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Jordan models and diagonalization of the characteristic function 

VLADIMIR MOLLER 

Introduction 

The study of Jordan models of some classes of operators on an infinite-dimen-
sional Hilbert space was started by B . SZ.-NAGY and C . FOIA§ in [8], where the exist-
ence of Jordan model was proved for C0 contractions with finite defect indices. 
This result was generalized in [1] for general C0 contractions. 

Another approach to these questions is to use some sort of diagonalization of 
the characteristic function. This method which was developed by E. A . NORDGREN 
and B. MOORE III in [4], [10] has the advantage that it gives also some description 
of the functions appearing in Jordan models. Extensions and further applications 
of this approach were given in [9], [6] and [5]. 

The aim of this paper is to continue these investigations. In the first section 
we deal with C.0 contractions (i.e. T*"-~0 strongly) and show what remains valid 
from the Jordan model in the general case. 

In the second section we give a new proof of the existence of Jordan models 
for general C0 contractions (see [1]). In the same time we prove again relations for 
the functions appearing in the Jordan model (see [5]). 

We use the usual notation (see [6], [7]). By E„ (0¿HS«>) we denote the «-dimen-
sional complex Hilbert space. J({m,n) ( l ^ m , means the set of all mXn 
matrices A=(atj) over H°° for which the corresponding analytic operator valued 
function (£„, Em, A) is bounded, i.e. M(A)|| S.K for some constant Kindependent 
of k on the open unit disc D. Instead of Jt(n, n) we also write shortly M{n). 

For AdJi(pi, n) and a natural number /•^min (m, n) we define 3>r(A) as 
the largest common inner divisor of all minors of A of order r. The invariant fac-
tors Sr{A) are defined by <?1(A)=3>1(A) and gr(A)=@M)l@r-M) for 
(we put #r(A)=0 if ®r(A)=Q). 
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For A£M(m, n) inner we define the operator S(/l) on the Hilbert space § (A)= 
=H\EJQAH\E„) b y S(A)U=P&A)(;M). 

If T is an operator on § and T' is an operator on we write T-< T if there 
exists an injective operator X: such that XT= T' X. If X can be chosen 
such that X5>=& we write T< T'. T and T' are called quasisimilar ( r ~ 7") if 
T<T' and T'<T. 

I. 

We start with the following version of a lemma of M. SHERMAN (the proof is 
the same as in [6]). 

Lemma 1. Let h£H°°, a>1; a>2, inner, e>0. Then there exists a com-
plex number x, |x|<s suchthat {h+x) f\03j = \ 0 = 1, 2, ...). 

Lemma 2 is an easy modification of the Main Lemma of [6]: 

Lemma 2. Let fik£H°°, i,k—1,2, ... , \fik\^M for some constant M. Let 

hJ}h2, satisfy 2 \hi{^)\ = M' where M'is a constant independent of 
¡=i 

Let (Ox, coz, be inner and e>0. Then there exist complex numbers xx, x2, ... 

suchthat (Ai+xjAio^l 0=1, 2, ...) and 2(K+x^fik=\ /\ / J r ; , 
£ = 1 * = 1 U = 1 ) 

where rt!\(o}=l for i,j= 1 , 2 , . . . . 
Proof . By Lemma 1 we can find an x ^ C , <e/2 suchthat (/rx+x1)Ao)J = l 

for 7 = 1 , 2 , h x + X x ^ O and (hx+x jAf i i Z =l ( /=1,2, . . . ) . For t = l , 2 , ... 
OO OP OO 

denote gi=(h1+x1)fiil+ 2 hfik- Obviously and glA A fik= A By 
k = 2 k = 2 * = 1 

the Main Lemma of [6] applied to the functions gjd^, fjd-, where dt= f\ fik <*> t=i • 
there exists a sequence of complex numbers x3, ... such that 2 l*>l<e/2 and 

gi+ 2 *kfik=is, A A /»] r i = \ A A ) rt where rf Aco~ 1 (/, j= 1, 2,. . .) . At the k = 2 V * = 2 J U = 1 J 
same time 

+ 2*k A = 2 (hit + xk)fik • fc=2 Jt=l 

Lemma 3 is a modification of Theorem 1, [6]. 

