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Classes of universal algebras, their non-factors
and periodic rings

RIYADH R. KHAZAL

Certain classes of algebras are determined by a family of their “non-factors”:
a lattice is modular iff it does not contain a copy of the pentagon (the five element
non-modular lattice), a lattice is distributive iff it does not contain a copy of either
the pentagon or the diamond (the five element modular non-distributive lattice).
We characterize such classes as the classes of algebras closed under the formation
of subalgebras, homomorphic images and direct limits. We also specify this char-
acterization for the class of rings whose multiplicative semigroups are periodic.
We follow the notations and terminology of G. GRATZER [1].

Definition 1 (GRATZER [1, p. 129]). A direct family of algebras & is defined
to be a triplet of the following objects:
(i) a directed partially ordered set (I; =);
(ii) algebras 4,=(A;, F), icI of some fixed type;
(iii) homomorphisms v;; of 4; into 4; for all i=j such that y;; ¥ =y, if i=j=k
and ¥ is the identity mapping for all i€l

x=y iff x€A;, y€A; and there is k=i, j and xyy,=pp; is an equivalence
relation on A= U {4;icI}. A/= is denoted by A_. The operation f, on 4, are
defined as follows: Let x;€d4;; 0=j<n,, and let m=zi; for all 0=j<n. Then
x;=x;€A, where x}:lep,.j,,,. fy()?o,...,f,,_l)=f7(x(’,, ...,x,’,y_l), where £=[x]=.
The definition of f, does not depend on m.

The algebra A _=(4.,, F) is called the direct limit of the direct family of
algebras &/ and is denoted by lim /.

Definition 2. An algebra U is said to be a factor of an algebra B if A is a
homomorphic image of a subalgebra of B.
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Definition 3. Let V be a class of algebras of a fixed type and let L be a sub-
class of V. N(V, L) is the class of all algebras of V no factor of which belongs to L.

Theorem 1. Let V be a variety of algebras of a fixed type and let KSV. K
is closed under the formation of subalgebras, homomorphic images and direct limits
iff K=N(V,L) for some class L of finitely generated algebras of V.

The proof will be based on two lemmas.

Lemma 2. If U_=lim &/, where & is a direct family of algebras as in
Definition 1 and B is a subalgebra of U, then B=1im B where B is the direct family
of subalgebras B; of N;, i€l

Proof. Let B;={x|x€4;, cB}, icl. Then B; is a subalgebra of A; and B
is the direct limit of B;, i€] where the homomorphisms §;; are the restrictions of
wij to %i'

Lemma 3. If U =lim &, where o is a direct family of algebras as in Defini-
tion 1 and B is a finitely generated homomorphic image of N, , then B is a homomorphic
image of W; for some i€l

Proof. Let B be generated by {b,|/0=k~<n} and let « be the homomorphism
of %, onto B. Then there are 4,€A,, such that Gea=b,, 0=k<n. Let acd,
and let m=i;, 0=k<n. The composition of the natural homomorphism of 9,
into A_, and « is a homomorphism of 2, onto B.

Proof of Theorem 1. Let KSV be closed under the formation of sub-
algebras, homomorphic images and direct limits. Let L be the class of all finitely
generated algebras of V not belonging to K. It is clear that KEN(V,L). Let
AcN(V,L). Then every finitely generated subalgebra of ¥ belongs to K (since no
factor of U is in L). But U is the direct limit of its finitely generated subalgebras
(cf. [1 p. 130)). Since K is closed under direct limits AW K.

Conversely let L be class of finitely generated algebras of V and K= N(V, L).
From the definition of N(V, L) it is clear that K is closed under the formation of
subalgebras and homomorphic images. Let A_=lim &, where & is a direct
family of algebras W€K, icl. Let € be a finitely generated factor of A_. Then €
is a homomorphic image of subalgebra B of A_ . By Lemma 2, B is the direct limit
of subalgebras B; of U;, i€l, and by Lemma 3, € is a homomorphic image of %B;
for some i€l. Thus € is a factor of A,cK. Hence €¢L. Thus U_cK.

