
Acta Sei. Math., 4 3 ( 1 9 8 1 ) , 2 7 3 — 2 8 0 

Contractions with spectral radius one and invariant subspaces 
C. FOIAS, C. M. PEARCY, and B. SZ.-NAGY 

1. Introduction. Let § be a separable, complex Hilbert space, and J2?(§) the 
Banach algebra of (bounded linear) operators on The purpose of this paper 
is to make some progress on the invariant subspace problem for contraction opera-
tors /i £.£?(§) whose spectrum a (A) has at least one point on the unit circle 
C= {1: |A| = 1}. From this point of view it does not restrict generality to ignore 
the unitary part of A (if any) and, by virtue of the Riesz decomposition 
theorem, to assume that a (A) is connected. More precisely, it suffices to consider 
operators of the following class 

(P): The set of all completely nonunitary contractions A in i f ( § ) with connected 
spectrum a (A) containing the point 1. 

We shall also have to do with the Banach algebra H™=H°° {D) of bounded 
holomorphic functions u on the open unit disc D = {1£C: |1|< 1}, with supremum 
norm: Hwll^^sup |w(A)|. Recall that there is an //"-functional calculus for com-

pletely nonunitary contractions A so that the operator u(A) is defined for every 
u£H°° and has various properties reflecting those of A and u. In particular, if 
|m(A)|<1, on D, then B=u(A) is a completely nonunitary contraction also, and 
we have v(B) = (vou)(A) for every v£H°°. (Cf. [9], Chapter III, and in parti-
cular Theorem III. 2.1.) 

We shall also need the following spectral mapping theorem, which was proved 
in [6] but not explicitly stated in this form: 

P r o p o s i t i o n (FM). Suppose T is a completely nonunitary contraction whose 
spectrum o{T) contains a point z on the unit circle. Suppose u is a function in H°°, 
which has a continuous extension u to DU {z}. Then u(z)£o(u(T)). 

Also recall that a subset S of D is called dominating for C if 
sup |u(A)| = ||w||oo for all 
xes 
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and that these subsets S of D can be characterized by the property that almost 
every point of C is a non-tangential limit point of S; cf. [2]. In analogy with this 
characterization, we say that a subset S of D is dominating for some subset s of the 
unit circle C if almost every point of s is a non-tangential limit point of S. 

Operators with rich spectrum have more chance to have invariant subspaces. 
In particular, it was proved in [3] that every contraction T for which o(T)C\D is 
dominating for C has a non-trivial invariant subspace. Whether contractions with 
o(T)f\D dominating a proper subarc of C only, also do the same, is still unknown. 
Nevertheless, it may be useful to know that the spectrum of every operator of class 
(P) can be "blown up", in a certain sense, so that it be dominating for a subarc 
of C. 

For any operator T£ i f (§) let us denote by iV(T) the set of operators which 
are weak limits of sequences of polynomials of T. Clearly, every invariant or hyper-
invariant subspace for T is invariant or hyperinvariant, respectively, for every opera-
tor in iV(T). In case Tx, T2 are such that T^iV(T^) and T^ir(T2), we shall call 
Tlt T2 ^-equivalent: they have the same invariant and hyperinvariant subspaces, 
respectively. Our main result is the following 

Theorem. For every subarc E—Ee — {e": — e / 2 ^ i ^ s / 2 } of C, 0<£^27r , there 
exists a function g — gc^H°°, which maps D conformally into itself and is such that 
for h=gog and for every 

(1) o(g(Aj)C\C=E, 
(2) o(h(A))C\D is dominating for the arc E, and 
(3) in case Ee is a proper subarc of C (i.e., if S<2TT), then A and g(A), as well 

as g(A) and h(A), are iV-equivalent. 

C o r o l l a r y 1. There exists a nonconstant function h£H°° such that, for every 
operator /4£(P), h(A) has a nontrivial invariant subspace. 

Proof . Apply (2) with Ellt and the cited result of [3]. 

C o r o l l a r y 2. If it is true that an operator T has a nontrivial invariant subspace 
whenever T- has one, then every operator J4£(P) has a nontrivial invariant sub-
space. 

Proof . Let g and h=gog be the functions corresponding to EK. Using the 
spectral mapping theorem and (1) we infer for T=h(A) that <j(T2)r]D=rj(Ty-C] 
f]D=(o(T)r\D)2 is dominating for E*=E2n; thus by [3] T2 has a nontrivial 
invariant subspace. By assumption this implies the same for T, and by (3), for 
A also. 