Lemma 3. Let AfJl(m, n), 1 Let ö)1( tua, ... €H°° be inner. Then 
there exists (p£H°°, <pf\(Oj=l 0 = 1 , 2 , ...) and A£Jt(m), A£Jt(ri) having the 
scalar multiple cp such that AA=AB, where B has the form 2?=diag (&x(A), A^), 
Ax£Ji(m-l,n-l) and #x(A)\Ax. 
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Moreover if {A,} is a sequence offunctions from H°° satisfying 2 I hi W\=M 
i = J 

for some constant M independent on A££> and e>0, then we can choose A, A and 
B in such a way that the first column {gj"=1 of the matrix A satisfies the relation 

i=l 

Lemma 3 differs from Theorem 1, [6] only in the last statement. The proof 
proceeds in the same way as in [6] using Lemma 2 instead of the Main lemma of 
[6]. Therefore we omit it. 

The last statement will be used in the second section only. 

Lemma 4. Let A, B£^it(m, n), l s m , « ^ » , let AdJi(m) and A€^((n) 
have a scalar multiple cpdH" i.e. AA"=AaA—(pIm, AAa=AaA=(pIn for some 
Aa£Jt(m), A*£Jt(n). Let AA = AB and let B have the form J?=diag (^(A), AJ, 
Ax^Jtim — 1, « — 1), ^1(A)\A1 (i.e. we have the situation from the previous lemma). 
Then for every integer k, 2=k^mm (m, n) we have 

^ M - i C ^ V 1 - 1 and V - 1 -

Proof . It holds <pA=ABAa, q>B=AaAA. The Cauchy—Binet multiplication 
rule implies @k(A)=0 if and only if @k(B)=0. Further, if ®k(A), 3>k(B)^0 
it holds 

®M)\<p*®k(B), ®k(B)\q>k%(A). 

Clearly @k(B)=@1(A)for k^2. Hence 

= ^(A) cp"-1)^) • 

• fy-iVD ^ " V ^ - i O m - i ^ i ) ( p ^ - ^ - M J = V2"-1- Similarly, 

sk-Md = = 

Lemma 5. Let A,B£Ji(m,ri), 1 Ad-Mijn), AdJtiji), AA=AB. 
Let A, A have a scalar multiple q>£H°°. Let A = AtAe, B=BiBe be the canonical 
inner-outer factorizations of A and B, i.e. Ae£J((k, h), Be£Jt(k', n) are outer, 
A£Jf(m,k), B£J((m,k') inner functions. Define the operator X: §(.6;) —§(v4f) 
by Xu=P6iAt)Au (w<E§(£,.)). Then 

1) S(Aj)X — XS(Bi), and 2) p(5(£,)|9t) = 0 where 91 = Ker X. 
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.. I 
Remark . Let <p=l. Then conditions 1, 2 mean Por a/gen-

eral function /7™ these conditions are a weakening of that relation.. 

P roof of Lemma 5. First we prove P ^ ^ A B ^ — 0 - for every wéH^iÉ^). 
As Be is an outer function the set BeH2(En) is dense in H2{Ek.). So we can sup-
pose w=Bcw' for some w'£H2(En) and usé the continuity of the mapping P^A)ABt. 
Then 

P^ABiW = PzWABw'- = Ps(Ai)AAW' = PHAi)AiAéAw' = 0. 

Let now w£§(5,)- Then we have (for some w£H2(Ek), w'£H2(Ek)) 

S{A,)Xu = Pb(AÙU+P^Al)Au = P^At)U+Au+P&iAl)U+AiW '=" 

= PUAl)AU+u = P^APuBjU+u+P^jABiw' = XS(Bi)u . 

(where U+ 

is the operator of multiplication by the identical function in the spaces 
H2(Em) and H2(Ek), respectively). 

