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Jordan models and diagonalization of the characteristic function

VLADIMIR MULLER

Introduction

The study of Jordan models of some classes of operators on an infinite-dimen-
sional Hilbert space was started by B. Sz.-NaGY and C. Foias in [8], where the exist-
ence of Jordan model was proved for C, contractions with finite défect indices.
“This result was generalized: in [1] for general C, contractions.

. Another approach to these questions is to use some sort of diagonalization of
the characteristic function. This method which was developed by E. A. NORDGREN
and B. Moore 111 in [4], [10] has the advantage that it gives also some description

of the functions appearing in Jordan models. Extensions and further applications
of this approach were given in [9], [6] ard [5]. _

The aim of this paper is to continue these investigations. In the ﬁrst section
we deal with C . contractions (i.e. T* 0 strongly) and show what remains valid
from the Jordan model in the general case.

‘In’ the second.section ‘we give a new proof of the existence of Jordan models
for general C, contractlons (see [1]). In the same time we prove again relatlons for
the functions appearmg in the Jordan model (see [S]). -

We use the usual notation (see [6], [7]). By E, (0=rn= =) we denoté the n-dlmen-
sional complex Hilbert space. #(m,n) (1=m, n=oc) means the set of all mXn
matrices 4=(a;;) over H* for which the corresponding analytic operator valued
function (E,, E,,, A) is bounded, i.e. [|4(A)]|=K for some constant K independent
of 2 on the open unit disc D. Instead of .#(n, n) we also write shortly . (n).

For Ac#(m,n) and a natural number r=min (m,n) we define 2,(4) as
the largest common inner divisor of all minors of 4 of order r. The invariant fac-
tors &,(4) are defined by &,(4)=2,(4) and &, (A) 2 DD, - 1(A) for r=2
(we put &, (A) 0. .if 9, (A) 0.

Received July 19, 1980.

'6'



322 V. Miiller

For A€.#(m, n) inner we define the operator S(4) on the Hilbert space $(4)=
=H*(E,)© AH*(E,) by S(A)u=~Pgy,(iu).

If T is an operator on $ and 7’ is an operator on £’ we write T< T’ if there
exists an injective operator X: $—+$9" such that XT=T"X. If X can be chosen

such that X’g=$5’ we write T<T’. T and T” are called quasisimilar (T~ T") if
T<T and T'<T.

L

We start with the following version of a lemma of M. SHERMAN (the proof is
the same as in [6]).

Lemma 1. Let he H=, w,, @, ...€ H” inner, £¢=>=0. Then there exists a com-
plex number x, |x|<e such that (h+x)Aw;=1 (j=1,2,...).

Lemma 2 is an easy modification of the Main Lemma of [6]:

Lemma 2. Let fy€H™, i,k=1,2,..., |fiul=M for some constant M. Let
hy, hy, ...€H™ satisfy 2'” (B, (D)=M’ where M’is a constant independent of A€D.
Let 0, w,, ...€H™ be ii;:ter and e¢=0. Then there exist complex numbers xy, x,, ...
such that é l=<e, (- x)A@;=1 (j=1,2, ...) and kg(hk+xk)fik=[k2\1ﬂk) r
where riAw;=1 for i,j=1,2,....

Proof. By Lemma 1 we can find an x,€C, |x,|<g/2 such that (;+x)Aw;=1
for j=1,2,..., i+x20 and (h+x)Afi.=1 (=1,2,..). For i=1,2,...

denote g;=(h,+x,)f; 1+ thfik- Obviously g€ H™ and gA 7\ Ju= 7\ S

the Main Lemma of [6] applied to the functions g,/d,, f,/d; where d,= /\ Su

there exists a sequence of complex numbers x,, xg, ... such that Z lx; |<a/2 and

st S nu=(sn A Su)r=( A i) where rinw,=1 (j=12,..). At the
k=2 k=2 =1

same time

gi+k§: XS = kg(hk'*'xk)fik'

Lemma 3 is a modification of Theorem 1, [6].

