A Mal'cev type condition for the semi-distributivity of congruence lattices

GÁBOR CZÉDLI

1. Introduction. A variety of algebras is said to be congruence semi-distributive if in the congruence lattices of its algebras the semi-distributive law,

$$
(\forall \varphi)(\forall \psi)(\forall \eta)(\varphi \vee \psi=\varphi \vee \eta \Rightarrow \varphi \vee \psi=\varphi \vee(\psi \wedge \eta)),
$$

holds. Jónsson [4, Problem 2.18] and Gumm [3] ask whether there exists a weak Mal'cev condition that characterizes congruence semi-distributivity of varieties. Now, to characterize congruence semi-distributivity of varieties, we intend to present a Mal'cev type condition, which is somewhat weaker than a weak Mal'cev condition in the sense of Jónsson [4].
2. A Mal'cev type condition. First, for any integers $n \geqq 1$ and $s_{1}, \ldots, s_{n}>1$ we define a graph $G\left(s_{1}, \ldots, s_{n}\right)$ whose vertices are the integers $0,1, \ldots, k\left(s_{1}, \ldots, s_{n}\right)$. The edges of $G\left(s_{1}, \ldots, s_{n}\right)$ will be denoted by ordered pairs (i, j) with $i<j$, and will be coloured by the elements of $\Gamma=\{\varphi, \psi, \eta$). (The pair (i, j) without providing $i<j$ can mean the edge (j, i) for $j<i$.)

Let $k\left(s_{1}\right)=s_{1}$ and define $G\left(s_{1}\right)$ as follows:

(the colours φ and ψ alternate).
Suppose $G\left(s_{1}, \ldots, s_{n}\right)$ is already defined and consider the following linear ordering of the edges of $G\left(s_{1}, \ldots, s_{n}\right)$:

$$
\left(i_{1}, j_{1}\right)<\left(i_{2}, j_{2}\right) \text { iff either } i_{1}<i_{2} \text { or } i_{1}=i_{2} \text { and } j_{1}<j_{2}
$$

Suppose n is odd (even, respectively). Let

$$
\left(i_{0}, j_{0}\right)<\left(i_{1}, j_{1}\right)<\ldots<\left(i_{t}, j_{t}\right)
$$

Received October 8, 1979.
be the ψ-coloured (η-coloured, resp.) edges of $G\left(s_{1}, \ldots, s_{n}\right)$ whose endpoints cannot be connected by a path which consists of edges coloured by the elements of $\Gamma \backslash\{\psi\}\left(\Gamma \backslash\{\eta\}\right.$, resp.). Now we construct the graph $G\left(s_{1}, \ldots, s_{n}, s_{n+1}\right)$ by adding new vertices and new edges as follows:
(i) we add $(t+1)\left(s_{n+1}-1\right)$ new vertices, i.e.

$$
k\left(s_{1}, \ldots, s_{n}, s_{n+1}\right)=k\left(s_{1}, \ldots, s_{n}\right)+(t+1)\left(s_{n+1}-1\right)
$$

and for any $r, 0 \leqq r \leqq t$,
(ii) denoting $k\left(s_{1}, \ldots, s_{n}\right)$ by k we add the edges

$$
\begin{aligned}
& \left(i_{r}, k+r\left(s_{n+1}-1\right)+1\right) \\
& \left(k+r\left(s_{n+1}-1\right)+q, k+r\left(s_{n+1}-1\right)+q+1\right), \quad 1 \leqq q \leqq s_{n+1}-2 \\
& \left(k+r\left(s_{n+1}-1\right)+s_{n+1}-1, j_{r}\right)
\end{aligned}
$$

among which
$\left(i_{r}, k+r\left(s_{n+1}-1\right)+1\right)$;
$\left(k+r\left(s_{n+1}-1\right)+q, k+r\left(s_{n+1}-1\right)+q+1\right), \quad 1 \leqq q \leqq s_{n+1}-2, \quad q$ even;
$\left(k+r\left(s_{n+1}-1\right)+s_{n+1}-1, j_{r}\right)$, provided s_{n+1} is odd,
are coloured by η (φ, resp.) and the others are coloured by φ (ψ, resp.).
For example, $G(3,3,2)$ is the following graph.

For $\pi \in \Gamma$ define $\pi\left(s_{1}, \ldots, s_{n}\right)$ to be the equivalence relation on the vertex set of $G\left(s_{1}, \ldots, s_{n}\right)$ generated by $\left\{(i, j):(i, j)\right.$ is an edge of $G\left(s_{1}, \ldots, s_{n}\right)$ coloured by $\pi\}$.

For $m \geqq 1$ let $U\left(m, s_{1}, \ldots, s_{n}\right)$ denote the following strong Mal'cev condition:
There exist $k\left(s_{1}, \ldots, s_{n}\right)+1$-ary terms $f_{0}, f_{1}, \ldots, f_{m}$ such that the identities

$$
\begin{aligned}
& f_{0}\left(x_{i}: i \leqq k\right)=x_{0}, \quad f_{m}\left(x_{i}: i \leqq k\right)=x_{1}, \\
& f_{j}\left(x_{i \varphi}: i \leqq k\right)=f_{j+1}\left(x_{i \varphi}: i \leqq k\right) \text { for } j \text { even, } 0 \leqq j \leqq m-1, \\
& f_{j}\left(x_{i \psi}: i \leqq k\right)=f_{j+1}\left(x_{i \psi}: i \leqq k\right) \text { for } j \text { odd, } 0 \leqq j \leqq m-1, \quad \text { and } \\
& f_{j}\left(x_{i \eta}: i \leqq k\right)=f_{j+1}\left(x_{i \eta}: i \leqq k\right) \text { for } j \text { odd, } \quad 0 \leqq j \leqq m-1 ;
\end{aligned}
$$

hold, where $k=k\left(s_{1}, \ldots, s_{n}\right)$ and $f_{j}\left(x_{i}: i \leqq k\right)$ stands for $f_{j}\left(x_{0}, x_{1}, \ldots, x_{k}\right)$. Here, for $\pi \in \Gamma$ and $i \leqq k\left(s_{1}, \ldots, s_{n}\right)$, $i \pi$ denotes the smallest integer j $\left(0 \leqq j \leqq k\left(s_{1}, \ldots, s_{n}\right)\right)$ for which $(i, j) \in \pi\left(s_{1}, \ldots, s_{n}\right)$.
$\therefore \quad$ Now we can formulate the following
Theorem. For any variety \mathbf{V} of algebras the following two conditions are equivalent:
(i) V is congruence semi-distributive;
(ii) For any infinite sequence $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ of integers ($\left.s_{i}>1, i=1,2,3, \ldots\right)$ there exist integers $m, n \geqq 1$ such that $U\left(m, s_{1}, \ldots, s_{n}\right)$ holds in V .
3. The proof of the Theorem. In order to prove our theorem, we need several statements.
(i) implies (ii). Let \mathbf{V} be a congruence semi-distributive variety of similarity type τ. Suppose $s=\left(s_{1}, s_{2}, \ldots\right)$ is an infinite sequence of integers $s_{i}>1(i=1,2, \ldots)$. Note that for $n<t, G\left(s_{1}, \ldots, s_{n}\right)$ is a subgraph of $G\left(s_{1}, \ldots, s_{t}\right)$, i.e., for $i, j \leqq$ $\leqq k\left(s_{1}, \ldots, s_{n}\right)(i, j)$ is a π-coloured edge in $G\left(s_{1}, \ldots, s_{n}\right)$ iff it is a π-coloured edge in $G\left(s_{1}, \ldots, s_{t}\right)$. Let $G(\mathbf{s})$ be the direct union of the graphs $G\left(s_{1}, \ldots, s_{n}\right)(n \geqq 1)$ and let $X=X(s)=\{0,1,2, \ldots\}$ denote the vertex set of $G(s)$. For $\pi \in \Gamma$ let $\pi(s)=$ $=\bigcup_{n=1}^{\infty} \pi\left(s_{1}, \ldots . s_{n}\right)$.

