compute:

$$f_j(a_i:\ i\leq k)\,\hat{\varphi}f_j(a_{i\varphi}:\ i\leq k)=f_{j+1}(a_{i\varphi}:\ i\leq k)\,\hat{\varphi}f_{j+1}(a_i:\ i\leq k).$$

Hence $f_j(a_i: i \le k) = f_{j+1}(a_i: i \le k)$ (ϕ) holds for j even and the rest of (4) follows similarly. The proof of the Theorem is complete.

4. Concluding remarks. In this section we mention some statements concerning congruence semi-distributivity. The proofs are omitted because they are easy but most of them would require a long formulation.

A variety V is said to be *n*-permutable $(n \ge 2)$ if $\phi \lor \psi = \phi \circ \psi \circ \phi \circ \psi \circ ...$ (n factors) holds for any congruences ϕ and ψ of any algebra in V. It is easy to see that the method we used yields the following result, too.

Proposition 1. An m-permutable variety V is congruence semi-distributive if and only if U(m, m, ..., m) (where m occurs n+1 times) holds in V for some $n \ge 1$.

Making use of Claim 1 it can be shown that whenever $U(m, s_1, ..., s_n)$ holds in a variety V then $U(m+1, s_1, ..., s_n)$ and $U(m, s_1, ..., s_n, s_{n+1})$ hold in V as well. Therefore, condition (ii) in the Theorem is equivalent to:

(iii) For any infinite sequence $s=(s_1, s_2, s_3, ...)$ of integers $s_i \ge 2$ (i=1, 2, 3, ...) there exists an integer $n \ge 1$ such that $U(n, s_1, ..., s_n)$ holds in V.

In some varieties the terms and identities are easy to handle. For example, it is not hard to check that there are no m, $n \ge 2$ for which $U\left(m, 3, 2, ..., \frac{1}{2}\left(5 - (-1)^n\right)\right)$ holds in the variety of semilattices. Therefore the variety of semilattices is not

congruence semi-distributive. However, as it was shown by PAPERT [5], it is congruence dually semi-distributive.

As a non-trivial example of varieties satisfying the conditions of the Theorem we can mention Polin's variety P. Indeed, as it was shown by DAY and FREESE [1], P is congruence semi-distributive, but it is even not congruence modular.

Acknowledgement. The author wishes to thank H. P. Gumm for helpful discussions.

References

- [1] A. DAY and R. FREESE, A characterization of identities implying congruence modularity, I, Can. J. Math., 32 (1980), 1140—1167.
- [2] G. GRÄTZER, Universal Algebra, Van Nostrand (Princeton, N. J., 1968).
- [3] H. P. GUMM, Oral communication.
- [4] B. Jónsson, Congruence varieties, Algebra Universalis, 10 (1980), 355-394.
- [5] D. PAPERT, Congruence relations in semilattices, London Math. Soc., 39 (1964), 723-729.

BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY