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On invariant subspace lattices of Cu-contractions 
L. KERCHY 

We say that a Hilbert space operator T belongs to the class SP, if it has the 
following property: 

(P) every injection X from the commutant {T}' of T is a quasi-affinity. 

The class of C0 -contractions with property (P) was studied in [13], [15] and [3], 
while in [10] we characterized the class C u f l ^ . It turned out that classes Cnf\gP 
and Cn(~}0> are good generalizations of the corresponding cases of finite defect 
indices. In fact, both in C0 and in C n , property (P) is a quasi-similarity invariant. 
Moreover, as it was proved in [3], in the class C 0 D ^ quasi-similarity induces iso-
morphism between the invariant subspace lattices. In the present paper we prove 
an analogous statement, concerning the Cu-parts of invariant subspace lattices of 
contractions belonging to CuPl^8. Moreover, we examine behaviour, under quasi-
similarities, of hyperinvariant and invariant subspaces of Cu f) ̂ -contractions, and 
we prove the reflexivity of bicommutant. 

Throughout the paper bounded linear operators on complex separable Hilbert 
spaces will be considered. We follow the terminology and notation used in [10] 
and [12]. 

1. Preliminaries. It is well-known (cf. [12, Theorem 1.3.2]) that for every con-
traction T of class C n on the Hilbert space § there exists a (unique) "canonical" 
decomposition §=§ 1 f f i§ 2 ©§3 of § reducing T, such that 7 ,

1=T|§ 1 is a com-
pletely non-unitary (c.n.u.) contraction of class C n , T2 = T i s an absolutely 
continuous unitary (a.c.u.) operator and T3—T\9)s is a singular unitary (s.u.) opera-
tor. (We mean that the specral measures of T2 and T3 are absolutely continuous 
and singular, respectively, with respect to the Lebesgue measure.) The following 
two lemmas, concerning this decomposition, will play an important role reducing 
proofs to the c.n.u. case. We recall that for arbitrary operators, T ^ J ? ^ ) and 
T2£&(§>2), T2) denotes the set of intertwining operators, that is J(Tlt T2)= 
= {X£&(§>1,Z2)\XT1=T2X}. 
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Lemma 1. Let Tbe a C^-contraction and let T=T1®T2®T3 be its canonical 
decomposition. Then we have: 

(i) Lat T = Lat ( ^ © ^ © L a t Tz, 
and 
(ii) {T}'= {T^T,}'®^}'. 

Proof. Let Lat T be an arbitrary invariant subspace, and let us consider 
the decomposition 2=2

1
®2

2
®2

3
 of 2 reducing for T|£, such that T\2X is a 

c.n.u. contraction, T\2S is a.c.u. and !T|£3 is s.u. operator. (The existence of such 
a decomposition follows by [12, Theorem 1.3.2].) 

Let X denote the operator X=Plt2\23£J{T\2z,T1®T£, where P1>2 is the 
orthogonal projection of the space § onto Let M be an a.c.u. operator, 
quasi-similar to TX®T2, and let Z£J{JX®T2,M) be a quasi-affinity. (Cf. [12, 
Prop. II.3.5 and Theorem II.6.4].) Now, because of ZX£J(T\23,M), we infer 
by [5, Lemma 4.1] that the subspaces (ker (ZX))~ and (ran (ZX))~ reduce r | f l 3 

and M respectively, moreover T|(ker (ZX))1 is unitarily equivalent to 
M|(ran (ZX))~. Since T|(ker (ZX))1 is singular and Af|(ran (ZX))~ is absolutely 
continuous unitary operator, it follows that ZX=0, and so -3T=0. Consequently, 

Let Y denote the operator r=P 3 | £ 1 e£ 2 e^ r (7 , | £ 1 ©£ 2 , T3), where P3 is the 
r&rthogonal projection of the space § onto § 3 . Let be the minimal 
isometric dilation of the contraction r l ^ © ^ , and let £/£.£?(ft) be the minimal 
unitary dilation. We can extend the operator Y by the equation Y' U"+h:= YT"h 
(h£2x®22, «SO), and by taking bounded closure, to an operator Y'dJ(U+, T3), 
such that F ' |£ 1 ©fl 2 =y. After that, the operator Y' can be extended by the equa-
tion: Y"U~"k:= T3"Y'k (fc€ft+, "SO), and by taking bounded closure, to an 
operator T3), such that Y"\R+ = Y'. Since [/is an a.c.u. (cf. [12, Theo-
rem II.6.4]) and T3 is a s.u. operator, we infer as above, that Y"=0, and so Y=0. 
Therefore, we get that fiiffifiaESi©^» and property (i) is proved. 