The following cunsequence is less immediate. 
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Coro l l a ry 3. There exists a function f£H°° such that, for every A of 
class (P) we have o(f(A))=D~ (the closed unit disc). 

P roo f . Let g be the function corresponding to En in the Theorem, and note 
that Exca(g(A)) by (1). Let K be a Cantor set on E„ and let F be a continuous 
function mapping K onto D~ (cf. [1, Problem 47]). By the Carleson-Rudin Theorem 
(cf. [8, p. 81]), there exists a function k£H°°, which is continuous on D~ and such 
that k\K=F and ||fc||„ = max|F| = l. Since |g(l)| < 1 on D, the operator T=g(A) 

is a completely nonunitary contraction in ¿£(9>), and we have k(T) = (kog)(A). 
Since K<zEnaa(T), it follows from Proposition (FM) that k{K)<z.a(k{T)). But 
we have k(K) = F(K) — D~, and thus, setting f=kog, we conclude that D~ c: 
<za(f(A)) (crD~ because | | / | | „ ^1 ) . The proof is complete. 

Coro l l a ry 4. If every completely nonunitary contraction in JSf(§), whose spec-
trum is the closed unit disc has a nontrivial hyperinvariant subspace, then every non-
scalar contraction in with spectral radius one has a nontrivial hyperinvariant 
subspace. 

P roo f . Let A be a nonscalar contraction with spectral radius one. If either A 
has a unitary direct summand or a (A) is disconnected, then A has nontrivial hyper-
invariant subspace for trivial reasons. Thus, without loss of generality we may 
suppose V4£(P). By Corollary 3, there exists f£H°° suchthat o(f(A)) = D~. The 
result now follows from the hypothesis and the fact that the commutant of A is 
contained in the commutant of f(A). 

2. A conformal map. The proofs involve some conformal maps of D and we 
turn now to some definitions in that area. 

A bounded simply connected domain G in C is called a Carathiodory domain 
if its boundary dG coincides with the boundary of the unbounded component of 
C\G~ (the bar denoting closure). One knows from [10] that a simply connected 
domain G in C is Caratheodory if and only if every Riemann mapping function g 
of D onto G is a sequential weak* generator for H°°, i.e. has the property that every 
function is the weak* limit of a sequence {pn og} of polynomials in g 
(this amounts to saying that the functions (pn °g)(A) are uniformly bounded 
on D and converge pointwise to u{X) as n->-°°). Hence, from known facts about 
the //"-functional calculus (cf. [9] Theorem III. 2.1) it follows that if G is a Caratheo-
dory domain contained in D and g is a Riemann mapping function of D onto G, 
then, upon setting u(X) = A, we see that every completely nonunitary contraction A 
in i f ( § ) is the limit in the weak operator topology of i?(ij), of a sequence 
{/>n(g 04))} °f polynomials in g(A). On the other hand, every function i/(A)= 

CO 

= 2 ckXk in H°° is, by Fejer's theorem, the pointwise limit of the bounded sequence 
o 
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oo / 72 | 
{«„} of polynomials u „ ( X ) = 2 1 1 _ ¿ ^ T j J anc* hence u(A) is the weak limit of 

the sequence {u„(A)} of polynomials of A. We infer that our A and g(A) are "W-
equivalent. 

Now we turn to fix a subarc E=Ee of C (0<eS2n) , centered on the point 1. 
We associate with Ee the domain 

Gc = jD\[/<:u(y £-„)] , 

where 

K= {re": 0 == r == 1, j ^ t S 

f it 2n + l 2n+2 n+1 e , ,.„ e l 
= r : 2n~+5 ~ r ~ 2n + 6' ~~n + 2~2 ~ ^ — ~2)' 

For a sketch of Ge see Figure 1. 
Clearly, Ge is simply connected, and its boundary dGe is formed by the subarc 

Ee of C and by a path Je contained in D ; Je is simple (that is, a Jordan arc) if e< 2n, 
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and has also Some overlapping segments if e=2n. Note that if e<2n, Ge is a 
Caratheodory domain'. 