Let we§CBf), Xu=0 i.e. u ^ H 2 ^ . Then <pu=AaAu£AaA,H2(Ek). It holds 
(p{S{B^)u=PUBd{(pu)£PmùAaA iH2{E^. So it is sufficient to prove P ^ ^ ^ . w ^ O 
for each w£H2(Ek). As AeH2(E„) is dense in H2(Ek) we may assume w—Aew' 
for some w'£H2(E„). Then • ! . • = P^A'Aw' = Pm)BAaw' = Pmi)BiBeAaw' = 0. : 

Lemma 6. Let let Ar£Ji(jn—r,n—r) for + A0=A 
inner. Let BrÇ_Jt(m — r,n—r) (0Sr<«) such that j9r=diag (sr> Ar+1) where' 
sr€H~ is inner and ArAr=ArBr for some Ar£Jl(m — r), Ar£Ji(n — r) having a 
scalar multiple (prÇ_H°°. Let further tr£H°° (1 +1) satisfy i,]^-! and 
trf\(p.= \ 1, Then 

© S(tj) < S(A). J=1 

Proof . As A0 is inner it holds m^n. Let Ar = AnAre, Br = BriBre be the 
canonical inner-outer factorizations of Ar and Br, respectively. Then Bri= 
=diag'(s r, Ar+lti), 5 r e =diag( l , /f r+1,e). Define the operators X,: §>(Bri)^§f(Ari) 
by X,=Ps(Ari)A,\d(Bri) (O^r^n). We have XrS(Br.) = S(Ari)Xr by Lemma 5. 

For 0 S r < n define the operators Z r: §0 r + 1 )—§( j r ) by Z r u = P ^ s ) ( — r "I = 
' j • * v'r+l 

=——u (uÇSj(tr+1)). It is easy to see that ZrS(tr+1) = S(sr)Zr and Z, is an injec-
{r+1 

tive operator (in fact it is an isometry). The. situation is shown in the following 
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diagram: 

S(i r+1), s c o 

© = <b(Bid^ SCAD 

Z V r + l J 

Define further the operators §>(tr+1)—§(/4) by iF r=Z0A'1 . . .Z rZ r (we con-
sider the spaces $>(ir) and %>(Ar+lii) as subspaces of £j(.Bri)). Obviously 

WrS(tr+1)=S(A)fVr. Let TdJt{n\ r = d i a g ( h , /„,...), § ( 7 ) = © £(/,), 5 ( T ) = 
i=i 

= © S(f,). Define the operator S C O - S O O by w i © m/| = 
j= 1 / y'=l 

where a J _ 1 = m a x | l , max {||Zfc...A'J_1ZJ_I|| |fc=0, 1}}. As 

¿ C / ' - V l l W - i l l ) 1 ^ 

the definition of PF is correct and W is a bounded operator. Further PFS'(2,) = 
= S( /0W. 

It suffices to prove that IF is injective. Suppose on the contrary that Wu=0 
n 

for some u= © uJt Ujd§>(tj)- Let k be the minimal integer with uk^0. 

To simplify the notation denote u'j=j_1aJ-lJZ7._1MJ-, MJ£§(.S,
7_1). We have 

0 = 2 ^ - = ••• ^ - i < + i ••• ^ - i ) ^ - = j=k j=k+l 
={X0...Xk_d(u'k+w) where ife§{sk_w = 2 X^.-X^u), w€S(4«). So 

X1...Jir
fc_1(M^+w)€Ker X0 and by Lemma 5 

0 = ^ ) ^ . . . ^ + » ) = , 
= X1cp0{S(Bli))X2...Xk_1(u'k + w)=...= . ' , 

= X1...Xk.1<p0 (S(Bk^,d)(ui + w). 

Hence Z2...X|fc_1<ii)0(5'(j5fc_lii))(Mi+w)6KerX± and repeating the same argument 
as before we get finally 

As u'kd$)(sk_1), w£i)(Aki) and both these subspaces are reducing with respect to 
S(Bk_2 J we have also 

(<Po-<Pk-d(S(Bk-ltl))u'k = 0. 
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On the other hand 

As itA(9>o-"iPt-i)—1> necessarily The operator Z t _ ! being injective we 
conclude uk=0, a contradiction. 

T h e o r e m 7. Ze/ T£C.0 (i.e. r*"-0 strongly) and n=dT, m=8T* be the 
defect indices of T. Then 

© S{Sj(A)) < T 
I 

where A£J!((m,ri) is the characteristic function of T. 