Lemma 3. Let A€M (m,n), 1=m,n=occ. Let w;, Wy, ...cH" be inner. Then
there exists @€H™, pAw;=1 (j=1,2,...) and AcAM(m), A€M (n) having the
scalar multiple ¢ such that AA=AB, where B has the form B=diag(&,(4), 4,),
A €M(m—1,n—1) and &,(A)|4;.
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. Moreover if {h[},;l is a sequence of functions from H* satisfying Z"' IAOEY
i=]

Jor some constant M independent on ).€D and £>0, then we can choose A, A and
B in such a way that the first column {g};_, of the matrix A satisfies the relation

S Ih@—s®l <2 GeD).

Lemma 3 differs from Theorem 1, [6] only in the last statement. The proof
proceeds in the same way as in [6] using Lemma 2 instead of the Main lemma of
[6]. Therefore we omit it.

The last statement will be used in the second section only.

Lemma 4. Let A, BEA#(m,n), 1=m,n=o, let AcH(m) and A€M (n)
have a scalar multiple @€H™ ie. AA*=A*A=¢l,, AA*=A*A=¢l, for some
A*c.M(m), A€ M(n). Let AA=AB and let B have the form B=diag(2,(4), 4,),
A€M (m—1,n—1), D,(4)|4;, (i.e. we have the situation from the previous lemma).
Then for every integer k, 2=k=min (m,n) we have

E(ADIEi-1(4) - 9™ and &1 (4)I6,(4) - 9*?

Proof. It holds @A=A4BA®*, ¢oB=A4AA. The Cauchy—Binet multiplication
rule implies 2,(4)=0 if and only if 2,(B)=0. Further, if 9,(4), 2,(B)=0
it holds

D(A)|9* D (B), D:(B)l¢*D,(A).

Clearly D,(B)=2,(4)- D,_.(4;) for k=2. Hence
&(A) = DA D —1(DID(B) ¢*|D, -1 (4) =
= 2,(4) Di-1(4) 0™ (D1 (4) 9*- D1 (4) -
Dy—1(AD) 0™ 7Dy 1(B)Dy—1(41) 9™ /Dy - 2(4) = 81 (4D 9*~ . Similarly,
Eer(A) = Dy 1(4)]D;o(4) =
= Du(B)/D-1(B)D(A4) 0" 9"~ 1[D,_,(4) = 8, (4) p**

Lemma 5. Let A, BE#(m,n), 1=m,n=oc, AcM(m), AcH(n), AA=AB.
Let A4, A have a scalar multiple o€ H”. Let A=A;A,, B=B;B, be the canonical
inner-outer factorizations of A and B, ie. A€M (k,n), B.c#(k',n) are outer,
A€ M(m, k), BicM(m, k') inner functions. Define the operator X: H(B)—~9H(4;)
by Xu="Pg,,du (u€H(B)). Then

1) S(4)X = XS(B), and 2) o(S(BYIN)=0 where N =KerX.
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. i
Remarik. Let ¢=1." Then conditionsl, 2 mean S(B))X'S(4;). For a gen-
eral functlon pEH™ these conditions are a weakemng of that relation. _

Proof of Lemma ‘5. First we prove Psu )ABw 0 “for " every- wEHz(E,,)
As B, is an outer function the set B, H%(E,) is dense in H2(E,). So we can sup-
pose w=B,w’ forsome w'€ H2(E,) and usé the continuity of the mapping Pg4,4B;.
Then
! P,ﬁ(A‘)AB w= PS(A‘)ABW = Pg(A)AAW = Ps(A)AgA AW =0.-

"Lét now u€$H(B;). Then we have (for some weHz(Ek), w EH2(Ek ))
S(A4) Xu = PW,) Uy Poiaydu = PgiayUss Au+PyapyUs Aw'="
v = Pﬁ(A‘)A U+u = Ps(Ai)AP,g(Bi)U_;_.u+P5(A‘)AB,~_W’ = XS(B,)u

(where U, is the operator of multiplication by the 1dentncal functlon in the- spaces_
H*(E,) and H?(E,), respectively). :
Let u€H(B), Xu=0 ie. ucA;H*(E,). Then ou=A* AuEA“A,Hg(Ek) It holds
P(S(BY)u="Pyp,(pu)E Pyz,4* A, H?(E). So it is sufficient to prove Pyp)A*Aw=0
for each wcH2(E,). As A, H?*(E,) is dense in H2(E,) we may assume w=dA,w’
forsome w€H2( ). Then Co Ty S

P_g(B)A A (W = Ps(B)A AW = Pg(B)BA w = Ps(B‘)BB A w =0.

Lemma 6. Let 1=m,n=cc, let AE./{(m—r n—r) for 0=r<n+1, Ay=A
inner. Let BeM(m—r,n—r) (0=r<n) such that B,=diag(s,, 4,,.,) -wheré
S,€H” s inner and A, A,=A.B, for some A€M(m—r), A, cHM(m—r) having a
scalar multiple @, €H". Let further t,cH~ (\=r<n-+1) satisfy tls,_, and
tAgi=1 (I=r<n+1,0=i<n). Then

& 5¢) < S(4).

Proof. As A, is inner it holds m=n. Let A4,=A4,A,,, B,=B,B, be the
canonical inner-outer factorizations of A4, and B,, réspectively Then B,;=
=diag (s, 4,+1,:), Be=diag(l, 4,,,.). Define the operators X,: H(B, l)»S{)(A,,)
by X, = Ps(A ‘)A,ISI)(B) (0=r<n). We have X, S(B) S(A, )X by Lemma 5:

R A

For 0<r<n deﬁne the operators Z,: 55(1,+1)—»$3(s,) by Zu Ps(s)[t u];
1 7

u (u€H(1,1). It is easy to see that Z, S(t,,)=S(s,)Z, and Z, is, an ‘injec-:

r+1
tive operator (in fact it is an isometry). "The. situation is shown in .the following
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diagram:
5(trf1:);, ~ o 5(’2) .- H(t) oo
N | 7 algg
{o ) ® [ =9H(By) 22 »55(A)
%l 9(s) @ (= 9B H(4y)
@O} =95B)"9(4,)..-H ()
H(4, 41,0

Define further the operators W,: $(f,..)~9(4) by W,=X,X,...X,Z, (we con-
sider the spaces 9(s,) and $(4,.1;) as subspaces of 5(B,i)). Obviously

W,S(ts)=SA)W,. Let TeH(n), T=diag(ts, 1y, ...), s;'(T>=és>(t-) S(D)=

=_e"9 S(t;). Define the operator W: 53(T)—>$(A) by W[GB u]-}%]“laj__ w,_ luj
where a;_y=max {1, max {| X;... X; , Z;_,|| k=0, ...,j—1}}. As

Z(J‘la,"rllW S 2]'2

the definition of W is correct and W is a bounded operator Further WS(T)—
=S(A)W. .
It suffices to prove that W is injective. Suppose on the contrary that Wu 0

for some 02uc$H(T), u—@ u;, u;€9H(t;). Let k be the minimal integer. with u, 0.

To 31mp11fy the notatlon denote uj=j~ta;- 1Z;- 1u1, W €H(s;-1)- We  have

0= 3 X,X, ... X, = XX, o Xyt t S KXy o Xeo )Xy oo Xl =
i=k

J=k+1
=(X,... X,_)(+w) where w€9H(s._,), W Jj“"’k u,vweg(Aki). So
X, ... X, _,(u+w)eKer X, and by LemmaS
0—(00(S(BOi))X1 X 1(uk+W)
= Xlgoo(S(Bli))Xa...X,,_l(u,,+w) =.=
=X X 1¢0(S(Bk 1,0) e+ w).

Hence X,...X,_ I(po(S(B,‘ -1, l))(u,‘+w)€Ker X, and repeating the same argument
as before we get finally :

(Po-:- Px— I)(S(Bk -1, ;)) (uk+W)

As u,‘eﬁ(sk Vs wESB(Am) and both these subspaces are reducing with respect to

S(B;-,,1) we have also
(.- ‘Pk—r)(S(Bk—l,i)) u; = 0.
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On the other hand
tk(S(Bk-l,I))ul,c=tk(s(sk—1))zk-1k—l Wi 2=k W, 4l 72 Z, -1 6(S (), =0.