Let ge be a conformal mapping function of D onto Gt, and let gt be its Caratheo-
dory extension to a homeomorphism of D~ onto the prime end compactification 
of Ge. (See, e.g., [4], [7, p. 44], and [5].) It is no restriction of generality and so we 
shall assume that ge is normalized in such a way that the point 1 of D~ corresponds 
under ge to that prime end £e of GB whose "impression" (see e.g. [5]) is the set E„ 
that is, the prime end determined by the sequence of crosscuts consisting of the 
segments 

( 2n 2n + l ) 

of the real line. All the other prime ends of Ge have one point impressions lying 
on the path Je, every point of JE being the impression of just one prime end (even 
in the case e—2n, because we consider overlapping points of the path J2„ as differ-
ent ones). 

Stating things slightly differently (cf. [7], pp. 40—44), we have: 
a) gc is a homeomorphism of Z>~\1 onto GeiJJc, 
b) the set of cluster points of all sequences ge(A„), where l n £D and A„—l, 

is exactly the set Ee, 
c) if a sequence {!„} of points of GeU/e converges to a point of Ee then the 

sequence i f ^OU converges to 1. 
In order to deduce one more fact let us consider a point e in the interior of Ee. 

Let /„=(oc„, p„) (n= 1, 2, ...) be the sequence of the segments of the ray (0, e) in 
Ge (|a„|< \pn\); see Figure 1. Observe from a), b), and c) above and the geometry 
of the domain Ge that the endpoints are situated on the path Je, at least for n 
large enough, in the following order: 

( * ) •••> Pn + 2> an + l; an-l> Pn-lt a n ) Pn + 1< an + 2) 
The corresponding points an=g~1(a„), b„=g~1([}n) on the open arc C\{1} must 
then be situated in the same order, and by virtue of property c) they must converge 
in both directions to 1, that is, 

1 •*•..., bn+2, an+i, b„, o„_i, ..., Z>„_i, a„, bn+j, ... -*- 1 

as The segments /„ themselves are mapped by on disjoint open Jordan 
arcs y'„=ge

_1(/„) lying in D and having their endpoints a„,b„ on C. Each of the closed 
arcs j~ dissects D~ and, again by property c), the convergence /"— e implies the 
convergence j~ — 1 (in the sense that every open disc centered at 1 contains j~ for 
n sufficiently large). See Figure 2. 

We shall refer to the fact j~ 1, just established, as property d) of the map-
ping ge. 
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Figure 2. 

3. Proof of the Theorem. 
Let us consider the conformal mapping functions gc (0<e^2rc) introduced 

above and let A be an operator of class (P). We show that Ecdo(ge(A)). 
Suppose, to the contrary, that there is a point e£Ee which is not in o(ge(A)). 

Since a(ge(A)) is compact, there is a neighborhood N of e such that o(ge(A))r\ 
(~)N=Q and we can change e on Et, if necessary, so that it remains in N and be 
different from the endpoints of Ec. The segments /„ on the ray (0, e), considered 

• in the preceding Section, will be contained in N, with their endpoints a„ and /?„, for 
n large enough, say nSn 0 , and hence o(ge(A))f)l~ =0. Furthermore, we maysuppose 
that «0 has been chosen large enough that the endpoints a„, /?„ appear in the order 
( * ) f o r H > H 0 . 

By virtue of [6], Corollary 3.1, we have u(a(A)f]D)cia(u(A)) for every 
so we infer that 

ge(a(A)f)D)C]ln = 0 

and because g~1(ln)=j„, it follows that 

a(A)njn = (o(A) OD)C\jn = 0 (« ^ n0)-

Moreover, since an, ¿?„gC\{l} for all n, it follows from property a) above of ge 

that ge is continuous at an and b„, and since gt(a„) = a„,ge(b„) = , we know from 
Proposition (FM) and the fact that a„, P„£N for that neither a„ nor b„ can 
belong to a (A) for such n. Thus 

Since a (A) is connected and since j1 —1 by property d) above, we conclude that 
o(A) consists of the single point 1. 

cr(A)r\j«=0 ( n s 4 
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But this implies by [9], Chapter VI, that the characteristic function 
of A is a contractive, operator valued, analytic function on D~\{1}, unitary valued 
on C\{1}, and, moreover, ©¿(A) -1 exists for every A£Z)~\{1} and is an analytic 
function on D. From the analyticity of 0A (A)^1 it follows that ||6>^(A)-1|| is 
subharmonic on D. Moreover, it is continuous on /)~\{1}, satisfies = 
^ II@A W ®A(A)_1|| = ||/|| = 1, and is equal to 1 on C\{1}. 

