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On invariant subspace lattices of C,,-contractions

L. KERCHY

We say that a Hilbert space operator T belongs to the class 2, if it has the
following property:

(P) every injection X from the commutant {T'}’ of T is a quasi-affinity.

The class of C,-contractions with property (P) was studied in [13], [15] and [3],
while in [10] we characterized the class Cy;MN 2. It turned out that classes C,NZ
and C;;N# are good generalizations of the corresponding cases of finite defect
indices. In fact, both in C, and in Cy,, property (P) is a quasi-similarity invariant.
Moreover, as it was proved in [3], in the class CyN# quasi-similarity induces iso-
morphism between the invariant subspace lattices. In the present paper we prove
an analogous statement, concerning the Cy-parts of invariant subspace lattices of
contractions belonging to C,;\#. Moreover, we examine behaviour, under quas'i?
similarities, of hyperinvariant and invariant subspaces of C;;/)Z-contractions, and
we prove the reflexivity of bicommutant.

Throughout the paper bounded linear operators on complex separable Hilbert
spaces will be considered. We follow the terminology and notation used in [10]
and [12].

1. Preliminaries. It is well-known (cf. [12, Theorem 1.3.2]) that for every con-
traction T of class C,; on the Hilbert space $ there exists a (unique) “canonical”
decomposition H=9H,9H,®H; of H reducing 7T, such that T;=T|H, is a com-
pletely non-unitary (c.n.u.) contraction of class C,;, T,=TI|9. is an absolutely
continuous unitary (a.c.u.) operator and T,=T|9; is a singular unitary (s.u.) opera-
tor. (We mean that the specral measures of T, and T, are absolutely continuous
and singular, respectively, with respect to the Lebesgue measure.) The following
two lemmas, concerning this decomposition, will play an important role reducing
proofs to the c.n.u. case. We recall that for arbitrary operators, T€2($,) and
T, ZL(9,), F(Ty, T,) denotes the set of intertwining operators, that is S (T, Tp)=
={XeZ (91, DIXT, =T, X}.
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Lemma 1. Let T be a Cy,-contraction and let T=T,®T,8T; be its canonical
decomposition. Then we have:

(i) LatT = Lat (T T,)dLat 75,
and '
(i) (TY = {®T.)Y o {Ts}.

Proof. Let £¢lat T be an arbitrary invariant subspace, and let us consider
the decomposition L=2, L, ®L; of £ reducing for T|L?, such that T[Q, is a
c.n.u. contraction, T'|€, is a.c.u. and T|€; is s.u. operator. (The existence of such
a decomposition follows by [12, Theorem 1.3.2].)

Let X denote the operator X=P, |2, 4 (T\|Q;, T;®T,), where P, , is the
orthogonal projection of the space $ onto £,09,. Let M be an a.c.u. operator,
quasi-similar to T;®7T,, and let Z€S£(T,®T,, M) be a quasi-affinity. (Cf. [12,
Prop. I1.3.5 and Theorem 11.6.4).) Now, because of ZX¢#(T|8,, M), we infer
by [5, Lemma 4.1] that the subspaces (ker (ZX))* and (ran (ZX))~ reduce T|@,
and M respectively, moreover T|(ker (ZX))t is unitarily equivalent to
M|(ran (ZX))~. Since T|(ker (ZX))* issingular and M |(ran (ZX))~ is absolutely
continuous unitary operator it follows that ZX'=0, and so X=0. Consequently,
2, 9;.

Let Y denote the operator Y=P;|2,®L,c 4 (T|8,®L,, T;), where P, is the
(érthogonal projection of the space $ onto ;. Let U, ¥ (R,) be the minimal
isometric dilation of the contraction T 2,02,, and let UcZ(K]) be the minimal
unitary dilation. We can extend the operator Y by the equation Y’ ULh:=YT"h
(h€2,02,, n=0), and by taking bounded closure, to an operator Y’c.#(U,, Ty),
such that Y’|8,® L, =Y. After that, the operator Y’ can be extended by the equa-
tion: YU "k:=T,"Y'k (kcKk,, n=0), and by taking bounded closure, to an
operator Y€ £ (U, T,), such that Y”|R,=Y". Since Uis an a.c.u. (cf. [12, Theo-
rem I1.6.4]) and T, is a s.u. operator, we infer as above, that Y”=0, and so Y =0.
Therefore, we get that £,0L,S9H,59,, and property (i) is proved.