Property (ii) immediately follows by [5, Lemma 4.1]. 

Lemma 2. Let U be an a.c.u. operator. Then there exists a c.n.u. C^-contrac-
tion T, similar to U. 

Proof . Let M=MEi®MEit®... be the functional model of the a.c.u. operator 
U (cf. [10]). Moreover, for every n let 9„ be an outer function, such that 

1, if e H E n 

j , if eu£En 
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holds a.e.. Then the function 0 = 
A 

0 
will be outer from both sides, and 

we have Q(c")* 0(e") = I a.e.. Now, on account of [10, Lemma 4], the c.n.u. 

Cu-contraction T=S(0) is similar to its Jordan model. But, in virtue of [10, 
Corollary 1], the Jordan model of T is exactly the operator M. Therefore, T is simi-
lar to M, and so to U also. 

Let T be an arbitrary c.n.u. contraction, and let dT(e") denote its "defect 
function", that is ¿/r(e") = rank [/— 0T(e")* 0T(e")]1/2, where 0T is the characteristic 
function of T. We note that for the defect index dT of T, introduced in [12], we have 
dT = rank (I-T*T) = rank [7-0T(O)*07.(O)]V2. It was proved in [10] that a c.n.u. 
C u -contraction T belongs to the class 8P, if and only if T is a contraction of finite 
defect function, that is if its defect function, dT(e"), is finite a.e. on the unit circle. 

2. The C u -invariant subspace lattice. In the invariant subspace lattice of a C u -
contraction T the subspaces £, such that r | £ £ C u , have a particular interest. 
In this sections we examine this Cu-part of Lat T. 

Def in i t i on 1. For every C u -contraction T, Lat denotes the Cxx-invariant 
subspace lattice of T, that is Latx 7:= {£6Lat r | r |£iECn}. 

The following proposition shows that Lat t T is closed with respect to the span. 

P r o p o s i t i o n 1. If T is a C^-contraction and {£y}y€rQLatx T, then £v = 
= V V L A ^ R . yir 

Proof . Since flv is separable, there exists a countable subset {T,}J°=I °f A 

such that V £y
 = £ v • For every j, let Uj£JiC(S{j) be a unitary operator, quasi-

7 = 1 J 

similar to T\& , and let Xj^(Uj,T\2y) be a quasi-affinity, such that | |Xj || ^ 

Then the operator X: S\= © XI © kA = 2 x j k j intertwines the 7 = 1 V7 = l / 7 = 1 

unitary operator U= © Ui with r | £ v , X£J(U, T\2V). Taking into account that 
7 = 1 

X has a dense range, we infer that X*6,/((7'|£v)*, U*) is an injection, and so it 
follows that ( r l f iy^ iCi , . Consequently, we have that T |£ V £C U , that is A ^ L a ^ T . 

In the sequel we show that, for every contraction T of class C u f l L a t x T 
possesses the usual properties of invariant subspace lattices, if we replace intersec-
tion and orthogonal complement by suitable new operations. We need the following 
notion. 

D e f i n i t i o n 2. Let T be a Cu-contraction, and ££Lat T. By [12, Theo-
rem II.4.1] there exists a unique decomposition £—£'©£" of fl, such that 
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£ '€Lat ( r | f i ) , r | f i ' € C u and r | c . € C . 0 . (We denote by T\&. the compression of 
T to the subspace fi'^Lat^. !T\Lat T, that is T^^P^Tft". Cf. [2].) The sub-
space £ ' is c a l l ed^ the Cn-part of 2, and is denoted by 2'=2m=2<$>. 

The following lemma shows that £(1) is the greatest Cu -invariant subspace 
in 2. 

Lemma 3. Let T be a C^-contraction, and £gLat T. If fl'^La^ T and 
£'g£, then £'g£(1). 

