The range of the transform of certain parts of a measure

KERRITH B. CHAPMAN and LOUIS PIGNO

In this note we point out a very elementary condition which provides a uniform treatment for the results in [2, 4, 5] concerning the range of the transform of certain parts of a measure. We assume familiarity with the basic facts of [8].

Let G be a nondiscrete LCA group with character group Γ and let M(G) denote the customary convolution algebra of bounded Borel measures on G. Denote by S the structure semi-group of M(G) and let \hat{S} denote the semi-characters of S; recall that \hat{S} is the maximal ideal space of M(G), see [8]. For $\mu \in M(G)$ let $\hat{\mu}$ denote the Gelfand transform defined on \hat{S} by

$$\hat{\mu}(\chi) = \int\limits_{S} \chi d\mu$$

where we have identified μ and the image of μ in M(S); we will also let $\hat{}$ denote the usual Fourier—Stieltjes transformation. By $M_0(G)$ we mean the set of $\mu \in M(G)$ such that $\hat{\mu}$ vanishes at infinity, i.e. $\hat{\mu}$ is zero on $\overline{\Gamma} \setminus \Gamma$.

The main result of this paper is the theorem stated below; its proof is quite simple. After stating and proving our theorem, we present two examples which serve to indicate its scope. Example 1 is obtained by adapting the work of B. Hosr and F. PARREAU [3]. In order to present Example 2, we prove a proposition by modifying an argument of I. GLICKSBERG and I. WIK [2]. Professor Glicksberg has kindly pointed out (private communication) that the proposition is also a consequence of the main result of [1].

Theorem. Let $h \in \overline{\Gamma} \setminus \Gamma$ and $E \setminus \Gamma$. Then for every $\mu \in M(G)$,

(1) $(h\mu)^{\hat{\Gamma}} \subset \hat{\mu}(\Gamma \setminus E)^{-}$ if and only if (2) $h \in (\Gamma \setminus \gamma E)^{-}$ for every $\gamma \in \Gamma$.

Received March 25, 1981.

2

Proof. Let E satisfy (2) with respect to some $h\in \overline{\Gamma}\setminus\Gamma$. Fix $\gamma_0\in\Gamma$; since $h\in (\Gamma\setminus\gamma_0^{-1}E)^-$ there is a net $\langle\gamma_j\rangle\subset\Gamma$ such that $\gamma_j\to h$ and $\gamma_j\notin\gamma_0^{-1}E$ for all j. Observe that

$$(h\mu)^{}(\gamma_0) = \hat{\mu}(\gamma_0 h) = \lim \hat{\mu}(\gamma_0 \gamma_j)$$

because $\hat{\mu}$ is continuous on \hat{S} . Thus (2) implies (1).

Now let $h\in\overline{\Gamma}\setminus\Gamma$ and suppose for every $\mu\in M(G)$, $(h\mu)^{\hat{\Gamma}}(\Gamma)\subset\mu(\Gamma\setminus E)^{-}$; we want to see that E satisfies (2) with respect to h. With this in mind fix $\gamma_0\in\Gamma$ and let V be any open set of \hat{S} containing $\{h\}$. It suffices to confirm that $V\cap(\Gamma\setminus\gamma_0E)$ is not empty.

Let $W = \bar{\gamma}_0 V$. Then W is an open set containing $\{\bar{\gamma}_0 h\}$; by the definition of the Gelfand topology on \hat{S} there exist measures $\mu_1, \dots, \mu_n \in M(G)$ and $\varepsilon > 0$ such that

$$\bigcap_{i=1}^{n} \{ \chi \colon |\hat{\mu}_{i}(\chi) - \hat{\mu}_{i}(\bar{\gamma}_{0}h)| < \varepsilon \} \subseteq W.$$

For $\mu \in M(G)$ put $\tilde{\mu}$ equal to the measure such that $(\tilde{\mu})^{\hat{}} = \bar{\mu}$ on Γ and let δ_0 be the identity measure in M(G). Define auxiliary measures by:

$$v_i = \mu_i - \hat{\mu}_i(\bar{\gamma}_0 h) \delta_0$$
 and $\sigma_i = v_i * \tilde{v}_i; \quad i = 1, 2, ..., n.$

Put $\sigma = \sum_{i=1}^{n} \sigma_i$; now, on the one hand, $\hat{\sigma}(h\bar{\gamma}_0) = 0$, while, on the other,

$$(h\sigma)^{\hat{\gamma}_0} = \hat{\sigma}(h\bar{\gamma}_0) \in \hat{\sigma}(\Gamma \setminus E)^-$$

by hypothesis.

