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Strong approximation and generalized Zygmund class 
L. LEINDLER 

1. In a previous paper [6] we generalized some results of imbedding type in 
connection with the strong approximation of Fourier series. In the definition of 
the enlarged Lipschitz class given in [6] we restricted ourselves to functions being 
moduli of continuity. It seems to be more useful to omit this restriction; therefore 
in the present work we give a modified definition of this class, which can also be 
extended to the generalization of the Zygmund class. 

The first aim of this note is to continue the extension of the imbedding rela-
tions to the cases according to the class Lip 1, where there exists a certain gap 
comparing the new results of [6] to the known ones. In order to achieve our goal 
we shall define the concept of the enlarged Zygmund class to be an analogue of the 
modified concept of the enlarged Lipschitz class. 

2. Before formulating the new results we give some definitions, notations and 
theorems. 

Let f(x) be a continuous and 27i-periodic function and let 

be its Fourier series. Denote by s„=sn(x)—sn(f; x) the «-th partial sum of (2.1) 
and let / w denote the r-th derivative of / . For any positive /? and p we define the 
following strong mean 

where || • || denotes the usual maximum norm. 
Let co(5) be a modulus of continuity, i.e. a nondecreasing continuous function 

on the interval [0, 2n] having the properties: co(0)=0, a)(^+¿2)—©(¿J+co^g) 
for any 
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(2.1) f(x) ~ + 2 (an cos nx+b„ sin nx) 
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Let £„ ( / ) denote the best approximation of / b y trigonometric polynomials 
of order at most n. 

We define the following classes of functions : 

H(fi, p, r, to) := {/: hn(f, fi, p) = O ( l ) j j , 

W'H" := {/: ©(/<'>; g) = 0(<o{5))}, 

(2.2) WrHa In H:= {/: co(/(r); 5) = 0(<u(<5) In 1/5)}, 
W'H* := {/:/ ( r )£Z}, 

Wr(H")*:= {/ : | /W(*+a)4 /M(*- fc ) -2 /M(*) | = 

where Z denotes the Zygmund class (see [9], p. 43), and cu(/; <5) is the modulus of 
continuity of / In the case co(S)=8* we write W'H" and p, r, a) instead 
of WrHd" and H{p, p, r, 8a), respectively; and if r = 0 Ha stays for W°Ha. 

Let Qa (OSaSl ) denote the set of the moduli of continuity co(8)=coa(8) 
having the following properties: 

(i) for any a ' > a there exists a natural number n=fi(a ') such that 

(2.3) 2"a'£oa(2-n-") > 2coa(2~") holds for all n ( S l ) ; 

(ii) for every natural number v there exists a natural number N(v) such that 

(2.4) 2v*a>x(2~"~v) S 2o}x(2~") if n > N{y). 

For any iox£Qa the class Hm* will be called an enlarged Lipschitz class, and 
it will be denoted by Lip GO,; furthermore for any Â G the class (H™1)* will 
be called an enlarged Zygmund class and denoted by Z(cox); i.e. 

(2.5) Lip cox := {/: \f(x+h)-f(x)\ s= Kcoa(h) with coxeQa}, 

(2.6) Z(oh) := {/: \f(x+h)+f(x-h)-2f(x)\ s Koh{h) with co^Qj, 

where K=K(f) is a constant. 
In [2] we proved the following equivalence and imbedding relations: If p and a 

positive numbers, r a nonnegative integer then 

(2.7) H(P,p,r,a) = WrH" for <x<l 
[ if P> (r + a)p 

(2.8) W'H1 c H(P, p, r, 1) = W'H* (a = 1)J 
(2.9) H(fi, p, r, a) c W-H" for a < 11 

f if P = (r+a)P-(2.10) H(fi, p, r, 1) cz W'H* (a = 1)J 
These statements were generalized in [6] as follows: 
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11 

= n J i f ß ^{r+<x)p' 

Let p, a and r be as before and let cox£ Qa. Then 

(2.7') H(ß, p, r, CO = W'H<°. for A < 1 

(2.8') a H(ß, p, r, coj (a = 1) 

(2.90 //(/?, p, r, cDa) c W'H". /o r « < 1 1 
( if ß = ( r+a)p. 

(2.100 H(ß, P, r, cod c W'H<°i In H (a = 1)J 

Comparing these results we see the perfect analogies for a < 1, but for a = l 
there are some differences; e.g. in (2.80 the analogy of the statement H(ß,p, r, 1)= 
= W rH* is missing, furthermore (2.10) and (2.100 have different shape. 

Next, using the concept of the enlarged Zygmund class, we fill up these gaps. 
More precisely we prove the following 

Theorem. Let ß andp be positive numbers, r be a nonnegative integer and let 
ö)1=<ö1(5)eß1. 

Then 
(2.11) H{ß,p,r,cDj=W'(Ha'9* for ß>(r+l)p, 
and 
(2.12) H(ß,p,r,o>J<zW'(H<°iY for ß ^ (r+l)p. 