Proof . Since £' , £(1)eLati T, we infer by Proposition 1 that £ " = £ ' V 
V£(1)€Lat! J . Let us suppose that £ ' ^ £(1). Then there exists a non-zero vector 
/ e £ " e f i ( 1 ) g f i e f i ( 1 ) . In virtue o f / € f l " and fi'^Lat^ it follows that W P ^ f W S 

On the other hand / € £ e £ ( 1 ) , and so | |P cr+YII - 0 . This being 
a contradiction, we infer that £ ' £ £(1). 

De f in i t i on 3. The C^-orthogonal complement of a subspace £€Lat17', C u -
invariant for T, is the subspace £ J- i=fl^1 , Cu-invariant for T*, defined by £-*-!= 
=££*: = (£±Y£€ LatxT*. 

Propos i t i on 2. If T is a contraction of class C^H 3P and £^Lat17', then 

Proof . In virtue of Lemmas 1 and 2 we may assume that T is a c.n.u. con-
traction. By the definition of £ ± l it follows that r[£_Le£_L1€C0., and so 
^ I f i -Lef i j - i )*^"^® a-e- (cf- [12, Prop. VI.3.5]). Taking into account that dst(e"u)~ 
=ds(e") for any c.n.u. Cu-contraction S (cf. [10, Cor. 1]), we infer that 

d T\2±eZ±S e i , ) = Me")-dT\Q(e")-dTlsl±y) = 

= dr^{e-,t)-d(T]jBryil(e-',)-dT*]a±1(e-tt) = d(T\S,±QQ±1)*(e~i') = 0 

a.e. (cf. also [12, Theorem VII. 1.1 and Propositions VII.2.1, VII.3.3]). Therefore 
we have that r | £ x e £ j . 1 = r | ( £ ± l ) j . © s € C 0 0 , and so (flJ-i)J-i=((£-Li)-L)W=£. 

(i) 
Def in i t i on 4. The C^-intersection p) 2y of a system of subspaces {£ } g r g 

(i)
 y € r 

g Lata T is defined by f | £ : = ( f | flv)(1). 
yir ?er 

Propos i t i 
on 3. If T is a contraction of class C u f )3? and yer = Latj T, 

(i) (i) 

then D £v=(V 2 ^ and V£y = (n ^O1'-rer yer ytr yzr 
Proof . In virtue of Proposition 2 it is enough to prove the first equality. Let 

(i) 
£ ' and £" denote the subspaces p| £ and ( V fi^1)"1"1' respectively. Since 
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( V A,1)"1 i (£^0- \ we infer by Lemma 3 and Proposition 2 that £ " = ( V £ ^ 0 1 i 
yer 7 rer 
ÇE(Sir

±1)-Ll=2v. Therefore we have a n d s o b y Lemma 3 £ " £ £ ' . 
rer 

On the other hand, V y fly
x implies ( v £y J-1)x i( V fi, f l £ v i 

yer yer yer yer yer 
2 D £ , = £'• Again by Lemma 3, it follows that £ ' i f l " . 

yer 
As a consequence, we get the following: 

P ropos i t i on 4. Let T be a contraction of class C x x f a n d let 
be a system of sets of indices, | J ra. If {fly}ygr ^ L a ^ T , then 

(1) (1) , (1) 
n { n { £ y l v € r a } | a € L } - n{2yl?€r}. 

Finally we note that if U is a unitary operator, then Lat2 U coincides with the 
lattice of reducing subspaces. 

3. Quasi-similarity invariance of La^ T. We show that, for contractions T of 
class C u fl 3P, Latj T is a quasi-similarity invariant, and any quasi-affinity, inter-
twining such contractions, implements an isomorphism between the Cu-invariant 
subspace lattices. We need a lemma. 

Lemma 4. Let Tx and T2 be quasi-similar contractions of class CuH3P, and 
let XÇ.J(Tx, T2) be a quasi-affinity. Then, for every subspace fi^Lat^, we have 

Proof . By Lemmas 1 and 2 we may assume that Tx and T2 are c.n.u. contrac-
tions. Let us denote by © the subspace S=(Z£)_6Lat17T

2 . In virtue of the proof 
of Proposition 2 we can write 

dTt\(X*^rieit) = dT*\^(e") = dT*(e")-dT*\JeU) = 

= dT*(e") — (e") — dT*^2±i(e") a.e. and so by [10, Cor. 1] 

TiKir*®-1-!)" is quasi-similar to r*^-1», ri*|(Ar*©-Li)-~7\*|£J-i. On the other 
hand, since L a ^ r * } ^ * © - 1 ^ ^ ^ , we infer by Lemma 3 that (A'*©-Li)-E£-Ll-
Now it follows by [10, Cor. 6] that T*\2LKSP. Therefore we have (Z*©-L0_ = 

The following theorem is an analogue of [3, Prop. 4.8], concerning Co-contrac-
tions, and it is a generalization of the corresponding part of [16, Theorem 2.2], 
concerning c.n.u. Cu-contractions with finite defect indices. 