Claim 1. For $n \leqq t$ and $\pi \in \Gamma$, both $\pi\left(s_{1}, \ldots, s_{t}\right)$ and $\pi(\mathbf{s})$ restricted to $\left\{0,1, \ldots, k\left(s_{1}, \ldots, s_{n}\right)\right\}$ are $\pi\left(s_{1}, \ldots, s_{n}\right)$.

This claim is an easy consequence of the definitions. By Claim 1, for any $\pi \in \Gamma$, $\pi(\mathbf{s})$ is an equivalence relation. Since

$$
\begin{aligned}
& \varphi\left(s_{1}, \ldots, s_{n}\right) \vee \psi\left(s_{1}, \ldots, s_{n}\right) \sqsubseteq \varphi\left(s_{1}, \ldots, s_{n+1}\right) \vee \eta\left(s_{1}, \ldots, s_{n+1}\right) \\
& \sqsubseteq \\
& \sqsubseteq \varphi\left(s_{1}, \ldots, s_{n+2}\right) \vee \psi\left(s_{1}, \ldots, s_{n+2}\right)
\end{aligned}
$$

is also obvious from our definitions, we have
Claim 2. $\varphi(\mathbf{s}) \vee \psi(\mathbf{s})=\varphi(\mathbf{s}) \vee \eta(\mathbf{s})$ in the lattice of equivalence relations on X.
Now consider $F(X)$, the free algebra in \mathbf{V} generated by X. For any $\pi \in \Gamma$ let $\hat{\pi}$ denote the congruence of $F(X)$ generated by the relation $\pi(\mathrm{s})$. Claim 2 together with the well-known descriptions of the join of congruences and the congruence generated by a relation (cf. Grärzer [2], Lemma 2 and Theorem 4 in § 10, Chapter 1) immediately imply

Claim 3. $\hat{\varphi} \vee \hat{\psi}=\hat{\varphi} \vee \hat{\eta}$ in the congruence lattice of $F(X)$.
Since $0 \equiv 1(\hat{\varphi} \vee \hat{\psi})$ in $F(X)$, from Claim 3 and from the assumption made on \mathbf{V} we obtain $0 \equiv 1(\hat{\varphi} \bigvee(\hat{\psi} \vee \hat{\eta}))$. Therefore there are elements a_{0}, \ldots, a_{m} in $F(X)$ such that

$$
\begin{align*}
& a_{0}=0, \quad a_{m}=1 \\
& a_{j} \equiv a_{j+1}(\hat{\varphi}) \quad \text { for } j \text { even } \tag{1}\\
& a_{j} \equiv a_{j+1}(\hat{\psi}) \quad \text { for } j \text { odd } \\
& a_{j} \equiv a_{j+1}(\hat{\eta}) \quad \text { for } j \text { odd. }
\end{align*}
$$

Since X generates $F(X)$, there is a finite subset of X that generates a subalgebra containing all the $a_{j}(0 \leqq j \leqq m)$. Hence there are $n \geqq 1$ and $\left(k\left(s_{1}, \ldots, s_{n}\right)+1\right)$-ary terms in V such that

$$
\begin{equation*}
a_{j}=f_{j}\left(i: i \leqq k\left(s_{1}, \ldots, s_{n}\right)\right) \tag{2}
\end{equation*}
$$

holds for all $j \leqq m$ in \mathbf{V}. For $\pi \in \Gamma$ let

$$
X_{\pi}=\left\{x_{i}: i \in X \text { and }(i, j) \in \pi(s) \text { implies } i \leqq j\right\}
$$