If S denotes the variety of all semigroups and G denotes the variety of all groups,
then N(G, {€})) is the class of all periodic groups and N(S, {Rt}) is the class of
all periodic semigroups. € is an infinite cyclic group and N is the additive semi-
group of positive integers.
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Lemma 4. Let V be a variety of algebras of a fixed type. Suppose L;SL,EV
and L, is a class of finitely generated algebras such that every member of L, has a

Jactor in L,. Then N(V, L)=N(V, L,).

In fact L~N(V, L) gives a Galois connection between classes of finitely gen-
erated algebras of V and classes of algebras of V closed under the formation of sub-
algebras, homomorphic images and direct limits. Thus N(V, L)SN(V,L). If
AUeN(Y, L)), no factor of A belongs to L, as no factor of A belongs to L, and every
member of L, has a factor in L,.

The following result was proved in [3].

Theorem 5. The following conditions on an associative ring W are equivalent:
(i) for every acA, there is a positive integer r and a polynomial h(t) with integral
coefficients such that a +a +*h(a)=0.
(ii) every element acA generates a finite semigroup under multiplication.

A ring satisfying the conditions of Theorem 5 is called periodic [3]. Thus a .
periodic ring is a ring whose multiplicative semigroup is periodic.

The following result establishes a characterization of the class of all periodic
rings similar to that of periodic groups and semigroups given in the comments
before Lemma 4.

Theorem 6. Let L be the set of all quotient rings of xZ[x] by xh(x) Z[x] where
h(x) is an irreducible polynomial of Z[x] and |h(0)|=1. Then N(R,L) is the class
of all periodic rings, where R is the variety of all associative rings.

The proof depends on a number of lemmas.

Lemma 7. A ring W is periodic iff both T(W) and W/T(W) are periodic; T(W)
is the torsion ideal of .

Proof. If A is periodic, then every factor of U is periodic. Let T(W) and
A/T(A) be periodic and acA. Then there is a positive integer r and a polynomial
h(t)EZ[t] such that b=d +a "t h(@)€ T(A). There is s=0 and g(t)€Z[¢] such
that b°+b6°t1g(8)=0. Le. (& +a +*h(a)y+(a +da ' h(a))+ g(d +a +1h(a))=0.
Hence a”+d”*+*H(a)=0 for some H(t)cZ[t].

Lemma 8 (REDEI [S]). All rings generated by one element are (to within an
isomorphism) xZ[x]/xd(x)B, where d(x) runs through the polynomials from Z[x]
with positive leading coefficient and B=Z[x] or B runs through the primitive ideals
of Z[x]; B is primitive if B is not the product of a principal proper ideal of Z[x] and
another ideal of Z[x]. Every primitive ideal of Z[x] contains positive integers.

Lemma 9 (LEwWIN [4]). A subring of finite index in a finitely generated ring
is finitely generated.
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Lemma 10. The class of periodic rings is N(R, M) where M is the set of all
quotients of xZ[x] by x"h(x), n is a positive integer, x does not divide h(x) and h(x)
does not divide 1—x* for any t. . )

Proof. If A is periodic, then no factor of U belongs to M, since the element
x+x"h(x)Z]x] generates an infinite semigroup in xZ[x]/x*h(x)Z[x]; otherwise
X —=x"+tex"h(x)Z[x], implying h(x)}lx"—x"** for some r,s>0, ie. A(x)|l—x"
Conversely if Ae¢N(R, M), then U is periodic, otherwise /T (W) or T(A) is not
periodic, by Lemma 7.

Case 1. €=N/T(A) is not periodic. By Theorem 5, there is b€ generating
an infinite semigroup. The subring © of € generated by b is isomorphic to
xZ[x)/x"h(x)B where h(0)0 and B=Z[x] or B is a primitive ideal of Z[x]
(Lemma 8). As B contains positive integers, let meZ, m=1, mc B but 14 B. Then
mb"h(b) =0 in € but p"1(b)#0 in €. Le. b"h(b)+~0 isa torsion element in A/T(A).
Hence 1€B and B=Z[x]. Thus D=xZ[x]/x"h(x)Z[x]. Since b generates an
infinite semigroup x*—x*t'¢x"h(x)Z[x] for any s, ¢=>0. Thus A(x) does not
divide 1—x* for any t=0, i.e. © isisomorphic to a member of M. Hence a factor
of Ais in M.