As tN(@o...0x-1)=1, necessarily u;=0. The operator Z,_, being injective we
conclude u,=0, a contradiction.

Theorem 7. Let TeC o (i.e. T* -0 strongly) and n=06r, m=0p+ be the
defect indices of T. Then

® S(EA)< T

where A€M (m,n) is the characteristic function of T.

Proof. It is well known ([7]) that A=A, is inner and 7 is unitarily equivalent
to S(A4). Therefore 2;(A4)#0 and &,(4)>=0 for each j.

By Lemma 3 there exist matrices Ay€.47(m), A,€.#(n) having a scalar multiple
@€ H™, poAE(A)=1 (1=j<n+1) and a matrix Bo&. (m, n), By=diag (2,(4), 4,),
A€M (m—1,n—1) such that AA,=A4yB,.

Analogously, for r<n we can find inductively matrices A,64(m—r)
A, €4 (n—r) having a scalar multiple ¢,€H~, ¢, A8;(4)=1 (1=j<n+1) and a
matrix B,€.#(m—r,n—r), B,=diag(2,(4,), 4,,,) and 4,4,=A4,B,.

Put ;=84 (A=j<n+l), 5;,=2,(4;) (O=j<n). By Lemma 4 it is
S4B —1(4, 11 oF Er-1(4,11)|6:(4,)p;*~*. Hence

h = 8 (A4y))6,_1(4) qo?,"'llé’,‘_z(Az) ¢§k_1¢?‘—3|---|g1(-4k-1) oy 1ot 3.0} _s.

As (0% 1. @3 IAt=1, necessarily £,|(Ay-)=51.
The required result follows now immediately from the previous lemma.

Remark. For n<oo the statement of Theorem 7 follows from [9]: If we
denote H()=H(TVOH(E,_,), SU)=S(T)® ® S(©O) (where S(O0) is the uni-
1
lateral shift; multiplication by the identical function) then there exist two injective
operators Wy, W,: $(J)~9H(4) intertwining the operators S(J) and S(4) such
that W, S(J)V W, H(J)=95(4).
In the case m=n=< this cannot be true. It may happen that &,(4)=1 for

each i. Then S(J) is the trivial operator and no sort of density of the images can
hold.
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IL.

The aim of this section is to give a new proof of the existence of the Jordan
model of Cy-contractions. In the same time we prove the formulas for the func-
tions appearing in the Jordan model (see [5]).

We start with the modification of Lemmas 3 and 4 for matrices having a scalar
multiple.

Lemma 8. Let AcH(n), 1=n=oo be qn inner function having a scalar multi-
ple YeH™,  inner, let’ QcM(n) satisfies AQ=QA=YI,. Then there exists a
Junction y€H®, xAYy=1 and matrices A, A€M (n) with the scalar multiple y
(iie. AA=AA=A"A=AA*=y], for some A°, A*cM(n)) such that AA=AB
where BE# (n) has the form B=diag (y/8(Q), A;), B is inner and A€M (n—1)
has a scalar multiple ,|yx/E(Q), ¥, inner.

Further, for every integer k, 1=k<n, |8, +1(Q W1/ (20, ¥/E( QD W x/Er11(R)
where Q€ M(n—1) satisfies A, =, A,=y1,_;.

Moreover if €>0 and {h}),., is a sequence of H=-functions satisfying

.é; {r(AD|=K for some constant K independent on A€D, then A, A and A, can be

chosen insuch away that Zn’ [hi(A)—g:(A)|<e (A€D) where {g,};_, is the first column
i=1
of 4.