3. To prove our theorem we require some known results and lemmas. 

P r o p o s i t i o n 1. For any positive ß andp 

( - 11/P 
(3.1) h„(f, ß, p) ^ K\n-> 2(k+ l / ^ W ) . *> 

l k = 0 J 

This is a consequence of Theorem 1 in [1]. 

P r o p o s i t i o n 2 (Corollary 2 in [3]). For any positive ß andp 

(3.2) En{f)^Khn(J,ß,P)-

P r o p o s i t i o n 3 ([7, pp. 59 and 61]). For any nonnegative r 

(3.3) J / « ; I ) ^ tffn-i J VEk{f) + 2 

\ n/ l k=-l k=n + l > 

Lemma 1 (Lemma 3 of [4]). For any nonnegative sequence {a„} the inequality 
m 

(3.4) 2 an — Kam (m = 1, 2, . . . ; K 0) 
n=1 

*) K , K l t . . . denote positive constants not necessarily the same at each occurrence. 

5 
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holds if and only if there exist a positive number c and a natural number p. such that 
for any n 

<*n+i>ca„ and an+ll=-2an. 

L e m m a 2 (Lemma 2 of [6]). Condition (3.4) implies that for any positive p 
m 

(3.5) Z o ' n ^ K t a i 
n= 1 

also holds. 

4. P r o o f of Theorem. First we prove that for any positive /3, p and for any 
nonnegative r the relation 
(4.1) H(Ji, p, r, coo) c lVr(Hai)* 
holds. 

Assuming that f£H(f},p,r,cOi) we get that 

hm(f,p,p) = Kn~'(o1{l/n). 

Hence, by (3.2), the estimate 
(4.2) E„(f) S K1n~ra>1(\/n) 
also holds. 

Setting 
1 2/1 

K(x) = - Z h(x) n k=n+1 
and 

Un(x) = V2n(x)-V2n-,(x) (n = 0, 1, ...; W2-,(x) = 0), 

then, by (2.4) and (4.2), we obtain that 

(4.3) f(x) = 2 Unix) and fr){x)= 2UP(x)-
n=0 . n=0 

in the proof of the last statement we also used the following well-known inequalities 

(4.4) \ U n ( x ) \ ^ ^ - ' W ) and \ U ^ i x ) \ ^ K 2 " r max | i/„(x)|. 

By (4.3) we obtain that 

f ' \ x + h)+f"\x-h)-2p'\x) = 2 {Ui
n')ix + h)+ U^ix-h)-2U^ix)} = 

? l = 0 

We split the sum 2 o into two parts by the index fi given by the inequalities 
2 - " < / t ^ 2 - " + \ i.e. 

2o= 2 + 2 =2i+2*-
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The terms of 2B do not exceed 4-max so, by (2.4), (4.2) and (4.4), 
the following inequalities 

\2s\ = K 2 ®i(2-") ^ J W 2 - " ) 
n = / i + l 

hold. 
By the mean-value theorem and arguing as before 

\2i\ ^Kh2 ¿max|C/n
(r+2>(x)| = K^ 222n(oi{2~n). 

n=0 n=0 

Here the last sum, by (2.3) and Lemma 1, has the same magnitude as its last 
term, whence 

\2i\ ^ K2h2-2^(0,(2-") ^ ^ 3«i(2-") . 

Collecting our partial results we obtain that 

|/w(x+h) +/(r)(x-h)-2/«(x)| ^ K^ih), 

which proves that /£ W T {H^f \ and this verifies (4.1) and (2.12). 
In order to prove (2.11), in respect to (4.1), it is enough to show that if 

ß>(r+\)p then 
(4.5) W'(H°>)*c:H(ß,p,r,(o1) 

or equivalently that any / £ Wr(Hai)* also belongs to H(ß,p, r, coJ. 
The proof of this statement will be similar to that of the first result proved by 

Zygmund for the original Zygmund's class. 
Let us define the moving average of / as usual: 

/ « t o = f f(x + t)dt. 
— Ö 

It is known (see e.g. [9] pp. 117—119) that i f / h a s A: continuous derivatives then 
/¿has k+1 such derivatives, furthermore 

(4.6) ^ . • » M - ^ y » - " . 

Let fit denote the moving average of fs, and let 

g t o =/(*)-/««(*)• 

Then, by (4.6) and f d W ( H a i ) * , we have the following statements: 

m + 2 ) ( x ) \ = (2<5) ~11//"+r) (x+<5) —//'+11 ( x — | = (45*)-1\f"(x+28) + 
[ +/">(x-23)-2/<'>(*) | • Kö-2o),(<5), 
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whence, using the following well-known inequality 

(4.7) E„(<P) = Ak max \cp'k\x)\n-\ 
we obtain that 

(4.8) En(fis) = K1n~r~25~2a>1(8). 

A standard but not quite short calculation gives 
(4.9) 

6 6 1 2 6 I o o za 
/«(*)= a« f f f ( x + u + v)dudv = — / {f(x+t)+f(x-t)}(25-t)dt. 