We gather from all this that there is a net $(\gamma_{\alpha}) \subset \Gamma \setminus E$ such that $\hat{\sigma}(\gamma_{\alpha}) \to 0$. Now given $\varepsilon > 0$ choose α' such that for all $\alpha \geq \alpha'$

$$|\hat{\sigma}(\gamma_{\alpha})| < \varepsilon^{2};$$

consequently for all $\alpha \ge \alpha'$

$$\sum_{i=1}^n |\hat{\mu}_i(\gamma_{\alpha}) - \hat{\mu}_i(\bar{\gamma}_0 h)|^2 < \varepsilon^2.$$

Thus $|\hat{\mu}_i(\gamma_{\alpha}) - \hat{\mu}_i(\bar{\gamma}_0 h)| < \varepsilon$ for $\alpha \ge \alpha'$, and so $\gamma_{\alpha} \in W$ for all $\alpha \ge \alpha'$.

We have now proved that if $\alpha \ge \alpha'$, $\gamma_0 \gamma_\alpha \in V \cap (\Gamma \setminus \gamma_0 E)$; thus $h \in (\Gamma \setminus \gamma_0 E)^$ and this means that (1) implies (2).

Let G be an infinite compact abelian group; a subset $R \subset \Gamma$ is called a *Rajchman* set if whenever $\mu \in M(G)$ and $\operatorname{supp} \mu \subset R$ then $\mu \in M_0(G)$; here $\hat{}$ is the Fourier— Stieltjes transformation. Examples of Rajchman sets can be found in [7]; all the sets considered in [4, 5] are Rajchman sets.

Example I. If R is a Rajchman set then R satisfies (2) with respect to every idempotent $h \in \overline{\Gamma} \setminus \Gamma$; we point out that this fact is more or less implicit in [3]. To be explicit we need to reproduce some details from [3].

To confirm that R satisfies (2) with respect to every $h=h^2\in\overline{\Gamma}\setminus\Gamma$ we fix an $h_0^2=h_0\in\overline{\Gamma}\setminus\Gamma$ and suppose by way of contradiction that there is a $\gamma_0\in\Gamma$ such that $h_0\notin(\Gamma\setminus\gamma_0 R)^-$. Thus, there is an open set V_0 with $h_0\in V_0$ such that $V_0\cap(\Gamma\setminus\gamma_0 R)$ is empty and $1\notin V_0$. For the remainder of the proof, $\overline{}$ is complex conjugation. By the definition of the Gelfand topology on \hat{S} there exist measures $\mu_1, ..., \mu_n\in$

 $(G) \text{ and } \varepsilon > 0 \text{ so that } \bigcap_{i=1}^{n} \{\chi : |\hat{\mu}_i(\chi) - \hat{\mu}_i(h_0)| < \varepsilon \} \text{ is open and contained in } V_0.$ Put $A_i = \{z \in \mathbb{C} : |z - \hat{\mu}_i(h_0)| < \varepsilon \}$ and consider the open set $\bigcap_{i=1}^{n} \{(h_0 \mu_i)^2\}^{-1}(A);$ since $h_0 = h_0^2$ it follows that $h_0 \in \bigcap_{i=1}^{n} \{(h_0 \mu_i)^2\}^{-1}(A_i)\}$ and therefore

$$W_1 = \left\{ \bigcap_{i=1}^n \hat{\mu}_i^{-1}(A_i) \right\} \cap \left\{ \bigcap_{i=1}^n (h_0 \mu_i)^{-1}(A_i) \right\}$$

