Bands of power joined semigroups

STOJAN BOGDANOVIĆ

A band is a semigroup in which every element is an idempotent. A semigroup S is called power joined if for each pair of elements $a, b \in S$ there exist positive integers m, n with $a^{m}=b^{n}$. We say that a semigroup S is a band of power joined semigroups if there exists a congruence ϱ such that S / ϱ is a band and each class mod ϱ is a power joined semigroup. In this case ϱ is called a band congruence. One defines analogously semilattices, rectangular bands and left zero bands of power joined semigroups. Bands of power joined semigroups are studied by T. Nordahl [1] in the medial case ($x a b y=$ $=x a b y$). In the present paper we consider the general case.

For non-defined notions we refer to [2] and [3].
Theorem 1. A semigroup S is a band of power joined semigroups if and only if

$$
(\forall a, b \in S)(\forall m, n \in N)(\exists r, s \in N)\left((a b)^{r}=\left(a^{m} b^{n}\right)^{s}\right) .
$$

Proof. Let S be a band Y of power joined semigroups $S_{\alpha}, \alpha \in Y$. For $a \in S_{\alpha}$, $\alpha \in Y$ and $b \in S_{\beta}, \beta \in Y$ we have $a^{m} b^{n} \in S_{\alpha \beta}$ for every $m, n \in N$, and thus

$$
(a b)^{r}=\left(a^{m} b^{n}\right)^{s} \text { for some } r, s \in N .
$$

Conversely, let S satisfy condition (A). We define a relation ϱ on a semigroup S as follows:

$$
\begin{equation*}
a \varrho b \Leftrightarrow(\exists m, n \in N)\left(a^{m}=b^{n}\right) . \tag{1}
\end{equation*}
$$

It is clear that ϱ is an equivalence on S. Let $a \varrho b$, then

$$
(a b)^{t}=\left(a^{m} b^{n}\right)^{p}=\left(a^{m+m}\right)^{p}=a^{2 p m} .
$$

Hence, each ϱ-class is a power joined subsemigroup of S. We shall show that ϱ is a congruence on S. Suppose $a \varrho b$ and $c \in S$. Then $a^{m}=b^{n}$ for some $m, n \in N$, and by (A) we have

$$
\begin{array}{clll}
(a c)^{k} & =\left(a^{m} c^{t}\right)^{r} & \text { for some } & k, r \in N, \\
(b c)^{k_{1}} & =\left(b^{n} c^{t}\right)^{r_{1}} & \text { for some } & k_{1}, r_{1} \in N . \tag{3}
\end{array}
$$

It follows from (2) and (3) that

$$
\left.(a c)^{k r_{1}}=\left(a^{m} c^{l}\right)^{r_{1}}=\left[\left(a^{m} c^{t}\right)^{r} r^{r}\right]^{r}=\left[\left(b^{n} c^{t}\right)^{r}\right]_{1}\right]^{r}=\left[(b c)^{\left.k_{k}\right]}\right]^{r}=(b c)^{k_{1} r} .
$$

[^0]Hence, $a c \varrho b c$. Similarly, we obtain $c a \varrho c b$. Consequently, ϱ is a congruence and since $a \varrho a^{2}$ for every $a \in S$, we have that S is a band of power joined semigroups.

Theorem 2. A semigroup S is a semilattice of power joined semigroups if and only if

$$
\begin{equation*}
(\forall a, b \in S)(\forall m, n \in N)(\exists r, s \in N)\left((b a)^{r}=\left(a^{m} b^{n}\right)^{s}\right) \tag{B}
\end{equation*}
$$

Proof. Let S be a semilattice Y of power joined semigroups $S_{\alpha}, \alpha \in Y$. For $a \in S_{\alpha}, \alpha \in Y$ and $b \in S_{\beta}, \beta \in Y$ we have $a^{m} b^{n}, b a \in S_{\alpha \beta}$ for every $m, n \in N$. Hence,

$$
(b a)^{r}=\left(a^{m} b^{n}\right)^{s} \quad \text { for some } \quad r, s \in N
$$

Conversely, let S satisfy condition (B). Then

$$
\begin{equation*}
(b a)^{r_{1}}=(a b)^{s_{1}} \quad \text { for some } \quad r_{1}, s_{1} \in N \tag{4}
\end{equation*}
$$

From (B) and (4) we have

$$
\begin{equation*}
(a b)^{s_{1} r}=(b a)^{r r_{1}}=\left(a^{m} b^{n}\right)^{s r_{1}} \tag{5}
\end{equation*}
$$

for every $m, n \in N$ and for some $r, s \in N$. It follows from (5) and Theorem 1 that the relation ϱ on S (from (1)) is a band congruence and every equivalence class of S mod ϱ is a power joined semigroup. It follows from (4) that $a b \varrho b a$, so ϱ is a semilattice congruence.

Theorem 3. A semigroup S is a rectangular band of power joined semigroups if and only if
(C)

$$
(\forall a, b, c \in S)(\exists r, s \in N)\left((a b c)^{r}=(a c)^{s}\right)
$$

Proof. Let S satisfy condition (C). Then

$$
\left(a^{m} b^{n}\right)^{r}=\left(a\left(a^{m-1} b^{n-1}\right) b\right)^{r}=(a b)^{s}
$$

for every $m, n \in N$ and for some $r, s \in N$. Hence, the condition (A) holds and from this ϱ (from (1)) is a band congruence on S (Theorem 1) and every equivalence class of $S \bmod \varrho$ is a power joined semigroup. It follows from (C) that ϱ is a rectangular band congruence.

The converse follows immediately.
Corollary. A semigroup S is a left zero band of power joined semigroups if and only if

$$
\begin{equation*}
(\forall a, b \in S)(\exists r, s \in N)\left((a b)^{r}=a^{s}\right) . \tag{D}
\end{equation*}
$$

References

[1] T. Nordahl, Bands of power joined semigroups, Semigroup Forum, 12 (1976), 299-311.
[2] J. M. Howie, An Introduction to Semigroup Theory, Academic Press (1976).
[3] M. Petrich, Introduction to Semigroups, Merill Publishing Company (1973).
INSTITUTE OF MATHEMATICS
UNIVERSITY OF NOVI SAD
21001 NOVI SAD, P. O. B. 224
YUGOSLAVIA

[^0]: Received April 3, 1981.