Property (ii) immediately follows by [5, Lemma 4.1].

Lemma 2. Let U be an a.c.u. operator. Then there exists a c.n.u. Cy,-contrac-
tion T, similar to U.

Proof. Let M=M; @My &... be the functional model of the a.c.u. operator
U (cf. [10]). Moreover, for every n let 3, be an outer function, such that

—

, if €' E,

9,(e") = .
195 (")l Cif e'eE,

NI.—-‘
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_ 9, 0
holds a.e.. Then the function @= 3, will be outer from both sides, and

. 0 . ’
we have @(e“)*@(e")é%l a.e.. Now, on account of [10, Lemma 4], the c.n.u.
C,,-contraction T=S(@) is similar to its Jordan model. But, in virtue of {10,
Corollary 1], the Jordan model of T is exactly the operator M. Therefore, T is simi-
lar to M, and so to U also.

Let T be an arbitrary c.n.u. contraction, and let dr(¢") denote its ““defect
function”, that is dp(e")=rank [I—O1(e")* @ (¢")]?, where O is the characteristic
function of T. We note that for the defect index dr of T, introduced in [12], we have
dr=rank (/- T*T)=rank [[— @1(0)*@;(0)]¥% It was proved in [10] that a c.n.u.
C,,-contraction T belongs to the class 2, if and only if T is a contraction of finite
defect function, that is if its defect function, dy(e"), is finite a.e. on the unit circle.

2. The C,,-invariant subspace lattice. In the invariant subspace lattice of a Cy; -
contraction T the subspaces £, such that T|Q€C,,, have a particular interest.
In this sections we examine this C,;-part of Lat 7.

Definition 1. For every Cy;-contraction 7, Lat, T denotes the Cy,-invariant
subspace lattice of T, that is Lat, T:={2c¢Lat T IT |ReC,y}
The following proposition shows that Lat, T is closed with respect to the span.

Proposition 1. If T is a Cy-contraction and {8},.rELat; T, then 8, =
=V L€Lat; T

yer
Proof. Since 8, is separable, there exists a countable subset {y;}5., of I,
such that V 52 =8,,. For every j, let U;€#(R;) be a unitary operator, quasi-
similar to JT}Q » and let X;€4(U;, Tlﬁyj) be a quasi- afﬁnity, such that [[X;| =
=2-J, Then the operator X: K= é ];~-L, X(@ k] ZX k; intertwines the

unitary operator U= QB U; with TIQV, Xes (U, T|8,). Taking into account that

X has a dense range, wc infer that X*¢#((T |£,)*, U*) is an injection, and so it
follows that (T'|2,)*€C, . Consequently, we have that T|8,€C,,, thatis 8 €Lat, T.

In the sequel we show that, for every contraction T of class Cuﬂg’, Lat, T
possesses the usual properties of invariant subspace lattices, if we replace intersec-
tion and orthogonal complement by suitable new operations. We need the following
notion.

Definition 2. Let T be a C,;-contraction, and f£¢Lat 7. By [12, Theo-
rem I1.4.1] there exists a unique decomposition L=L"®L” of £, such that
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'clat(T|®), T|¢€Cy and T|.€C.,. (We denote by T, the compression of
T to the subspace £7¢Lat, T\Lat T, that is Tl,.=P,. T|8". Cf. [2].) The sub-
space £’ is called as the Cy,-part of £, and is denoted by 2'=20=28P.