Hence, if for n g n0, we denote by D~ the part of D~ bounded by j~ and that 
arc (an, b„) on C which does not contain the point 1, we shall have 

D~cD~+1 (=. . . , and U A T =D~\{1}, 
"o 

For each the maximum of | |0X(1) - 1 | | on D~ will be attained for at least 
one point z„€y„ (apply the maximum principle for subharmonic functions). Because 
£n=g*(Zn) lies on gs(j„) = ln we have ( n - e as Since l~cN for « s « 0 , 
we also know that, for such n, —ge(A))~l exists and that (£„ —g^A))'1 — 
(e—g^A))'1 as « — oo. In particular, then, there exists a positive number M such 
that ||(Cn— for H S H 0 . Furthermore, we may factor £„—gE(A) as 

- ( / l -z„)( l - z n / ) _ 1 £„(/)> n & «o, 

and it is obvious that the kn belong to H°° and satisfy \\k„\\m-^2 for all 
Thus, from [9], Proposition VI. 4.2, we have, for n ^ n 0 , 

I I Q A ^ W = 11(1 - ¿ „ A X A - z J ^ U = l l ^ ^ X C . - f t ^ ) ) - 1 ! ! 
But this clearly implies, by the way the z„ were chosen, that | |0A(/)_1[ | is bounded 
on the open unit disc D, and that implies, in turn, by [9], Theorem IX. 1.2, that A 
is similar to some unitary operator U. Then a(U) = a(A)= {1}, so U must be the 
identity operator, which implies the same for A. But this contradicts the fact that 
A is completely nonunitary. 

This contradiction proves that a(gE(A)) ZD Ee . Let us add that (if e< 2ti) 
we have I K ^ - a ) " 1 ^ sadist (a, i1,)]-1 for a£C\Ee, and hence o(ge{A))C\C=Ec. 

Recall also that if s< 2n, then Gt is a Caratheodory domain so that, in this 
case, ge(A) is -yST-equivalent with A. • 

We apply Proposition (FM) to the case T=gt(A), u—gc, and any point 
This is possible since gc can be extended continuously to D U {e} by defining 
ge(e)—y, where y is the impression (on Je) o fg s (e ) . As e runs over ^ X f l } , y runs 
over JE so we infer by Proposition (FM) that Jeca(ge(ge(A))). Since Jt obvi-
ously is dominating for Et, so does a(he(A))r\D, where he=gBogc. Moreover, 
in case E< 2n we know that A^i(r(ge(A)) and by the same reason gs(A)£ 
£ir(he(A)), and on the other hand hE(A)£i(r(A), so we infer that every invariant 
(hyperinvariant) subspace for he(A) is invariant (hyperinvariant) for A, and conversely. 

This concludes the proof of the Theorem. 
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4. Remarks. 
(1) If we modify the domain Gc by taking, say, G* = Gc\{re" : r s 1/10}, then 

the corresponding functions g* and h* will satisfy the inequalities |l/g*| ^ 10, 
| l/A*|slO on D, and these imply that g*(A) and h*(A) are invertible (with 
inverses bounded by 10). Theorem and its Corollaries obviously hold for these 
functions also. 

(2) The techniques utilized above actually allow one to prove a fairly general 
spectral mapping for conformai mappings. For a statement see Abstracts Amer. 
Math. Soc., 81T-47-427, 1981. 

(3) Using the Theorem of this paper and another conformai mapping, one can 
prove an analog of Corollary 2 in which the square roots are replaced by inverses; 
for a precise statement see the same Abstracts, 81T-47-428, 1981. 

(4) It is easy to see that the invariant subspace problem for the class of oper-
ators A in SC(§>) for which some two of the numbers r(A) (the spectral radius of 
A), w(A) (the numerical radius of A), and ||v4|| (the norm of A) coincide reduces 
easily to the same problem for the smaller class for which r(A)= ||.4||, so the results 
of this paper actually apply to this larger class. 

(5) It is also easy to see (via Cayley transforms) that the invariant subspace 
problem for accretive quasinilpotent operators reduces to the problem for contrac-
tions with spectral radius one. 
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