Proof. By Lemma 3 there exist matrices M, N¢.#(n) with a scalar multi-
ple € H=, pA\Yy=1 such that QN=MS, where Q'€ (n), Q' =diag (& (Q), Q)),
Qe (n—1) and & (2)|Q;. Multiplying the equation QN=MQ’ from left by
N*A we get Yol,=N"AMSQ'. If C denotes the matrix C=N2AM, then Q' C=
=(Q'NYAM=M"(QAM=M*yM=¢pyI, also holds, and so C has the scalar
multiple ¢@i.

The matrix C is necessarily of the form C=diag(¢y/&(R2),C,) where
CieM{n—1) and C,(Qy8,(Q))=(2/E(D)C,=(¢¥/(2))],-,. From the equa-
tion C=N"AM we infer that CM*=(pN*®)A. Taking the canonical inner-outer
factorization C,;=C,;C,, of C; we have that C=diag (y/&(Q), Cy;) diag (¢, Cy,),
and so diag(y/&(Q), Cy) diag (o, Co)M*=(pN?)A. Since C, has the scalar
multiple ((p,- Y/&(RQ))p. where ¢=g¢;¢. is the canonical inner-outer factoriza-
tion of ¢, C,, has the scalar multiple ¢,, and so ¢ also. Now it is obvious that the
matrices A°=diag (¢, C.)M*® and 4°=¢N* have the scalar multiple x=¢?, that
is Ad*=AA=AA*=A*A=yl, with some matrices A, Ac4#(n), particularly
4=N. Defining the matrix B by B=diag (y/8(Q), Cy), we infer that BA*=
=44, and so 4B=AA. On the other hand, yAy¥ =1 and the matrix 4,=Cy
has an inner scalar multiple ¥, such that ,[x/8,(0).
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Let now &=>0 and hy, ks, ...cH™, Z",'|h-().)|§K. By Lemma 3 it was possible
to choose the ‘matrix N such that Z‘ R (D) —g:i(Dl<e (2€D), where {g,}, 1 IS

the first column of N. The same of course holds for the matrix 4=N.

It suffices to prove the statement about invariant factors of 2 and 2,. The
matrix 4,=C, has the scalar multiple ¥1=(oy/8(D)=(V/8(Q) - »; and
Al(cle Q;/‘gl(Q))=(¢¢/‘g,1(9))In-1='//1‘Pe1n-1- Hence ©,0,=C 2/8(R2). Then
the Cauchy—Binet rule implies d,=2;(2,/6,()|D. (2D o%; hence d,]P,(2,). Sim-
ilarly (Cp,)* Q=J6(Q) (Where Cpo(Cr)*=(C1o)*Cie=0.1,-,) andso 2,(2)\d,.
This gives 9k(91)=dk and &(2)=2,(Q))/Dy -1 () =d/di.-1=E(2)|E(Q). Tt
holds (by Lemma 4) &,_y(2)I6(2) 9™, B(Q)i6i-1(2) ™. Hence

l///gki-l(Q)lw(pzk+1/gk(91)|¢1¢2k+2g1(Q)/é’k(gi_) = '//190?*“/&(91)- .

As pAY=1 we conclude /8, ., (Dl./E:(Q).
The relation ,/8,(Q)|xY/E,+1(R2) may be proved similarly.

Theorem 9. Let T be a Cy-contraction, A the characteristic function of T and
n the defect index of T (1=n=o). Let QcAM(n) satisfies AQ=QA=yYI,, where
YEH= is inner (such an  exists by [7]). Then

@ SWIE(@) <T

Proof. The operator 7 is unitarily equivalent to the operator S(A) so it is
sufficient to deal with S(4). We use again Lemma 6.

By Lemma 8 there exist @, H™, @AY =1 and d4,, Ay, Bs€A(n), where
AAy=A,B,, 4, and A, have the scalar multiple ¢, and B, has the form B,=
=diag (59, A1), So=Y/2,(Q), A€M (n—1). Further 4, is inner and has a scalar
multiple ¥,|@o¥/8(Q), ¥, inner. Denote €,€.4#(n—1) the matrix satisfying
AIQI—QlAl_wl n—1-

In the same way we can find for r<n inductively matrices 4,, /1,, B.cAH(n—r)
and a function ¢@,€9%, @, AW@,-..¢,_)=1 such that A4,A4,=4,B,, 4, and 4,
have the scalar multiple ¢,, B, has the form B,=diag(s,, 4,11), 5,=¥,/2:(Q,)
and A4,,.€A4(n—r) has a scalar multiple ¥, ,,, ¥,..l@,s.|0,¥,, ¥, inner. Note
that Y, Ap,=1. Let Q, €4 (n—r—1) satisfies 4,,12,11=Q 14, 11=V,11lo—r-1.