The following lemma shows that @® is the greatest Cy,-invariant subspace
in £

Lemma 3. Let T be a Cy-contraction, and R2¢latT. If L¢clat, T and
S8, then £ SLO,

Proof. Since £’,8W¢lat, T, we infer by Proposition 1 that £7=2'y
vEeW¢cLat, T. Let us suppose that £ E L™, Then there exists a non-zero vector
f€2702WC 2o 8D, Invirtue of fc2” and 8”¢Lat, T it follows that [P, T* f|| =

=||Pg. T*" f||+-0. On the other hand f€208®, and so |P,T*"f||~0. This being
a contradiction, we infer that £ ®,

Definition 3. The Cy,-orthogonal complement of a subspace L¢Lat, T, Cy;-
invariant for 7, is the subspace £11=211, C,;-invariant for T*, defined by 2t:=
=@ =(8)ReLat, T*

Proposition 2. If T is a contraction of class C;;NP and L€lat, T, then
(eiyti=g,

Proof. In virtue of Lemmas 1 and 2 we may assume that 7 is a c.n.u. con-
traction. By the definition of 241 it follows that T[gLge1,€Cy., and so
d(TI eregL)’ (€)=0 a.e. (cf. [12, Prop. V1.3.5]). Taking into account that dg, (e~ )=
=dg(e") for any c.n.u. Cy-contraction S (cf. [10, Cor. 1]), we infer that

19, 01, = dp(e)—drig(€)—dpig, () =
= drs(e™) —d(rigp(e™) —drxg1, (") = d(11g, 5 g, yx(e7) = 0
a.e. (cf. also [12, Theorem VIL1.1 and Propositions VIL.2.1, VIL3.3]). Therefore
we have that Tlﬁ-]- eﬁl],: Tl(ﬁll)l eﬂECoo, and SO (QJ'I)Jﬂ:((Qll)J_)(l):Q.

Definition 4. The Cu-mtersecnon ﬂ 2, of a system of subspaces {2,}y &
yer

ClLat, T is defined by ﬂ = ( ﬂ ).

Proposmon 3. If Tis a contractton of class CyNP and {8}, Slay, T,
then ﬂ L, (V L1+ and V L, (ﬂ Llayts,

v€r
Proof. In virtue of Proposmon 2 it is enough to prove the first equality. Let

2" and 2” denote the subspaces ﬂ L, and(V 4y, respectively.  Since
ver
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(V 1)Lt c (8, weinfer by Lemma 3 and Proposition 2 that 2”——(V elnyhic
C(ﬂl‘)‘L‘—ﬁ Therefore we have £7C ()2,, and so by Lemma' 3 gy
yer
On the other hand, V fhc V ﬂl implies (V QLI)LD( V gl)t= ﬂ )

2 ﬂ 2,=42'. Again by Lemma 3, it follows that ﬁ’CQ”
T yer

As a consequence, we get the following:

Proposition 4. Let T be a contraction of class C; NP, and let {I,},cL
be a system of sets of indices, I'= U r,. If {}),ELayyT, then

ﬂ {ﬂ {ﬂyl'yéra}lael‘ )= n {2)"76[‘}'

Finally we note that if U is a unitary operator, then Lat, U coincides with the
lattice of reducing subspaces.

3. Quasi-similarity invariance of Lat,7. We show that, for contractions T of
class C;;NZ, Lat, T is a quasi-similarity invariant, and any quasi-affinity, inter-
twining such contractions, implements an isomorphism between the C,,-invariant
subspace lattices. We need a lemma.

Lemma 4. Let T, and T, be quasi-similar contractions of class Cy(P, and
let XeS(Ty,T,) be a quasi-affinity. Then, for every subspace 2¢Lat,T,, we have

(X*((XS!)—)J-l - = Qi

Proof. By Lemmas 1 and 2 we may assume that 7; and T, are c.n.u. contrac-
tions. Let us denote by B the subspace B=(X8)~€cLat,T,. In virtue of the proof
of Proposition 2 we can write

dTi“](X*%'Ll)_ (eit) = dT;‘l%.Ll(eit) = dT;(ei‘)—dT;kB(e") =
= dTl*(eit)_dTl*lﬁ(e“) = dTl*-lg_L,(e“) a.e. and so by [10, Cor. 1]

TH(X*BL)~ is quasi-similar to TF|@1y, TF|(X*BL1)~~TF|€4. On the other
hand, since Lat, 7} 3(X*B11)~ S 2+, weinfer by Lemma 3 that (X*BL)- S84
Now it follows by [10, Cor. 6] that Tj}|8t:c 2. Therefore we have (X*Bl)-=
—oh

The following theorem is an analogue of [3, Prop. 4.8], concerning C,-contrac-
tions, and it is a generalization of the corresponding part of [16, Theorem 2.2],
concerning c.n.u. Cy,-contractions with finite defect indices.