Case 2. T() is not periodic. There is b€ T(A) generating an infinite semi-
group &. If m is the characteristic of b and € is the subring of 7'(2) generated by
b, then m is the characteristic of € and €=C,®...®C, where m=pj:...pi* is the
prime factorization of m (cf. McCoy [2]). If b=b,+...+b,(b;€€,) and b; generates
a semigroup &; under multiplication, then §; is generated by b, and € G, X... X E,.
Hence at least one of &, ..., ©, is infinite. Thus there is d¢ T(A) of characteristic
p" where p is a prime and #>0 such that d generates an infinite semigroup. Let O
be the subring of T() generated by d. Then p"O=0. We claim that O/pO is
infinite. If O/pDO is finite, then pO is of finite index in the finitely generated ring
O. By Lemma 9 pO is finitely generated. But p® is nilpotent and of characteristic
p"~*. Hence pDO is finite and so O is a finite ring (|O]|=|pO}|O/pO]) contradicting
the assumption that d generates an infinite semigroup. Hence O/pO is an infinite
ring of prime characteristic p and is generated by one element. Hence O/pO=~
=xZ,[x]/J where J is an ideal of xZ,[x]. But all ideals of Z,[x] are principal.
Hence J=x"h(x)Z,[x]. If h(x)>0, then every element in xZ,[x]/J can be written
in the form ax+a,x*+...+a.x" where r=n+k-—1, k=degree of h(x) and
a, .., a,€Z,. lLe,if h(x)=0 O/pO is finite. Thus OfpO=xZ [x]=xZ[x]/pxZ[x].
This shows that a factor of U is in M.

Lemma 11. Let h(x)€Z[x]), h(x)>x, h(x)% —x and let h(x) be irreducible.
h(x) does not divide 1—(xq(x))' for any q(x)€Z[x] and any positive integer t iff
(0 =1.
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Proof. If |h(0)|=1, then h(x)=m+xg(x) where m€Z, |m|>1 and
g(X)EZ[x]. If h(x)|1—(xg(x))’, then 1—(xq(x))f=h(x)f(x). Thus 1—0=mf(0)
which is impossible if |m|=1. Conversely, if A(x)s¢+tx and A(x) is irreducible,
then A(0)=m=0. If |m|=1, then Zh(x)=1+xg(x). Hence h(x)|1—(—xg(x)).

Proof of Theorem 6. By Lemma 11, L& M. By Lemma 4 we need to show
that every member of M has a factor in L. Let h(x) be an irreducible divisor
of g(x) where g(x) is not divisible by x, and g(x) does not divide 1—x" for any
r=0. If h(x){1—(xq(x)} for any ¢>0 and g(x)€Z[x], then the ring
xZ[x)/xh(x) Z[x] is a homomorphic image of xZ[x]/x"g(x)Z[x].

If A(x)|1—(xg(x))' for some >0 and g(x)€Z[x], then xq(x)-—(xq(.x))'“z
=h(x)xq(x)f(x). Set I=xh(x)Z[x] and a=xq(x)+I Then a=4'*! in xZ[x]/I=
=U. Hence a'=e is an idempotent in . Further, e is of characteristic 0. If
me=0 for m=0, then mxq(x)€l. Hence h(x)|mg(x). But A(x){q(x)(1—(xq(x))'
is divisible by k(x). Hence #Z(x)|m. This is in contradiction with A(x){1—x" for
any r>0 and h(x)|l ~(xg(x))' forsome t>0 and g(x)€Z[x]. Hence e generates a
subring of A isomorphic to Z. Thuss 2e generates a subring of 2 isomorphic to
xZ[x]/x(x—2)Z[x]. Now x-—2 is irreducible, |—2|>1. Thus a factor of
xZ[x]/x"g(x)Z[x] is in L.

Corollary 12. A4 ring W is either periodic or a factor B of W is such that every
nonzero member generates an infinite semigroup.

This follows from Theorem 6. If b€ B=xZ[x]/I where I=xh(x)Z[x] and A(x)
is irreducible and |4 (0)| =1, b>=0. Thus, b generates an infinite semigroup. Since
b —b+=0 iff b=xq(x)+] and (xg(x)) —(xq(x))+°€l. Hence

RO (xg () [1—x(g(x))],
h(x)t(xg(x)y since b0. Thus h(x)|l—(xg(x))* contradicting Lemma 1.1
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