Proof . It is well known ([7]) that A=A0 is inner and 7"is unitarily equivalent 
to S(A). Therefore and 0 for each j. 

By Lemma 3 there exist matrices A0£Jt(rri), A0£J?(n) having a scalar multiple 
<p0€H~, (p0A&j(A)=l ( l ^ / < « + l ) and a matrix B0dM(m, n), B0=diag (^(A), Ax), 
A1€J?(m—l,n—l) such that AA0=A0B0. 

Analogously, for r~=n we can find inductively matrices Ar£Jt(m—r) 
Ar£J((n—r) having a scalar multiple cpr£H°°, (pr/\$j(A)=l (i^j<n + i) and a 
matrix Br£Jt(m—r, n—r), Br=dia.g(@1(Ar), A,+1) and ArAr—ArBr. 

Put tj=$j{A) + sj=@1(Aj) (0s=y<n). By Lemma 4 it is 
¿ k - i i A r + J K U r ) ? ? ' 1 - Hence 

As (<p*~1...<pl_jAtk=l, necessarily tk\S1(Ak-1)=sk-1. 
The required result follows now immediately from the previous lemma. 

R e m a r k . For «<«> the statement of Theorem 7 follows from [9]: If we 
denote S(J)=S(T)©"e" S(0) (where 5(0) is the uni-

lateral shift; multiplication by the identical function) then there exist two injective 
operators W1, W2: $>(J)-+%(A) intertwining the operators S(J) and S(A) such 
that Wx${J)\/Wt$U)=§{A). 

In the case m=n=<*> this cannot be true. It may happen that <fi(A)=1 for 
each /'. Then S(J) is the trivial operator and no sort of density of the images can 
hold. 
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II. 

The aim of this section is to give a new proof of the existence of the Jordan 
model of C0-contractions. In the same time we prove the formulas for the func-
tions appearing in the Jordan model (see [5]). 

We start with the modification of Lemmas 3 and 4 for matrices having a scalar 
multiple. 

Lemma 8. Let AfJi(ri), 1 g n s » be an inner function having a scalar multi-
ple i{/£H°°, rj/ inner, let QfJi(ri) satisfies AQ = QA = ij/in. Then there exists a 
function xdH°°, xA^ = 1 and matrices A, A £ (ji) with the scalar multiple % 
(i.e. AA*=A*A = A*A = AA'l=xIn for some A*, A*<iJt(n)) such that AA—AB 
where B£J/(n) has the form i?=diag (^/^(£2), At), B is inner and A^Jl(n — 1) 
has a scalar multiple ty-Mxlinner. 

Further, for every integer Jc, 1 =§£<«, ^l^k+1(0)\ij/JS'k(Q1), <pJ£k(Q1)\il/x/<Z'k+i.(&) 
where Q^Jt(n—X) satisfies A1Q1 = QlAi=\p1I„_1. 

Moreover if e > 0 and {/¡¡}"= 1 is a sequence of H°°-functions satisfying 
n 

2 for some constant K independent on k£D, then A, A and Ax can be 
i—1 n 
choseninsuch away that 2 (/"-€7)) where is the first column 

of A. 
Proof . By Lemma 3 there exist matrices M,N£Jt(n) with a scalar multi-

ple (p£H~,(pAil' = l such that QN=MQ', where Q'£Jt(n), Q ' ^ d i a g ^ f l ) , i^), 
Q[£jt(n-1) and S^Q)^. Multiplying the equation QN=MQ' from left by 
N*A we get \l/(pIn=N"AMQ'. If C denotes the matrix C=N*AM, then Q'C= 
=(Q'N*)AM=M*(QA)M=M*\ltM=(pil/In also holds, and so C has the scalar 
multiple (pi//. 