Theorem 1. Let Tx and T2 be quasi-similar contractions of class Cxx 

Then every injection X^J{Tx, T2) is a quasi-affinity, and the mapping q>x: Lat^Ji — 
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—Lat1T2, <px: fit—(AB) is a lattice-isomorphism. Moreover, 7\ |£ and T2\{XS)~ 
are quasi-similar, for every fiCLat!^. 

Proof . It is evident that, for every ^ L a t ^ , (X£)-£La.\.xT2, and 7 \ | £ ~ 
~T2\(XS)~. Since T 2 ~ 7 \ ~ r 2 | ( r a n X ) ~ , and T^SP, it follows that X is a quasi-
affinity. 

Let us suppose that £ 1 ; £2 iLatxT l t and <Px(^i)=(Px(^2)=®• By Proposi-
tion 1 we infer that £=£ 1 VS 2 €Lat 1 7\ , and so we have that r 1 | f l i ~ r 2 | S ~ r 1 | £ 
0 = 1,2). By [10, Corollary 6] it follows that £ . = £ ( / = 1 , 2 ) . Therefore £ i = £ 2 , 
and so q>x is an injection. 

Let S£Latx Tz be an arbitrary subspace. Then for the subspace 

fl = ((A'*SJ-i)-)-L^Lat XTX 

we have by Lemma 4 and Proposition 2, that (X2)~ =(S- L i ) 1 »=S. Therefore cpx 

is surjective. 
Let {£?} ) l£ rgLat17'1 be an arbitrary system of Cu-invariant subspaces. It is 

obvious that \J £?))~ = V O^-,)"- Let 58a and ©2 denote the subspaces 
(i) r ea) 

\X\ H £ , | ) and H respectively. On account of Lemma 4 and Proposi-
\ \y€T )) ytr 
tion 3 we have 

(a) I-1* 
n £ , = v SyXl = V { x * ( ( x 2 y n ^ y = ( * * ( V ( № ) - ) X l ) ) - = 

rer / yer y^r yer 

= n^fl,)")"1"1) = (x*®i-T. 

Since q>x* is an injection, we infer by Proposition 2 that © 1 =© 2 . 
4. Multiplicity-free C u -contractions. In this section we prove two corollaries of 

Theorem 1, concerning multiplicity-free Cu-contractions. (An operator TZ&(9)) 
is called to be multiplicity-free, if it has a cyclic vector, that is if f ) = V Tnh for n £ 0 
some vector / £ § . Cf. [14].) The first corollary is an analogue of [14, Theorem 2] 
about C0-contractions. 

Coro l l a ry 1. For any C^-contraction T, the following properties are equiv--
alent: 
(i) T is multiplicity-free 

(ii) There are no different subspaces £, S ^ L a ^ T , such that Tjfl is quasi-similar 
to T |fi'. 
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Proof . If T does not belong to the class 8P, then T has neither property (i), 
nor property (ii). (Cf. [10, Corollary 1].) Therefore, we may assume that T£3P. 
Let U be a unitary operator, quasi-similar to T. It can be easily seen that T has a 
cyclic vector if and only if U does. On the other hand, we infer by Theorem 1 that 
T and U have property (ii) in the same time. Since for unitary operators (i) and (ii) 
are obviously equivalent, the Corollary is proved. 

Coro l l a ry 2. If T is a multiplicity-free C ̂ -contraction, then LatjT<= 
Q Hyp lat T. 

Proof . On account of Lemmas 1 and 2 we may assume that T is a c.n.u. con-
traction. 

Let fi be a subspace from Lat t T, and let us consider the set a— {ei'\dT]S,{eir) = l}. 
Let A'CLatiTHHyp lat T denote the subspace corresponding to the set a by [12, 
Theorem V1I.5.2], It is evident that dTls,(e")=dTla,(e"), and so r | f i~7 , | f i ' . By 
Corollary 1 we infer £ = £ ' . Therefore fi € Hyp lat T follows. 