and define an onto mapping $g_{\pi}: X \rightarrow X_{\pi}$ by $i g_{\pi}=x_{j}$ iff $j=\min \{t:(t, i) \in \pi(\mathrm{s})\}$. Let us denote by $W(Y)$ and $W\left(Y_{\pi}\right)$ the absolutely free algebras of type τ generated by $Y=\left\{y_{i}: i \in X\right\}$ and $Y_{\pi}=\left\{y_{i}: x_{i} \in X_{\pi}\right\}$, respectively. Let $F\left(X_{\pi}\right)$ be the free V-algebra generated by X_{π}. We consider the natural homomorphisms $u: W(Y) \rightarrow F(X)$ and $v: W\left(Y_{\pi}\right) \rightarrow F\left(X_{\pi}\right)$ defined by $y_{i} u=i(i \in X)$ and $y_{i} v=x_{i}\left(x_{i} \in X_{\pi}\right)$. Let $p: F(X) \rightarrow$ $\rightarrow F\left(X_{\pi}\right)$ and $q: W(Y) \rightarrow W\left(Y_{\pi}\right)$ be the unique homomorphisms for which $i p=i g_{\pi}$ ($i \in X$) and $y_{i} q=y_{i g_{\pi}}(i \in X)$. Then the diagram

commutes. Furthermore, we have $\hat{\pi} \leqq \operatorname{Ker} p$ since $\pi(s)=\operatorname{Ker} g_{\pi}$.
Now, by (1) and (2), the identities $f_{0}\left(x_{i}: i \leqq k\left(s_{1}, \ldots, s_{n}\right)\right)=x_{0}$ and

$$
f_{m}\left(x_{i}: i \leqq k\left(s_{1}, \ldots, s_{n}\right)\right)=x_{1}
$$

are evidently satisfied in \mathbf{V}. For the rest of the identities in $U\left(m, s_{1}, \ldots, s_{n}\right)$, let $\pi \in \Gamma$ and let $a_{j} \equiv a_{j+1}(\hat{\pi})$ be one of the formulae listed in (1). Denoting $k\left(s_{1}, \ldots, s_{n}\right)$ by k, we can compute:

$$
\begin{aligned}
& f_{j}\left(x_{i \pi}: i \leqq k\right)=f_{j}\left(y_{i \pi} v: i \leqq k\right)=f_{j}\left(y_{i g_{\pi}} v: i \leqq k\right), \quad \text { by Claim } 1, \\
& =f_{j}\left(y_{i} q v: i \leqq k\right) \\
& =f_{j}\left(y_{i} u p: i \leqq k\right), \quad \text { by the commutativity of the diagram, } \\
& =f_{j}(i p: i \leqq k)=f_{j}(i: i \leqq k) p=a_{j} p=a_{j+1} p, \quad \text { since } \hat{\pi} \leqq \text { Ker } p, \\
& =f_{j+1}(i: i \leqq k) p=f_{j+1}(i p: i \leqq k)=f_{j+1}\left(y_{i} u p: i \leqq k\right) \\
& =f_{j+1}\left(y_{i} q v: i \leqq k\right), \quad \text { by the commutativity of the diagram, } \\
& =f_{j+1}\left(y_{i \theta_{\pi}} v: i \leqq k\right) \\
& =f_{j+1}\left(y_{i \pi} v: i \leqq k\right), \quad \text { by Claim } 1, \\
& =f_{j+1}\left(x_{i \pi}: i \leqq k\right)
\end{aligned}
$$

Therefore the identity $f_{j}\left(x_{i \pi}: i \leqq k\right)=f_{j+1}\left(x_{i \pi}: i \leqq k\right)$ holds in $F\left(X_{\pi}\right)$, whence it holds in \mathbf{V} as well. Hence \mathbf{V} satisfies (ii).