Theorem 1. Let T, and T, be quasi-similar contractions of class C;NP.
Then every injection X€.5(Ty, T,) is a quasi-affinity, and the mapping ¢y: Lat, T, —
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—~Lat;, T,, @x: @—(X8)~ is a lattice-isomorphism. Moreover, T\|Q and T,(X8)"
are quasi-similar, for every 2¢Lat, T . ’

Proof. It is evident that, for every 2€Lat,T;, (X@)~€La(,T;, and Ty|@~
~T,|(X®)~. Since T,~T)~T,|(ran X)~, and T,€2, it follows that X is a quasi-
affinity. . '

Let us suppose that £, £,€Lat;7;, and @x(2)=0¢x(2,)=SB. By Proposi-
tion 1 we-infer that =2,V 2,cLat, Ty, and so we have that T,|€,~T,|B~ T;|2
(i=1,2). By [10, Corollary 6] it follows that 2,=2 (1—1 2). Therefore £,=2,,
and so @y is an injection.

Let BecLat, T, be an arbitrary subspace. Then for the subspace
L=((X*BL))elat, T,

we have by Lemma 4 and Proposition 2, that (XB)'—(%-Ll)ll—QS Therefore ¢y
is surjective.

Let {2} . SLatyT; be an arbitrary system of Cy;-invariant subspaces. It is
obvious that (X ( V 53.,))‘ V (X2,)". Let B, and B, denote the subspaces

( ( ne )) and ﬂ (X8,), respectively. On account of Lemma 4 and Proposi-
v€r ver ’
tion 3 we have

W L1
ormiy=(f ) "= v e v (et =00 (y @)ty

= [X*[ﬁ (XQ,)_]LI]_ = (X*B53Y) .

Since @y« IS an injection, we infer by Proposition 2 that B,=1B,.

4. Multiplicity-free C;; -contractions. In this section we prove two corollaries of
Theorem 1, concerning multiplicity-free C,;-contractions. (An operator T€.2(9)
is called to be multiplicity-free, if it has a cyclic vector, that is if $=V T"h for

n=0

some vector f€$. Cf. [14].) The first corollary is an analogue of [14, Theorem 2]
about C,-contractions.

Corollary 1. For any Cy-contraction T, the following properties are equiv-.
alent:
(i) T is multiplicity-free
(ii) There are no different subspaces 2, ¥'cLat; T, such that T\Q is quasz-szmzlar
to T|L.
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Proof. If T does not belong to the class £, then T has neither property. (i),
nor property (ii). (Cf. [10, Corollary 1].) Therefore, we may assume that T€Z.
Let U be a unitary operator, quasi-similar to 7. It can be easily seen that T has a
cyclic vector if and only if U does. On the other hand, we infer by Theorem 1 that
T and U have property (ii) in the same time. Since for unitary operators (i) and (ii)
are obviously equivalent, the Corollary is proved. -

Corollary 2. If T is a multiplicity-free - Cy,-contraction, then Lat,TC
SHyplat T.

Proof. On account of Lemmas 1 and 2 we may assume that T is a c.n.u. con-
traction.

Let £ be a subspace from Lat, 7, and let us consider the set o= {e”|dyo(€")=1}.
Let £'¢Lat,TNHyplat T denote the subspace corresponding to the set a by [12,
Theorem VIL5.2]. It is evident that dpe(e”)=dpe(e"), and so T|8~T|2". By
Corollary 1 we infer =4L'. Therefore 2cHyp lat T follows.

5. Quasi-similarity invariance of Lat, TN Hyp lat 7. Now we study behaviour
of the hyperinvariant subspaces in Lat; 7 under quasi-similarities. We need the
following lemmas. (Lemmas 5 and 6 are analogues of corresponding statements
about C,-contractions, cf. [4].)