Denole =/6(@). Then ;=16 @/é;1(]-W;-6:2-D =5,
(by Lemma 8). Further ;- and @, AY=1 1mp11es tiAp,=1 for every ],

Now application of Lemma 6 completes the proof
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Remark. By Lemma 8 we mfer also that

5 = VB 10582, 10,100,

Therefore, we have g;=s/t;;1|9o...®;-1. This fact'will be used later.
Our goal will be now to show that we can choose matrices 4,, 4, and B, in
such a way that the range of the operator- W-(see Lemma 6) is a dense subspace of

() ic. © SWIE()< ).
Lemma 10. Let 4, B, 4, A€ (n), L=n= oo, let Aand B be inner and AA=AB.

Let A, A have a scalar multiple @€ H™ and A a scalar multiple WEH=, YyAp=1,
Y ‘inner. Let thé operator X: H(B)~9H(A) be defined by X=Pgy, A|H(B). Then

Xf(S(B))SH(BY=9H(A) for every function fEHT, f/\tﬁzl

Proof. Let vEH(A), vJ_Xf(S(B))S)(B) First we prove v_]_(prZ(E,,) Let
w€ H¥(E,). Then (for suitable w’, w”€ H3(E,))

(v, ofw) = (v, Pgaypfw) = (v, Poayd4® fw) =
= (v, Pg(aydPgy 4° fw) + (v, PgaydBw') =
= (v, XPgp) fA* W)+ (v, PgayAAwW) = '
= (v, XPgs) fPy(8) 4" W) + (v, XPgs) fBW") =
= (v, Xf(S(B)) Pg(py4*w) = 0.

Furthcr t[/H 2(E,)c AH?(E,) because A has the scalar multiple . As v 1 AH?*(E,)
we infer v YHZ%(E,). Now vL(prz( ), v LWH(E,) and @fAyY=1 implies
v=0 (see [3]).

Lemma 11. If the assumptions of Theorem 9 hold, then using the notation of
Theorem 9 and Lemma 6, we have

S = V. Xo'o Xj@0- 0)(S)) SV Xo-- X, (@0 0 (S(A,1) S {4y

Sor each integer r, 0=r<n.
Proof. We proceed by induction on ». For r=0 the statement
9(4) = Xo¢o(S(So))5(so)V‘Xo ¢o(S(A1))5(A1) = Xp (Po(S(Bo))g)(Bo)v

follows from the previous lemma.
Suppose the statement is true for r—1. Then o 1

S(4) = V. Xoww: X000 0)(565) SEIV Ko X, (0o 40-D(SAN) H(4):
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Further (by Lemma 10)
$(4,) = X,9,(5(8) 5(B). So
Xooo. X, 1(@0---0,-)(S(4)) H(4,) ©
C Xo... X, _1(@o. .- ‘Pr-l)(S(Ar))Xr(or(S(Br)) H(B) =
= Xo... X,(@o.-- 0 )(S(B)) H(B) =
= Xo-.- Xp(Po--- @) (S()) H(s)V
VXo---Xr((Po--~‘Pr)(S(Ar+1))5(Ar+1)-

Together with the induction assumption this gives the statement of the lemma
for r.

Lemma 12. (We use again the notation of Theorem 9 and Lemma 6.)

() = VWSV X X000 (S(Arsd) $ (4, 1)
Jor every integer r, O0=r<n.
Proof. Clearly it is sufficient to prove
W;H(tj+) D Xo... Xi(0g--. ) S(s)H(s;) O =j<n).