To prove the converse, let \mathbf{V} be a variety satisfying (ii). Let $\hat{\varphi}, \hat{\psi}, \hat{\eta}$ be congruences of an algebra A in V such that $\hat{\varphi} \vee \hat{\psi}=\hat{\varphi} \vee \hat{\eta}$. We have to show that $\hat{\varphi} \vee \hat{\psi} \subseteq \hat{\varphi} \vee(\hat{\psi} \wedge \hat{\eta})$, which is clearly equivalent to $\hat{\varphi} \vee \hat{\psi}=\hat{\varphi} \vee(\hat{\psi} \wedge \hat{\eta})$. Let a_{0}, a_{1} be arbitrary elements of A that are congruent modulo $\hat{\varphi} \vee \hat{\psi}$. We define an infinite sequence s and assign an element a_{i} in A to each vertex i of $G(\mathbf{s})$ by means of induction. Let $s_{1} \geqq 2$ be the smallest integer for which $\left(a_{0}, a_{1}\right) \in \hat{\varphi} \circ \hat{\psi} \circ \hat{\varphi} \circ \hat{\psi} \circ \ldots$ (s_{1} factors) and let us choose elements $a_{j}\left(2 \leqq j \leqq k\left(s_{1}\right)=s_{1}\right)$ from A such that

$$
\begin{aligned}
& \left(a_{0}, a_{2}\right) \in \hat{\varphi}, \\
& \left(a_{j}, a_{j+1}\right) \in \hat{\varphi} \quad \text { for } j \text { odd, } \quad 3 \leqq j<s_{1}, \\
& \left(a_{s_{1}}, a_{1}\right) \in \hat{\varphi} \quad \text { provided } s_{1} \text { is odd, } \\
& \left(a_{j}, a_{j+1}\right) \in \hat{\psi} \quad \text { for } j \text { even, } 2 \leqq j<s_{1}, \\
& \left(a_{s_{1}}, a_{1}\right) \in \hat{\psi}, \quad \text { provided } s_{1} \text { is even. }
\end{aligned}
$$

Then $G\left(s_{1}\right)$ and the elements chosen from A have the following property:
(3) if the graph has an edge (i, j) coloured by π then $\left(a_{i}, a_{j}\right) \in \hat{\pi}$.

Suppose s_{1}, \ldots, s_{n} and $a_{j}\left(j \leqq k\left(s_{1}, \ldots, s_{n}\right)\right)$ are already defined. Then let $s_{n+1} \geqq 2$ be the smallest integer such that $G\left(s_{1}, \ldots, s_{n}, s_{n+1}\right)$ has property (3) with appropriate further elements $a_{i} \in A\left(k\left(s_{1}, \ldots, s_{n}\right)<i \leqq k\left(s_{1}, \ldots, s_{n}, s_{n+1}\right)\right)$ associated with the new vertices. There exist such an integer s_{n+1} and such elements $a_{i} \in A$, since whenever we have elements b, c, d and e in A with $(b, c) \in \hat{\psi}$ and $(d, e) \in \hat{\eta}$ then, by $\hat{\psi} \subseteq \hat{\varphi} \vee \hat{\eta}$ and $\hat{\eta} \subseteq \hat{\varphi} \vee \hat{\psi}$, there are integers t, t^{\prime} such that $(b, c) \in \hat{\varphi} \circ \hat{\eta} \circ \hat{\varphi} \circ \hat{\eta} \circ \ldots$ (t factors) and ($d, e) \in \hat{\varphi} \circ \hat{\psi} \circ \hat{\varphi} \circ \hat{\psi} \circ \ldots$ (t^{\prime} factors).

Let m and n be the integers that exist by (ii) for the sequence $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ constructed above and let $f_{0}, f_{1}, \ldots, f_{m}$ be ($k\left(s_{1}, \ldots, s_{n}\right)+1$)-ary terms satisfying the identities of $U\left(m, s_{1}, \ldots, s_{n}\right)$ throughout \mathbf{V}. Let k stand for $k\left(s_{1}, \ldots, s_{n}\right)$. It remains to show that

$$
\begin{gather*}
f_{j}\left(a_{i}: i \leqq k\right) \equiv f_{j+1}\left(a_{i}: i \leqq k\right)(\hat{\varphi}) \quad \text { for } j \text { even, } \\
f_{j}\left(a_{i}: i \leqq k\right) \equiv f_{j+1}\left(a_{i}: i \leqq k\right)(\hat{\psi}) \quad \text { for } j \text { odd and } \tag{4}\\
f_{j}\left(a_{i}: i \leqq k\right) \equiv f_{j+1}\left(a_{i}: i \leqq k\right)(\hat{\eta}) \quad \text { for } j \text { odd. }
\end{gather*}
$$