.Lemma 5. Let T be a Cyy-contraction, and let &¢Lat T be an invariant sub-
space. Then 8cLat, T if and only if & is of the form L=(ran Y)~ for some Y€ {TY}.

Proof. :

a) If 2=(ranY)~ for some Ye{T}, then (T|@)*<T*|(ker Y)*, where
T*|(ker Y)1€C,.. (T,<T, means that (T}, T,) contains a quasi-affinity.) There-
fore, it follows that T|Q¢Cy,.

b) Let us now suppose that £€Llat,T. There ex1st unitary operators U; and

U, such that Uy~T|Q and U~T. Since U1~T|2<T~U it follows that U1< U.

(T1< T, means that J(Ty, T;) contains an injection.) Now we infer by [5, Lemma
4.1] that the subspace (ran X)~ is reducing for U, and U, is unitarely equivalent
to Ul(ran X)~, for any injection X€.#(U,;, U). Therefore U, can be injected
‘into U*, and so (T[E)*NU*<l U*~T*. Let ZeS((T|®)* T*) be an injection,
and let JeSF(T|8, T) denote the inclusion of £ into 55 Then we have that
Y=JZ*¢{TY, and 8=(ran Y)~. .

. Lemma 6. If the Cy,-contractions Tl, T, can be injected into each other, then
they. are quasi-similar. ,

Proof. Let U; be a unitary operator, quasi-similar to T; (i=1, 2). In virtue
of [5, Lemma 4.1] it follows that U, and U, are. unitarely equivalent to direct sum-

4
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mands of each other. A simple application of the usual Cantor—Bernstein argu-
ment proves, that U, and U, are unitarely equivalent. (Cf. [9].) Therefore T, and
T, are quasi-similar. ‘

Lemma 7. Let T, and T, be quasi-similar contractions of class Cy;N\?P. Then for
any quasi-affinities X€ S (T}, T,), YeF (T, T,) and for any subspace £,€Hyp lat T,N
NLat, T, we have that L,=(XL)~€Hyplat T,NLat,T,, and (Y€) =2,.

Proof. Let £,¢HyplatT, be the subspace defined by 2= V (BL) .
BE(Ts)’

Since 2,€Lat, T,, we infer by Lemma 5 that £,=(ran Z)~, fora Zc{T,}. Now,
for any B¢{T,), we have BZc{T,) and (Bf,)~ =(ran(BZ))~, and so again
by Lemma 5 (B2;)"€Lat,T,. Applying Proposition 1 it follows that 27¢Lat,T,.

Let 8] denote the subspace ;=(Y2;)~¢€Llat,7;. Taking into account that
£,€Hyplat T, and, for any Be{T,}), YBXc{T;}, we infer that 2;=(¥Y€) =
=(¥ (M}é’y (Bx2)7))~ =B€}/T2)' (YBX2)~ S Q,. Summerizing these facts, we can

write:

i t
71|18 < Tpl8, < T5l8 < Th| &1 < T4l&,,

and all operators occuring here are of class C,,. It follows by Lemma 6 that these
operators are quasi-similar to each other. Taking into account that T,|2,€2 and
Ty|8,€2 (cf. [10, Cor.6]), we infer that £,=2; and 2,=2;. Therefore we
have that £,6Hyplat T, and (YL,)"=4£,.

In virtue of the previous Lemma it follows immediately:

Theorem 2. Let T, and T, be quasi-similar contractions of class CyN\P. Then,
for every quasi-affinity X¢ S (Ty,T,;), the mapping ¢x: Hyplat TyNLat, Ty~
~Hyplat T,NLat, T, @x: £—~(X8)~ is a bijection, not depending on the particular
choice of X.

6. Reflexivity of the bicommutant. C. Apostol proved in [1], that if T€ 2 ($) is
an operator, quasi-similar to a normal operator, then there exists a basic system
{On)a=1 of invariant subspaces of 7' such that T'|$, is similar to a normal operator,
for every n. We recall that a system {$,},=1 of subspaces of § is called basic, if,
for any n, the subspaces $,, (kyn 9, are complementary and ,.Ql (k\z/ 9)={0}. We
show that if 7 is a contraction of class Cy;#, then the biin;/arigl';t subspaces 9,
can be chosen to be hyperinvariant.