The matrix C is necessarily of the form C=diag ((pip/to^Q), Cx) where 
Cx£Jt{n-1) and C1(i2^1(0))=(i3^1(i3))C1=(<pi/'/<i,

1.(i2))/n_1. From the equa-
tion C=NaAM we infer that CM*=(<pNa)A. Taking the canonical inner-outer 
factorization C1=CuCle of C1 we have that C=diag (ip/tf^Q), C i ;) diag (q>, Cle), 
and so diag (^/<^(¿2), Cu) diag (<p, Cle)Ma=((pN*)A. Since C± has the scalar 
multiple ((pi ip/^iQ)) cpe where <p=(ptffe is the canonical inner-outer factoriza-
tion of (p, Cle has the scalar multiple cpe, and so cp also. Now it is obvious that the 
matrices A*=diag (<p, Cle)M" and A*=<pNa have the scalar multiple that 
is AA*=A*A = AAa=A*A=xIn with some matrices A, A£Ji(n), particularly 
A=N. Defining the matrix B by 5=diag {^¡S^Q), C lf), we infer that BA*= 
=AaA, and so AB=AA. On the other hand, xA ^ = 1 and the matrix A1=Cli 

has an inner scalar multiple i/^ such that ^^ / /«^( f l ) . 
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. n 
Let now £>0 and hx, h2, 2\hi(?)\=K- By Lemma 3 it was possible 

»=1 n 
to choose the matrix N such that 2 — g-,-(A)| <e (A6X>), where {^¡}"=1 is 

»=1' 
the first column of N. The same of course holds for the matrix A =N. 

It suffices to prove the statement about invariant factors of Q and S2X. The 
matrix Ax=Cxi has the scalar multiple ipx=((pipjS'1(Q))i=(\j//£1(Q)) - cpi and 
AX{CU Q'J#1(Q))=((p\l//$i(Q))ln-i=il/1 (peI„-i- Hence Q.cp^C^Q'J^iQ). Then 
the Cauchy—Binet rule implies dk=9lk(n'l]gx(G))\®k{Qd<pk

e, hence dk\2>k(Qd- Sim-
ilarly (C^)" i2t=Q'J£X(Q) (where C„(C l ,) '=(C l e) 'Cu=fl»./11_1) and so %{Qd\dk. 
This gives ®k(Qx)=dk and £k(Qx)=®k(Qx)l®k_x{Qx)=djdk_x=£k{Q[)ISx{Q). It 
holds (by Lemma 4) Sk_x{Qd\Sk{Q)(p^~x, S^Qy^^Q'd^1- Hence 

As q>f\\]/ = i we conclude il/fSk+x(Q)\ij/JSk(Qj). 
The relation ^i/<^(i2i)|xiA/<^t+i(i2) may be proved similarly. 

Theorem 9. Let T be a CQ-contraction, A the characteristic function of T and 
n the defect index of T Let Q(iJi(n) satisfies ,AQ—QA = il/I„, where 
ip(iH°* is inner (such an i2 exists by [1]). Then 

© S(<M£m) < T. 
(=i 

Proof . The operator T is unitarily equivalent to the operator S(A) so it is 
sufficient to deal with S(A). We use again Lemma 6. 

By Lemma 8 there exist <p0£H°°, <p0A<A = l and A0, A0, B^dt(n), where 
AA0—A0B0, A0 and A0 have the scalar multiple (p0 and B0 has the form B0= 
=diag (J0, Ad, AxdJt{n — 1). Further Ax is inner and has a scalar 
multiple ^¡(p^/^iQ), ij/x inner. Denote QxdJl(n — V) the matrix satisfying 
AlS21=Q1A1=\l/1In_1. 

In the same way we can find for r < n inductively matrices Ar, Ar, BrdJ((n — r) 
and a function (pr£§>°°, (prA(<P<Po---(Pr-i) = ^ such that ArAr=ArBr, A, and AT 

have the scalar multiple (pr) B, has the form £ r =diag (sr, Ar+1), sr=^rl&x{Qr) 
and Ar+1£Ji(n—r) has a scalar multiple \j/r+x, *jjr+i\<prsr\(pri]/r, ipr+i inner. Note 
that tl/r/\(pr=l. Let £2r+1ed/(n-r-1) satisfies Ar+X£2r+X- £2r+1Ar+x=iJ/r+xIn-r-x. 