5. Quasi-similarity invariance of Latx TO Hyp lat T. Now we study behaviour 
of the hyperinvariant subspaces in LatjT' under quasi-similarities. We need the 
following lemmas. (Lemmas 5 and 6 are analogues of corresponding statements 
about C0-contractions, cf. [4].) 

Lemma 5. Let T be a Cxl-contraction, and let fig Lat T be an invariant sub-
space. Then fi£LatxT if and only if fi is of the form fi = (ran F)~ for some Yd {T}'. 

Proof . 
a) If fi=(ran Y)~ for some Ye{T}', then (r|fi)*-<r*Kker F)-1-, where 

T*|(ker r)-L6C1 . . (7\-<r2 means that T2) contains a quasi-affinity.) There-
fore, it follows that T\2dCu. 

b) Let us now suppose that fig Lat XT. There exist unitary operators t^ and 

U, such that and U~T. Since UX^T\2,<T^U, it follows that Ux< U. 
i 

(7\ -<r 2 means that J ( T x , T ^ contains an injection.) Now we infer by [5, Lemma 
.4.1] that the subspace (ran X)~ is reducing for U, and Uy is unitarely equivalent 
to E/|(ran X)~, for any injection U). Therefore U* can be injected 
into U*, and so (T\2)*~U?-<U*~T*. Let Z£S((T\2.)*,T*) be an injection, 
and let J£y(T\2, T) denote the inclusion of fi into Then we have that 
Y=JZ*£{T}', and fi=(ran F)~. 

Lemma 6. If the C^-contractions Tx, T2 can be injected into each other, then 
they, are quasi-similar. 

Proof . Let Ut be a unitary operator, quasi-similar to Tt (/=1, 2). In virtue 
of [5, Lemma 4.1] it follows that U1 and U2 are unitarely equivalent to direct sum-

4 
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mands of each other. A simple application of the usual Cantor—Bernstein argu-
ment proves, that Ui and U2 are unitarely equivalent. (Cf. [9].) Therefore 7\ and 
T2 are quasi-similar. 

Lemma 7. Let Tx and T2 be quasi-similar contractions of class CnC\3?. Then for 
any quasi-affinities X£J{Tx,T2), Y£J(T2,T^ and for any subspace fi^Hyp lat 7 \ n 
nLa t jT i we have that £ 2 = ( A ^ - € Hyp lat T2 fl Lata T2, and ( y £ 2 ) - = £ x . 

Proof . Let £ 2 £Hypla t r 2 be the subspace defined by £ 2 = V (B&2)~. 

Since £2€LatiTg, we infer by Lemma 5 that £ 2 = ( r a n Z ) - , for a Ze {T2}'. Now, 
for any Be {T2}', we have BZe {T2}' and CB£2)~=(ran (BZ))~, and so again 
by Lemma 5 (B22)~ eLat^. Applying Proposition 1 it follows that £2€LatxT2 . 

Let £ i denote the subspace £ i = ( 7£2) ~ £ Lat t Tx. Taking into account that 
fi^Hyp lat 7\ and, for any Be {T2}', YBXe {7\}', we infer that £,

1=(Y£'2)- = 
=(Y( V (BX21)-))-= V ( O A R F L 1 ) ~ G £ 1 . Summerizing these facts, we can 

B€{rj}' B€{r2}' 
write: 

-< T2|£2 -< r2 |£2 -< Tx|£i -< 

and all operators occuring here are of class C u . It follows by Lemma 6 that these 
operators are quasi-similar to each other. Taking into account that T^l '^dP and 
T ^ e S P (cf. [10, Cor. 6]), we infer that £ x = £ i and £ 2 = £ ; . Therefore we 
have that £2£Hyp lat T2 and ( r f l 2 ) -=f l 1 . 

In virtue of the previous Lemma it follows immediately: 

Theorem 2. Let 7\ and T2 be quasi-similar contractions of class Then, 
for every quasi-affinity XeJ(T1; T2), the mapping <px: Hyp lat 7\ fl Latx 7\ — 
—Hyp lat T2flLatjT2, cpx: 2>-+-(X2)~ is a bijection, not depending on the particular 
choice of X. 