Proposition 5. Let TcL(9H) be a contraction of class C NP, and let
Uc % (RK) be a unitary operator, quasi-similar to T. Then there exist a basic system
{D}s=1 of subspaces of 9, and a decomposition }= @ K,, such that H,€Hyp lat T,

nz=l

K,€Hyp lat U, and T|9, is similar to U|R,, for every n.



On invariant subspace lattices of Cy,-contractions 289

Proof. On account of Lemmas 1 and 2 we may assume that T is a c.n.u. con-
traction. By APOSTOL’s theorem [1] there exist a basic system {€,};=, of invariant
subspaces of T, and a decomposition K= @ B, of & reducing for U, such that,
for every k, T|®, is similar to U|B,. Let Ce F(U|B,, TI®) be an affinity
k=1,2,..).

Since T2, we infer by [10, Corollary 2] that Uc4 holds also. Now by
[10, Lemma 7] it follows that m ( () C8,)=0, where ,=Co(D U|B,) (n=1,2,..).

n=1 k>n
(Here and in the sequel o (T') denotes the spectrum of T, and m denotes the normalized
Lebesgue measure on the unit circle.) Let 6, denote the set 8y, if n=1, and 8,\8,-,,
if n=1. Then the sequence {o,},=, consists of pairwise disjoint sets, and we have
m(C(U g ))=O. For every n, let &,, K, 9,, . be defined by K,=1, (V)=
= @ Rn,k’R —‘XCa (U)R @ R N1l where Rn k_Xa (Ul%k)%k, , _XCa"(UIQSk)%_k
(k 1 2 ) and 5 V 5:: k> 5.5 V 5,, k> Where Sjn k_Ck n, ks 5,’,,k=CkR,/,'k

(k=1,2,..). Itis clear that &, ,={0} if k>n, and so K&,= EB K, It follows
k=1

that $, ,={0} if k>n, that is $,=9, 1+ ...+, It can be easily seen that
the subspaces $, and $H,= V $, are complementary, 9,4+ 9,=9. Now let

n, be an arbitrary natural number It is obvious that, for every n, v ﬁ,g( v &)+

(v, (V. 914))- and so it follows: 1 (v 9IS v szk)+( (,a (v sj,k]]]
Since the mapping C,@.. ®C, 23169 eBSB —»S!l-i— +2 is an affinity, we

infer that ( v [’\7 9 "JJ {0} But this implies ﬂ (V 5,)_ \/ £2,. Taking
=n\k=1

n=1\1

into account that n, was chosen arbitrarily, 1t follows that ﬂ (V H)E

gngl (k\z/nﬁ,,)={0}. Therefore, we have shown that {9,},., is a bqszc system »

On the other hand, the operator T|9, is similar to U[R,, and the operator
T|9, is quasi-similar to U|RK;. Let Y, €4 (U|R,, T|9,) and Z,eS4(T|9,, UIK;)
be quasi-affinities. Let X¢ {T}’ be an arbitrary operator, and let us consider the

™ ym
matrix of X in the decomposition $=9,+ 9;: [§}1) §}ﬁ)] . The relation X¢{T}
Z1 22

implies that XJ€ £(T|9,, T|9.), and so we have Z, XY, c4(U|R,, UIK). In
virtue of the definition of subspaces &, and &; it follows, using [5, Lemma 4.1],
that Z,X{Y,=0, and so we infer X{P=0. Consequently, the subspace 9, is
invariant for X. But X¢{T'} was arbitrary. therefore we have $,cHyp lat T.
The proof is completed.

Applying this Proposition we show that the bicommutant {T'}” of every con-
traction T of class C,;N# is a reflexive algebra (cf. [6, ch. 9]). This statement is

4
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a certain extension of the von Neumann double commutant theorem, which states
that the bicommutant of every normal operator is reflexive (cf. [11, ch. 7]).