Denote Then iJ-=^/<f/(i2)|^1/<?J._1(i21)|...|^._1/^(i2J-_1)=iJ_1 

(by Lemma 8). Further tj\ij/ and implies tjAVr—^ for every j, r. 
Now application of Lemma 6 completes the proof. 
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Remark . By Lemma 8 we infer also that 

s. = i{,jl£i(Qj)\il/j_i(pj_J£2(Qj_1)\..;\tj+1<pj_1...(p0. 

Therefore, we have gj=sjltj+1\<p0...<pj-l. This fact will be used later. 
Our goal will be now to show that we can choose matrices Ar, Ar and Br in 

such a way that the range of the operator- W (see Lemma 6) is a dense subspace of 

§(,4) i.e. © SQrl*t(Q))<S(.A). 
¡=i 

Lemma 10. Let A, B, A, A£Ji(n), let A and B beinner and A A = AB. 
Let A, A have a scalar multiple cp£H°° and A a scalar multiple i]//\(p = l, 
\i> inner. Let the operator X: <o(B)—Sr>(A) be defined by X-Pi{A) Then 
Xf(S(B))?>(B) = §(A) for every function f£H~, /M = l. 

Proof . Let v£&(A), v±Xf(S(B))%(B). First we prove v±<pfHz(E„). Let 
w£H2(En). Then (for suitable w', w"£ff2(E„)) 

(v, (pfw) = (v, P6(A)<pfw) = (v, PHA)AA*fw) = 

= (v, PUA)APZWAafw)+(v, PUA)ABw') = 

= (v, XP6mfAaw)+(v, P^AAw') = 

= (v, XP^(B)fPUB)A:'w) + (v, XPHB)fBw") =• 

= {v,Xf(S(B))P&B)A*w] = 0. 

Further \pH2(En)c:AH2(En) because A has the scalar multiple ty. As v±AH2(E„) 
we infer i>_upH2(E„). Now vL<pfH2{E„), v±ij/H2(En) and q>fA\j/ = 1 implies 
v=0 (see [3]). 

Lemma 11. If the assumptions of Theorem 9 hold, then using the notation of 
Theorem 9 and Lemma 6, we have 

f>(A) = V X0...Z,.(<p0... cpj)(S(Sj)) §(sj)\/X(i...Xr{(p()...(pr)(S(Ar+1))§)(Ar+ 
j ' = o 

for each integer r, 0 

Proof . We proceed by induction on r. For r = 0 the statement 

$(A) = X0<p0 (S(sJ)$(sJVXo<Po(S(A№(.AJ = X»<Po • • 

follows from the previous lemma. 
Suppose the statement is true for r—1. Then < 

j=o 
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Further (by Lemma 10) 

§{Ar) = Xr<f>r{S(Br))?>(Br). So 

X0...Xr-1(cp0...<pr.d{S(Ar))§>{Ar) c 

c X0...Xr-1(q>0...<pr-J(S(Ar))Xrq>r{S(Br))MBr) = 

= X0...Xr{cp0...cpt)(S{Br))%{Br) = 

= X0...Xr(<p0...<pr){S(sr))f>(sr)V 

VX0...Xr(<p0... q>r)(S(Ar+J) £ (Ar+J. 
Together with the induction assumption this gives the statement of the lemma 
for r. 

L e m m a 12. (We use again the notation of Theorem 9 and Lemma 6.) 

$(A)= V lVJ!o(ej+1)VX0...Xr((p0...<pr)(S(Ar+1))fj(Ar+1) 
}=o 

for every integer r, Q^r-^n. 

Proo f . Clearly it is sufficient to prove 

Wj?>(tj+1) => X0...Xj(cp0... (pj)S(sj)<b(Sj) (0 ^ j < n). 

As Wj=X0...XjZj it is sufficient to show ZjH(tj+1)z>((p0...<Pj)S(Sj)&(sj). 
Let us recall (see the Remark after Theorem 9) that gj\(<Po---<Pj-i), gj is inner and 
zJu=pUs/SjU) =gju for u(i § (tj +1) and for gj=sj/tj+1. Then (q>0... <pj)(S(sjj)& (Sj) c 
cgj (S(sj)) § (sj)=Pz(Sj)gj § (sj)<zP^Sj) gjH2=PH(Sj)gj tJ+1 H2VP^Sj) gj f> (tj+!>= 
= Z J S ( / J + 1 ) . 