6. Reflexivity of the bicommutant. C. Apostol proved in [1], that if Te&{$b) is 
an operator, quasi-similar to a normal operator, then there exists a basic system 
{SnJnsi °f invariant subspaces of Tsuch that T|fj„ is similar to a normal operator, 
for every n. We recall that a system {§„}„sl of subspaces of § is called basic, if, 
for any n, the subspaces §„, (V are complementary and (J (V §>k) — {0}- We 

n B l kSn 
show that if T is a contraction of class CnC\3P, then the biinvariant subspaces §„ 
can be chosen to be hyperinvariant. 

P ropos i t i on 5. Let Te&(§) be a contraction of class CXXV\SP, and let 
U£J?(St) be a unitary operator, quasi-similar to T. Then there exist a basic system 
{§>}nsi °f subspaces of 9), and a decomposition © such that §„€Hyp lat T, 

HSl 
^n£ Hyp lat U, and T\$jn is similar to U\R„, for every n. 
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Proof . On account of Lemmas 1 and 2 we may assume that T is a c.n.u. con-
traction. By APOSTOL'S theorem [1] there exist a basic system {2k}£°=1 of invariant 
subspaces of T, and a decomposition © SB* of ft reducing for U, such that, 

t s i 
for every k, T\£k is similar to U L e t Cki^(U\iBk, T|fi t) be an affinity 
№ = 1,2,.. .). 

Since TdS?, we infer by [10, Corollary 2] that holds also. Now by 
[10, Lemma 7] it follows that m(C) Cdn)=0, where &n=Co{@ U ( n= l ,2 , ...). 

i t s l k>n 

(Here and in the sequel a (T) denotes the spectrum of T, and m denotes the normalized 
Lebesgue measure on the unit circle.) Let <r„ denote the set o'1, if n=1, and &„\&n-i, 
if « > 1. Then the sequence {<rn}„si consists of pairwise disjoint sets, and we have 
i»(C(U *„))=<>. For every n, let §„» $>'n be defined by K = X „ n ( U ) R = 

= e Kk>K=7.c«n(U)&= e where ft„,*=xffn(£/|©*)®*, K,k=XCaSUI®')®* fc&l n ft 2:1 
(¿=1 ,2 , . . . ) ; and § „ = V §„,*, § : = V K * ' Where %K.k=CkStn,t, ^k=CkR'nk 

kml 
(k=1,2,...). It is clear that ftni[={0} if k>n, and so 5*„= © 5*„ k. It follows 

k = 1 
that &„fk= {0} if k>n, that is §„=§„ , i+ ... + §>„,„. It can be easily seen that 
the subspaces Sy„ and §>'„= V are complementary, + Now let 
n0 be an arbitrary natural number. It is obvious that, for every n, V § / = ( V 

l^n k>n0 

+ f V f V £/,*))> and so it follows: f l ( V S / ) i ( V £*) + [ f l f V i V §/,*)))• VsnU=l )) nSl Irnn k>n0 VnSl \lmn U = 1 ))) 
Since the mapping ...®C„t\ 931©...©23„o^£1+... + £„o is an affinity, we 

infer that D [ V I V §/ J l = {°}- But this implies F) ( V § / ) = V T- Taking n S H ! g i i U = l ' )) n s l ¡fen k>n0 into account that n0 was chosen arbitrarily, it follows that f l ( V = 
ami imn 

= D ( V £4) = {0}. Therefore, we have shown that {§„},,sl is a basic system. 
nsi kmn 

On the other hand, the operator T |§„ is similar to U\S\n, and the operator 
T\&„ is quasi-similar to U\K- Let Yn£J(U\S\n, T[§„) and ZndJ{T\%n, 
be quasi-affinities. Let X£ {J}' be an arbitrary operator, and let us consider the 

, r vw 
matrix of Xin the decomposition + . The relation X£{7}' 

implies that X™£JF(T\$>„, T\&n), and so we have ZnX^YndJ{U\SKn, U\&'n). In 
virtue of the definition of subspaces and it follows, using [5, Lemma 4.1], 
that Z„X£>Yn=0, and so we infer X^—0. Consequently, the subspace §„ is 
invariant for X. But X£ {T}' was arbitrary, therefore we have §„£Hyp lat T. 
The proof is completed. 