Theorcm 3. If T is a contraction of class C;(\P, then‘
AlgLat”"T = {T}".

(Here AlgLat” T denotes the weakly closed algebra of operators which leave all
the subspaces in Lat” T, the lattice of biinvariant subspaces of 7, invariant.)

Proof. Let us consider the basic system {9,},», of hyperinvariant subspaces
occurring in Proposition 5. Let A€AlgLat” T be an arbitrary operator. Since
9,6Lat” T, we infer that $,cLat 4, for every n. Let 4,, T, denote the operators
A,=Al9,, T,=T|9, respectively. It can be easily seen that Lat” T, SLat”T.
Therefore we have that A,€Alg Lat” T,. Taking into account that T, is similar to
‘a unitary operator, it follows that A,€{T,}", for every n. Since the subspaces §,
(n=1) are hyperinvariant, we infer that A€ {T}". _ ' I

) 7. Behaviouf of Lat T under quasi-similarities. Theorem 1 does not hold validity
replacing Lat, T; by Lat T; (i=1, 2). In fact, in the following example we have
(X )~ =9,, for every subspace Lelat T\ Lat, 73 (= @)

Example 1. Let U be the operator of multiplication by e” on the space L? (C )
where C denotes the unit circle on the complex field, and we consider the normalized
Lebesgue measure on C. Let @€L~”(C) be a function such that ¢(e*)=0 ae:,
and [ log [p|dm=—oco. Then X, the operator of multiplication by ¢(e"), will

be a quasi-affinity belonging to {U}". Let £ be an arbitrary non-reducing invariant
subspace of U, L£€¢Lat U\Lat; U. Then £ has the form £=gH? where ¢¢L~
is a function such that |g(e”)|=1 a.e. (cf. [7, Theorem 3]). In virtue of Szegd’s
theorem (cf. [8, ch. 4]) it follows that (pH?)~=L2, and so we infer that (X &)~ =
=(p(gH) =q(pH?) =qL*=L* - u

The following Propositions give some informations about the transfer of invari-
-ant subspaces, in the case T,=U is a unitary. operator. We recall that an operator
U is completely unitary, if U is unitary and Lat, U=Lat U, that is every invariant
subspace of U is reducmg (Cf. [11, ch 1.8])

~ Proposition 6: Let T€¢Z(9) be -a contraction of class CLNP,. and let
.Ue LK) be a unitary operator, quasz-szmllar to T. Then there exist decomposi-
tions H=9H,+9; and K=8,®R, such that the following properties hold:
- () 9€Hyplat T, K¢cHyplat U, T |$5, ~UIR; and U|R -is completely umtary
Jor i=1,2; oL .
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(i) every operator X¢S(T,U) has a diagonal matrix with respect to these
decompositions ; '

(iif) Lat,T = Lat, (T|$,) 4 Lat, (T195).

Proof. As for the existence of decompositions possessing properties (i) and (ii),:
see the proof of Proposition 5. (We recall that U is completely unitary, if 6(U)>C.
Cf. [11, Th. 1.23).) Let us prove now that property (jii) holds also. If £,cLat, (7|9,
(i=1,2), then we infer by Proposition 1 that 8=, 4 8,¢Lat,T. Let us suppose
contrary  that 2¢Lat,T. It follows by Lemma 5, that there exists an operator
Ye {TY such that @=(Y$)~. Taking into account that $;€Hyplat T (i=1, 2),
we see that (Y9) =T 9~ + (¥:H,)~, where Y, =Y |9, {T|9:;} (i=1, 2). There-
fore (Y;9) €Llat, (T9)) (i=1,2) again by Lemma 5.

Proposition 7. Let us suppose that the contraction T of class CuNZ s
quasi-similar to a completely unitary operator U, and X¢F (T, U) is a quasi-affinity.
Then, for every subspace ‘2cLat, T, (X2)~ =(X((2+)1))~.