-3 -i 0 

Since the operation 8 commutes with differentiation, by (4.9) and / 6 fV r(ffmi)*, 
we get 

2» 
lg(r)(*)l = = ( 4 < 5 2 ) / { / « ( x + / ) + /*>( .V-0-2/W(*)}X 

0 
X (2(5—i) dt\ si ^2^ (5 ) . 

Hence, using (4.7), we obtain that 

(4.10) E M ^ K t n - ' v ^ y , 

and setting S=n~1 (4.8) and (4.10) give that 

(4.11) En(f) 5= Ea(fi5)+En(g) S ^ n - ^ ( 1 ) . 

Next we prove that (4.11) implies that f£H(fi,p, r, a^) assuming /?>(r+l)/7. 
(3.1) and (4.11) give that 

hnif, P,p) ^ K[n-» ¿(/c+l)"-^"^ (1)} " ^ 

{log n -l1^ 
n-O 2 2m^~rp)a>^(2~m)\ . m — 1 ) 

Using Lemma 1 and 2, on account of (2.3) and ji>{r+l)p, the sum above has 
the same magnitude as its last term, consequently 

hn{f, P, P) ^ K2n ~'oh (1) 

holds, and this means that f£H(P,p, r, co 
Thus the proof is complete. 

5. Finally we make some remarks in connection with the following two classes 
of functions: 

E? := {/: E„(f) = O (n (1 ) )} , W'E" := {/: E„(f «) = O [to . 
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These classes have already been investigated in [5]. Now we show that if 
co=coa£i2„, i.e. if Hm"—Lip coa is an enlarged Lipschitz class, then for 0 < a < l 
these classes coincide with the class WrHa«, and if a = l then they coincide with 
fVr(Ha>)*. 

By the following known estimates (see [8], p. 308) 

£„(/) KCD ( / ; 1 ) and En(f)^Kn~'En(f") 

the imbedding relations 
(5.1) W'Ha c WrEa c E? 

obviously hold for any modulus of continuity. 
In order to prove our first statement it is enough to show that if cox£ Qa and 

0 < a < l then 
(5.2) Ef'C.Wr Hm>, 
or equivalently, that 

(5.3) = 

implies / € WrHm'. 
To prove (5.2) we use Proposition 3 and conditions (2.3) and (2.4). Then we 

obtain that 

{1 log n ~ ^ 

- 2 2 \ ( 2 - ) + 2 ®«(2- r a)[s ft m = l m=log n J 

The last estimate shows that / 6 W H a " , i.e. (5.2) is proved. 
The imbedding relations (5.1) and (5.2) immediately yield the following 

P ropos i t i on 4. Let coa£i2X and 0 < a < l . Then the following function classes 
E?% WrEm" and W'HW• coincide, i.e. 

(5.4) E?" : W'E"' = WrHa«. 

If a = l then E^ and fVrE^ coincide with W'{H^)*. Namely f£E^ 
implies, by the following known estimate (see [8], p. 303) 

£„(/<'>) s * ( « ' £ „ ( / ) + 2 v - 1 ^ / ) ) 
^ v=n + l ' 
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and by (2.4), that 

£„(/('») 

i.e. / also belongs to W E 0 1 , consequently 

(5.5) E r c WrEmK 

To prove the coincidence of the classes E f l and Wr(Hœi)* we use our new 
theorem. Namely if ß>(r+l)p then Wr(Hai)* coincides with H(ß,p, r, cuj, so 
it is enough to show that E™1 = H(ß, p, r, coj) (ß>(r + l)p). In virtue of Proposi-
tion 2 the imbedding relation 

(5.6) H(ß, p, r, ca) c E™ 

is obvious for any modulus of continuity. Therefore we have to verify 1 

(5.7) Er c: H(ß, p, r, coj for /? > ( r + l)p. 

The assumption fÇE?1 implies that 

s Ah- 'dh (•£•), 

whence, by (3.1), (3.5), (2.3) and ß>(r+l)p, arguing as at the end of the proof 
of Theorem, we obtain that 

hn(J, ß, P) ^ *i{n-e i (fe + 1 y-lk-">a>l (1)} ^ 

S K À n - t 2m«,-p*>cö?(2-m)} Ä Ksn-co! ( - ) . 
I m=0 ) \n) 

This shows that f£H(ß,p, r, coO, i.e. (5.7) is verified. 
Summing up, by (2.11), (5.1), (5.5), (5.6) and (5.7), we get 

P r o p o s i t i o n 5 . If u>1£Q1 then 

(5.8) E^ = WrEWl = Wr(H°")*. 

We mention that Proposition 4 and 5 have a certain intersection with Corol-
lary of [5]. 

Considering all of the imbedding relations proved or mentioned in this paper 
we obtain the following 
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S u m m a r i z a t i o n . Let p and a be positive numbers and r be a nonnegative 
integer. Then 

(5.9) H{ß, p, r, coJ = WrHm' = WrEm" = Er
a" for a < 11 

(5.10) WH"1 c Hiß, p, r, co^) = W'iH'0'-)* = WrE<°1 EE E?1 for a = lJ 

and ß > (r+a) p, 

(5.11) Hiß, p, r, coj c WrHa- = WrEm' = Er<°' for a < 11 
> and ß = ( r+a)p. 

(5.12) Hiß, p, r, cod c W'iH^f = WrE°>i = E^ for a = 1J 
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