Applying this Proposition we show that the bicommutant {T}" of every con-
traction T of class C u n ^ is a reflexive algebra (cf. [6, ch. 9]). This statement is 

4* 
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a certain extension of the yon Neumann double commutant theorem, which states 
that the bicommutant of every, normal operator is reflexive (cf. [11, ch. 7]), 

Theorem 3. If T is a contraction of class Cun^, then 

AlgLat "T = {T}". 

(Here Alg Lat" T denotes the weakly closed algebra of operators which leave all 
the subspaces in Lat" T, the lattice of biinvariant subspaces of T, invariant.) 

Proof . Let us consider the basic system {§„}„si of hyperinvariant subspaces 
occurring in Propositions. Let A£Alg Lat" T be an arbitrary operator. Since 
§n£Lat" T, we infer that §„€Lat A, for every n. Let A„, T„ denote the operators 
A„=A |§„, T„ = T|§n respectively. It can be easily seen that Lat" Tn g Lat" T. 
Therefore we have that A„£A\g Lat" T„. Taking into account that Tn is similar to 
a unitary operator, it follows that An£ {Tn}", for every n. Since the subspaces §„ 
( n ^ l ) are hyperinvariant, we infer that A£{T}". 

7. Behaviour of Lat T under quasi-similarities. Theorem 1 does not hold validity 
replacing Latx Tt by Lat Tt (/=1,2). In fact, in the following example we have 
(X£)"=§<>, for every subspace £6Lat T ^ L ^ T ^ 0). 

Example 1. Let U be the operator of multiplication by e" on the space L2(C), 
where C denotes the unit circle on the complex field, and we consider the normalized 
Lebesgue measure on C. Let (p£L°°(C) be a function such that <p(e")?i0 a.e., 
and / log \(p\dm— — <=°. Then X, the operator of multiplication by <p(e"), will 

c 

be a quasi-affinity belonging to {U}'. Let £ be an arbitrary non-reducing invariant 
subspace of U, £6 Lat £/\Lata U. Then £ has the form £=qH\ where q£LT 
is a function such that \q(e")\ = l a.e. (cf. [7, Theorem 3]). In virtue of Szejgo's 
theorem (cf. [8, ch. 4]) it follows that (q>H2)-=L'\ and so we infer that (X £)" = 
=((p(qH2))-=q(<pH2r=qL2=L2. ' ; 

The following Propositions give some informations about the transfer of invari-
ant subspaces, in the case T2=U is a unitary operator. We recall that an operator 
U is completely unitary, if U is unitary and Latj i /=Lat U, . that is every invariant 
subspace of U is reducing. (Cf. [11, ch. 1.8].) 

P r o p o s i t i o n 6: Let j) be. a contraction of class Cun^,. and let 
(ft) be a unitary operator, quasi-similar to T. Then there exist decomposi-

tions § = § 1 + § 2 and ft=ft1©ft2 such that the following properties hold: 
. (i) Hyp lat T, ft^Hyp lat i / , .7|§ i~C/|ft i . and C/|ft; is completely unitary 
for /=1 , 2; 
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(ii) every operator X£J(T, U) has a diagonal matrix with respect to these 
decompositions; 

(iii) Lat XT = Latj ( T l ^ ) + Latx ( r |§2) . 

Proof . As for the existence of decompositions possessing properties (i) and (ii), 
see the proof of Proposition 5. (We recall that U is completely unitary, if o{XJ)9iC. 
Cf. [11, Th. 1.23].) Let us prove now that property (iii) holds also. If fi.eLati ( r | § ; ) 
( i= l , 2), then we infer by Proposition 1 that £=fi1-j-fi^GLat1r. Let us suppose 
contrary that fi€Lat1T. It follows by Lemma 5, that there exists an operator 

such that £ = ( F § ) - . Taking into account that § ;€Hyp lat T (/ = 1,2), 
we see that ( 7 § ) " = ( 7 1 § 1 ) - + ( r 2 § 2 ) - , where Y~Y{T\$ty 0 = 1, 2). There-
fore (r.-SO'eLat! ( r |§ ; ) (/=1, 2) again by Lemma 5. 