Proof. On account of Lemmas 1 and 2 we may assume that 7 is a c.n.u. con-
traction. Let £ denote the subspace £'=(L+1)*¢Lat T. In virtue of the proof of
Proposition 2 we infer that T}e,€Cop,. Where vﬁozﬁ'eﬁel}at 4 T. The matrix
of the operator (T|2’)" with respect to the decomposition & =L@, is of the
form

(T2 = [(T |2) N(">]

0 (Tleyl

Since XT"=U"ZX, it follows that XN‘”)fO+X(T[£°)"fO= U"Xf,, for any fi€2,.
Let us suppose that B’'=(X2")~ =(X8)~ =B, and let P denote the orthogonal
projection onto the subspace B'©B. Since U is completely unitary, we have that
PU=UP. The relation B'=B implies, that there exists a vector f,€8, such that
PXfy=0. Now we infer that |PU"Xf| =|U" PXf,|=|PXf,]| =0, for every n. On
the other hand |PU" Xfyll= ||PXN‘")ﬁ,+PX(T|L,o)"f0 = ||PX(T|£°)"ﬁ,|l =
=| X} (T IQO)"foll -0, if n—>o. This is a contradiction, and so we get that B'=9B

8. A note on basic systems. Finally we give an example for a basic system
{On}n=1 with the property that f¢ V P, f for some vector f. Here P, denotes the

projection onto the subspace 9,, correspondmg to the decomposition H=9,+
+ ( \/ $,) . This fact strongly limits the usefulness of Proposition 5.

Example 2. Let {<P,, W), U{f) be an orthonormal basis in the Hil-
bert space 9, and let {«,};> ., {B}rey be sequences of positive real numbers. We
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define the vectors g,, h,, I by

1 1 ,
8 = a1¢1+—2‘f; h = —“x(l’l'*‘?f: hy =0,
and the subspaces 9,, 9; by
H1 =gVhy, 1= hlv( \2/2 ¢n)V( \z/l lbn)

Let n=1 be an arbitrary integer, and let us assume that, for every natural number
k=n, the vectors g, A, h;_,, and the subspaces $,, 9; have been already intro-
duced. Then the vectors g, .1, #, 1, /., and the subspaces 9,1, 9, ., will be defined
by the following equalities:

1 1 ,
Sn+1 = an+1(pn+1+-2—hn’ hn+1 = —an+1¢n+1+"2—hn, hn = hn+ﬁn¢n,

Dns1 = Eus1Vhns Dnsr = hn+1V( V (Pk)V( \Y '//k)
k=n+2 k=n+1

A straightforward computation shows that V 5.=9, and \/ $5k—55 for

every n, provided the sequence {#,}-2, tends to zero This lmphes that for every n,

$=9,+(V $). We can easily verify also that (k V 9%)=N 9,={0}, if
k#n nz=1 k=n+l nzl

the seriesZ' 4"q? is not convergent.
- _1

Let us
2

Let {¢,}-., be a sequence of positive numbers, such that Z’

now define the sequence {&,}o>, such that the following inequalities hold: o> 4—i-,
1

and

a2>i[i+ 4 2o
" og, \4n T 4t 4 )y

for every n=1. It is evident that in this case 2 4"a®=co, Let us assume that

the sequence {B,};-., tends to zero. Then the system {5 } -y will be basic, and P, f=g,,
for every n.
Let g/ and g, be the vectors, defined by

’, 8n
. =@+ ®=12 ...
& = g~ Pt ( )

After a short computation we conclude that |y,||2<2e, for every n, and so

2 <1
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Now let a,, ..., a, be arbitrary complex numbers, where n=1 is an arbitrary
natural number. Then we have

|f— Za g.l = ”f- Za @i — =21 a.~x.~l =
= |- Zaol-| 2l = - ol

- Stedtah = [1+ et - [ S S var]r

Takmg into account that inf {(1+x)*—ax*lx>0}>0 if O0<e<1, we infer that
“f— 2 a8
Therefore fé V g= V g,, that is f¢ \/ P, f.

l>5 for some &=>0, independent on n, and on the numbers ay, ..., Q.

Acknowledgement. The author is very indepted to Dr. H. Bercovici for his
valuable remarks, and in partlcular for suggestions that helped to simplify the proof
of Proposition 1.
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