T h e o r e m 13. Let T be a C¡¡-contraction, A the characteristic function of T, 
let n be the defect index of T, l ^ n ^ o o . Let Q£jf(n) satisfies AQ = QA = \j/I„, 
\j/dH°° inner. Then 

© S{iP/j£J(Q)) < T. 
J= i 

P roo f . We use again the notation of Theorem 9 and Lemma 6. We show 
that the matrices Ar, Ar and B, ( 0 i n the proof of Theorem 9 can be chosen 
such that W&(T)=$(A). 

If Sj(/4k)={0} for some k (particularly if then the statement follows 
from the previous lemma. 

Suppose in the sequel that w = °° and §(/4 t)7i{0} for every it. Let alya2,... 
be a countable set dense in $y(A). Let {bj}J=1 be a sequence of elements of this 
set in which every element (l^i-=<*>) occurs infinitely many times. It suffices 
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to prove that having chosen matrices A}, A} and Bj for j<k (k fixed), we can find 

matrices Ak, Ak and Bk such that dist ^ , V Having done such 
I oo 

a selection for every k the space W<$(T)= V Wj<o(tJ+1) would contain all elements 
j = o 

aj (j= 1, 2, ...) which form a dense subset of §>(A). 
By the previous lemma there exists an element c£(<p0...(pk_1)(S(Ak))§)(Ak) 

such that 

(1) dist (bk-X0...Xk.lC, vV^iO+i)) < (2fc)"1. 
J=o 

Further it is 
(2) c = Ps,(Ak)((Po • • • <Pk-ic') = P^Ak)gkd 

for some c'd$j>(Ak), dfH2(EcJ. In the given orthonormal basis in the space Em d 
is represented by a sequence d={dj}°J°=1, dj£H2. Further there exists a sequence 

oo 

h = {hj}j=1 of H°° functions such that 2 \hj(^)\=K for some constant ^independ-

ent on X£D and 
(3) |d -* l iwj<(4 | | J r 0 | | . . . | | i r 4 _ 1 | | ) - 1 

(we suppose § (Aj) ^ {0} so by Lemma 10 Xj^O for every j). By Lemma 8 we 
can choose matrices Ak, Ak and Bk such that 

(4) 2 \ f № ) - h j ( X ) \ < (4||JT0||... WX^W)-* 
j=i 

where / = {fj}JLi is the first column of the matrix Ak. 
Denote e=Pm e£$(/ t + 1) . Then (for some wfH2) 

Zke = Pi,(sk)gkPS(lk + J) 1 = P%(sk) gk + P&sk) gktk + lW = P&sk)gk 

where gk=sk/tk+1 (see the Remark after Theorem 9). Further 

XkZke = P^AkP^igt, 0, 0, ...)T = PuAk)AkP^Bk)(gk,0, ...)T = 

= P&Ak->Ak(gk, 0, ...)T + P^Ak)AkBkw' = 

= P&Ak)gkAk(\, 0, ...)T + P^Ak)AkAkw' = PUAk)gk(fuf2, ...)T . 

(for some w'€H*(EJ)). Finally, 

\XkZke-c\mk) = \PuAk)gk(fi,fi, •••)T-Pf>(Ak)gk(d1, d2, ...)T|S(^ S 

^ \gkf-gkd\i,HE„) = \f~d\uHE„) 

^ \f-h\HHEj + \h-d\HHE„y < (2||Z0||...||^_1||)-1 
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(we used the fact that gk is inner). Hence 

\Wke-Xo:..Xt-lC\ùA) si \\X0\\ ••• ll^t-ill \XkZke — c\HnE_) < (2 

and (1) implies dist V ' 

This completes the proof. 

Remark . It is well-known (see [8]) that Theorem 13 implies that the operators 

T and © S(\jjl&j{Q)) are even quasisimilar. Relation T-< © S(rj/ISj(Q)) fol-
7 = 1 J=1 

lows by considering the adjoint operator T*. 

Acknowledgement. The author wishes to thank to Dr. L. Kérchy for careful 
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