P ropos i t i on 7. Let us suppose that the contraction T of class C11D^> is 
quasi-similar to a completely unitary operator U, and X£J{T, U) is a quasi-affinity. 
Then, for every subspace A^La^T, (*£)" = (Z((£x0i))~ 

Proof . On account of Lemmas 1 and 2 we may assume that T is a c.n.u. con-
traction. Let £ ' denote the subspace £'=(£-Ll)-L6Lat T. In virtue of the proof of 
Proposition 2 we infer that 7lCo£C00, where £0 = £ ' e£€La t 4 7 ' . The matrix 
of the operator (7"|fl')" with respect to the decomposition £ ' = £ © £ „ is of the 
form 

( r |£')" = 
(T|£)" Nw 

0 (r|fio)" 

Since XT"=UnX, it follows that XNwf0 + X(T\ao)nf0=UnXf0, for any / 0 6£ 0 . 
Let us suppose that 93'=(Xfl')~ ^(XQ)~=5B, and let P denote the orthogonal 

projection onto the subspace 93'©93. Since U is completely unitary, we have that 
PU=UP. The relation ©V23 implies, that there exists a vector / 0 €£ 0 such that 
PXf^O. Now we infer that WPVXM =|| UnPXf0\\ =\\PXfJh >0, for every n. On 
the other hand l |P^"X/ 0 | | = | |™W/ 0 +P^(7 ' | S i / / o | | = ||i'A'(r|£())' ,/0 | |s 
= 11̂ 11 IK^Ifi/Zoll-0, if oo. This is a contradiction, and so we get that » ' = 93. 

8. A note on basic systems. Finally we give an example for a basic system 
{§„}nS1 with the property that f i V Pnf for some vector / . Here Pn denotes the 

ni l 
projection onto the subspace §„, corresponding to the decomposition § = § „ + 
+ ( V • This fact strongly limits the usefulness of Proposition 5. 

Example 2. Let {<p„}7=1U W r = i U {/} be an orthonormal basis in the Hil-
bert space and let {a„}"=1, {/?„}"= j be sequences of positive real numbers. We 
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define the vectors glt h'0 by 

g i = a i < P i + y / , hx = - o c ^ + y / , h'0 = 0, 

and the subspaces , by 

= giVh'0, & = V <Pa)y( V fc,). 
« 5 2 n S l 

Let n ^ l be an arbitrary integer, and let us assume that, for every natural number 
ks.n, the vectors gk, hk, h'k_x, and the subspaces §>k have been already intro-
duced. Then the vectors gn+1, hn+1, h'n, and the subspaces § n + 1 , &n + 1 will be defined 
by the following equalities: 

gn + l = *n + l<Pn + l + -Jh«> K + l = - X n + l<Pn + l + j K , K = K + Pn^n, 

§ n + i = g n + i v ^ , s ; + 1 = * n + 1 v( V %)V( V 
t S n + 2 t s n + l 

A straightforward computation shows that V §>k=S>< and V 'n f ° r 

kml ksn + l 
every n, provided the sequence {/?„}™=1 tends to zero. This implies that, for every n, 
§ = § „ + ( V §>k) . We can easily verify also that f ) ( V D ^ = { 0 } , if 

k#n ami km n + 1 nml 

the series 2 is not convergent. n=1 
1 

Let {E„}"=1 be a sequence of positive numbers, such that 2 • Let us 
»=1 2 

now define the sequence {a„}~=1 such that the following inequalities hold 4ex 

and 

a 1 i 1 a . a - j . 

for every n > l . It is evident that in this case 2 Let us assume that 
n = l 

the sequence tends to zero. Then the system {§„}"=1 will be basic, and P„f=g„, 
for every n. 

Let g'n and x„ be the vectors, defined by 

After a short computation we conclude that ||/„||2<2e„ for every n, and so 

2 UxJ2<i-
n = 1 
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Now let alt ..., a„ be arbitrary complex numbers, where n ^ l is an arbitrary 
natural number. Then we have 

f-Zligi f - Zai<Pi- 2 aiii ¡=1 i=i 

f=i / - 2 «id - 2 Wi I s / - 2 «¡d -<=i 

- 2 l a i l l l Z i l l s [ l + ¿ k l 2 ] 2 - [ ¿ k l 2 ] 2 [ J W X i W 2 ] 2 • 

Taking into account that i n f { ( l + x ) * — i f 0 < e < l , we infer that 

¡=1 
=b for some ¿>0 , independent on n, and on the numbers alf ..., an. 

Therefore /<£ V g'n= V g„, that is / $ V P.f-
nsl nsl nsl 
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