is an open set about h_0 . Put $W_1^* = \{\chi : \chi \in \overline{W}_1\}$ and define $V_1 = W_1 \cap W_1^*$; since $h_0 = \overline{h}_0$ we see that $V_1 \subset V_0$ and V_1 is an open set about h_0 . Choose $\beta_1 \in \Gamma$ such that $\beta_1, \beta_1^{-1} \in V_1$. Next define $B_1 = \{\beta_1, \beta_1^{-1}, 1\}$; let

$$W_2 = \{ \chi: \chi \in \{(\beta \mu_i)^*\}^{-1}(A_i) \text{ for all } i \text{ and all } \beta \in B_1 \} \cap \\ \cap \{ \chi: \chi \in \{(\beta h_0 \mu_i)^*\}^{-1}(A_i) \text{ for all } i \text{ and all } \beta \in B_1 \}$$

and $V_2 = W_2 \cap W_2^*$; evidently $V_2 \subset V_1$ and $h_0 \in V_2$. Since V_2 is open and B_1 is finite we select $\beta_2 \in \Gamma$ such that $\beta_2 \in V_2 \setminus B_1$.

Put
$$B_2 = \{\beta = \prod_{i=1}^2 \beta_i^{\delta_i}: \delta_i \in \{-1, 0, 1\}\} \cup \{1\};$$
 let
 $W_3 = \{\chi: \chi \in \{(\beta \mu_i)^*\}^{-1}(A_i) \text{ for all } i \text{ and all } \beta \in B_2\} \cap$
 $\cap \{\chi: \chi \in \{(\beta h_0 \mu_i)^*\}^{-1}(A_i) \text{ for all } i \text{ and all } \beta \in \beta_2\}$

and $V_3 = W_3 \cap W_3^*$; evidently $V_3 \subset V_2$ and $h_0 \in V_3$. Since V_3 is open and B_2 is finite we select $\beta_3 \in \Gamma$ such that $\beta_3 \in V_3 \setminus B_2$. Continuing in this manner we inductively construct a sequence of distinct characters $\langle \beta_j \rangle_1^\infty$ such that $\beta = \prod_{i=1}^j \beta_i^{\delta_i}$, $\delta_i \in \{-1, 0, 1\}$ and $\delta_i \neq 0$ for some *i*, then $\beta \in V_0$; since $\beta \in V_0 \cap \Gamma$, this means that $\beta \gamma_0^{-1} \in R$ for all β of the form $\beta = \prod_{i=1}^j \beta_i^{\delta_i}$, $\delta_i \in \{-1, 0, 1\}$. As shown in [3] (see Theorem 2.8 of [6, p. 21]) there is a dissociate sequence $\langle \omega_p \rangle_1^\infty$ with the property that if ω is of the form $\omega = \prod_{i=1}^n \omega_i^{\delta_i}$, $\delta_i \in \{-1, 0, 1\}$, then ω is also of the form $\omega = \prod_{i=1}^n \beta_i^{m_i}$, $m_j \in \{-1, 0, 1\}$.

Since $\langle \omega_p \rangle_1^{\infty}$ is dissociate we may now construct a Riesz product $\lambda \in M(G)$ such that supp $\hat{\lambda} \subset R$ and $\lambda \notin M_0(G)$; this contradicts the fact that R is a Rajchman set and so our discussion is complete.

The above example is not the only one we know: Let **R** denote the additive group of real numbers and let $\varphi: \Gamma \to \mathbf{R}$ be a nontrivial homomorphism. A measure $\mu \in M(G)$ is said to vanish at infinity in the direction of φ if whenever $\varphi(\gamma_j) \to +\infty$ then $\hat{\mu}(\gamma_j) \to 0$; denote the set of all measures vanishing at infinity in the direction of φ by $M_{\varphi}(G)$. A subset $R \subset \Gamma$ is said to be φ -Rajchman if for $\mu \in M(G)$ and supp $\hat{\mu} \subset R \Rightarrow \mu \in M_{\varphi}(G)$. Then it can be shown that if E is φ -Rajchman, E satisfies (2) with respect to various h's. Notice that in general there are φ -Rajchman sets which are not Rajchman sets; let $\Gamma = \{m + n\sqrt{2} : m, n \in \mathbb{Z}\}$ and let φ be the identity homomorphism of Γ into **R**. Then the set $\{x \in \Gamma : x \ge 0\}$ is φ -Rajchman but not Rajchman.