Indeed, then $\left(a_{0}, a_{1}\right)=\left(f_{0}\left(a_{i}: i \leqq k\right), \quad f_{m}\left(a_{i}: i \leqq k\right)\right) \in \hat{\varphi} \circ(\hat{\psi} \wedge \hat{\eta}) \circ \hat{\varphi} \circ(\hat{\psi} \wedge \hat{\eta}) \circ \ldots \quad(m$ factors) $\subseteq \hat{\varphi} \vee(\hat{\psi} \wedge \hat{\eta})$, completing the proof. Since ($\left.a_{i}, a_{i \pi}\right) \in \hat{\pi}$ ($\pi \in \Gamma$) follows from (3), for j even we can compute:

$$
f_{j}\left(a_{i}: i \leqq k\right) \hat{\varphi} f_{j}\left(a_{i \varphi}: i \leqq k\right)=f_{j+1}\left(a_{i \varphi}: i \leqq k\right) \hat{\varphi} f_{j+1}\left(a_{i}: i \leqq k\right)
$$

Hence $f_{j}\left(a_{i}: i \leqq k\right) \equiv f_{j+1}\left(a_{i}: i \leqq k\right)$ ($\hat{\varphi}$) holds for j even and the rest of (4) follows similarly. The proof of the Theorem is complete.
4. Concluding remarks. In this section we mention some statements concerning congruence semi-distributivity. The proofs are omitted because they are easy but most of them would require a long formulation.

A variety \mathbf{V} is said to be n-permutable ($n \geqq 2$) if $\varphi \vee \psi=\varphi \circ \psi \circ \varphi \circ \psi \circ \ldots$ (n factors) holds for any congruences φ and ψ of any algebra in \mathbf{V}. It is easy to see that the method we used yields the following result, too.

Proposition 1. An m-permutable variety \mathbf{V} is congruence semi-distributive if and only if $U(m, m, \ldots, m)$ (where m occurs $n+1$ times) holds in V for some $n \geqq 1$.

Making use of Claim 1 it can be shown that whenever $U\left(m, s_{1}, \ldots, s_{n}\right)$ holds in a variety V then $U\left(m+1, s_{1}, \ldots, s_{n}\right)$ and $U\left(m, s_{1}, \ldots, s_{n}, s_{n+1}\right)$ hold in V as well. Therefore, condition (ii) in the Theorem is equivalent to:
(iii) For any infinite sequence $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ of integers $s_{i} \geqq 2(i=1,2,3, \ldots)$ there exists an integer $n \geqq 1$ such that $U\left(n, s_{1}, \ldots, s_{n}\right)$ holds in \mathbf{V}.
In some varieties the terms and identities are easy to handle. For example, it is not hard to check that there are no $m, n \geqq 2$ for which $U\left(m, 3,2, \ldots, \frac{1}{2}\left(5-(-1)^{n}\right)\right)$ holds in the variety of semilattices. Therefore the variety of semilattices is not congruence semi-distributive. However, as it was shown by Papert [5], it is congruence dually semi-distributive.

As a non-trivial example of varieties satisfying the conditions of the Theorem we can mention Polin's variety P. Indeed, as it was shown by Day and Freese [1], \mathbf{P} is congruence semi-distributive, but it is even not congruence modular.

Acknowledgement. The author wishes to thank H. P. Gumm for helpful discussions.

References

[1] A. Day and R. Freese, A characterization of identities implying congruence modularity, I, Can. J, Math., 32 (1980), 1140-1167.
[2] G. Grätzer, Universal Algebra, Van Nostrand (Princeton, N. J., 1968).
[3] H. P. Gumm, Oral communication.
[4] B. Jónsson, Congruence varieties, Algebra Universalis, 10 (1980), 355-394.
[5] D. Papert, Congruence relations in semilattices, London Math. Soc., 39 (1964), 723-729.