As W;=X,..X;Z; it is sufficient to show Z;H(t;,)>(@o...0;) S(s)H(s))-
Let us recall (see the Remark after Theorem 9) that g;|(¢o...9;_,), g; is inner and
Zu="Pg,,(gu)=g;ufor ucH(t;,) and for g;=s;/t; . Then (@,... ¢ )(S(s))H(s,)
Cgi(S(s)) D (s)= Py 8 D ()T Py g, H =Py, g5 t41 HAV Pyyy 2,9 (1) =
=Z;9(t;11)-

Theorem 13. Let T be a Cy-contraction, A the characteristic function of T,
let n be the defect index of T, 1=n=c. Let Qc.(n) satisfies AQ=QA=yYlI,,
YEH™ inner. Then

é S(/,6,(Q) < T.

Proof. We use again the notation of Theorem 9 and Lemma 6. We show
that the matrices 4,, 4, and B, (0=r<n) in the proof of Theorem 9 can be chosen
such that WH(1)=9H(4).

If $(4,)={0} for some k (particularly if n<<oo) then the statement follows
from the previous lemma.

Suppose in the sequel that n=c and $(4)={0} for every k. Let a;, a,, ...
be a countable set dense in $(4). Let {b;};-; be a sequence of elements of this
set in which every element q; (1=i<) occurs infinitely many times. It suffices
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to prove that having chosen matrices 4;, A4 i and B; for j<k (k fixed), we can find
matrices 4;, A; and B, such that dist (bk, V W9 +1))<k 1, Having done such -

a selection for every k the space Wb(T)— \/ W;9(t;+1) would contain all elements

a; (j=1,2,...) which form a dense subset of H(A).
By the previous lemma there exists an element c€(@o... 0 _1)(S(4))H(4))
such that

@ dist (by—Xo... X; 1 ¢, V W;9(t;.0) < (k)
Further it is
¥ ¢ = Pgay(Po-.- Pr-1¢") = Pgrayged

for some c’€$H(4,), dc H*(E_). In the given orthonormal basis in the space E_ d
is represented by a sequence d={d;}7.,, d;¢ H>. Further there exists a sequence

h={h;};=, of H* functions such that 2°'° |h;(A)|=K for some constant K independ-
j=1

ent on A€D and
3 ‘ |d—hlmae ) < (41 Xoll ... | Xie—afl)
(we suppose H(4;)={0} so by Lemma 10 X;0 for every j). By Lemma 8 we

can choose matrices 4,, A, and B, such that

@ ,-51 /i) =h; (D] < Gl X .. 1 Xeal)

where f={f;};2, is the first column of the matrix 4,.
Denote e=Pg, 1, e€9(t;.+1). Then (for some weH?)

Zye = Pg(s) 8k Pyce,, p1 = Py 8+ Poisy) Setkr1Ww = Pgs 8k
where g,=5;/t 11 (seé the Remark after Theorem 9). Further
XiZre = Pgay A Py(s(8k> 0,0, ..)T = Pgay Ak Pysy(2, 0, ..)T =
= Pga,) (g, 0, ~-')T+{’5<Ak) M By =
= Pgup8cdi(1, 0, ..) 4+ Pgay A Axw’ = Pgay gx(f1, f25 ..)T
(for some w'€ H*(E,)). Finally, '
| XxZie—clgy = 1Poapgc(fis for )" — Poray gildy, da,y . ) |5a =
= g f—gdlme = | f—dlmey =
= |f—hlaxg ) +1h—dlasey < ClXoll... [ Xie—al) 7
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(we used the fact that g; is inner). Hence

(Wie—Xo... Xaz1clgn = 1 Xo] .. "Xk—lllleZte—Clui(z,_)<(2k)'1

‘and (1) implies dist (bk, v W,sj(tj+1)]<k-l.
This completes the proof ‘

By

Remark. It is well-known (see [8]) that Theorem 13 1mp11es that the operators

T and @ S(t///é‘ (Q)) are even quasisimilar. Relation T< @ S(Y/8;(2) fol-
lows by conS1dermg the adjoint operator T*.
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