Although φ -Rajchman sets and Rajchman sets are the same for the additive group of integers Z, there do exist non-Rajchman subsets of Z which determine the range of the transform of certain parts of a measure. For the circle group T put $\mu = \mu_d + \mu_c$ where $\mu \in M(T)$, μ_d is discrete and μ_c continuous.

Let $\beta(\mathbf{Z})$ denote the Bohr compactification of \mathbf{Z} and for $E \subset \mathbf{Z}$ let \overline{E} be the closure of E in $\beta(\mathbf{Z})$. Our result is then:

Proposition. If
$$E \subset \mathbb{Z}$$
 and $\mathbb{Z} \setminus \overline{E}$ is dense in $\beta(\mathbb{Z})$ then for $\mu \in M(\mathbb{T})$
 $\hat{\mu}_d(\mathbb{Z}) \subset \hat{\mu}(\mathbb{Z} \setminus E)^-$.

Proof. For $\mu \in M(\mathbf{T})$ write $\mu = \mu_d + \mu_c$; fix $0 < \varepsilon < 1$ and $m_0 \in \mathbb{Z} \setminus \overline{E}$. We see from [2] that there is an infinite sequence $\langle m_i \rangle_1^\infty$ of distinct integers satisfying

(2.1)
$$|\hat{\mu}_c(m_0 + m_n - m_j)| < \frac{\varepsilon}{2} \quad \text{for} \quad j < n.$$

Put $H = \langle m_i \rangle_1^{\infty}$ and consider \overline{H} where the closure is of course taken in $\beta(\mathbb{Z})$. Since card $H = \infty$, there is an $x \notin \mathbb{Z}$ and a net $m_a \in H$, $\alpha \in \Lambda$ such that $m_a \to x \in \beta(\mathbb{Z})$.

Inasmuch as $m_0 \in \mathbb{Z} \setminus \overline{E}$ it follows that there is an $\alpha_0 \in \Lambda$ such that for all α and β greater than α_0

$$(2.2) m_0 + m_a - m_B \notin E$$

and

(2.3)
$$|\hat{\mu}_d(m_0) - \hat{\mu}_d(m_0 + m_\alpha - m_\beta)| < \frac{\varepsilon}{2}.$$

Notice that (2.3) is valid since $\hat{\mu}_d$ is a continuous function on $\beta(\mathbb{Z})$. As a consequence of (2.2) and (2.3) there is a $k \ge 1$ and an r > k such that $m_0 + m_r - m_k \notin E$ and $|\hat{\mu}_d(m_0) - \hat{\mu}_d(m_0 + m_r - m_k)| < \frac{\varepsilon}{2}$. Since

$$|\hat{\mu}_d(m_0) - \hat{\mu}(m_0 + m_r - m_k)| \leq |\hat{\mu}_d(m_0) - \hat{\mu}_d(m_0 + m_r - m_k)| + |\hat{\mu}_c(m_0 + m_r - m_k)|,$$

and r > k, we gather from (2.1) that

$$|\hat{\mu}_d(m_0) - \hat{\mu}(m_0 + m_r - m_k)| \leq \varepsilon.$$

Thus $\hat{\mu}_d(\mathbb{Z}\setminus\overline{E})\subset\hat{\mu}(\mathbb{Z}\setminus E)^-$ and since $\mathbb{Z}\setminus\overline{E}$ is dense in $\beta(\mathbb{Z})$ we obtain $\hat{\mu}_d(\mathbb{Z})\subset\subset\hat{\mu}(\mathbb{Z}\setminus E)^-$. The proof is complete.

Example II. Let N be the natural numbers and for each $n \in \mathbb{N}$ put $E_n = \{m : m = \sum_{i=1}^{n} \delta_i 5^i, \delta_i \in \{-1, 0, 1\}\};\$ set $E = \bigcup_{1}^{\infty} E_n$. Let $\mathbf{D} = \{e^{2\pi i k/5^j} : k \in \mathbb{Z}, j \in \mathbb{N}\}$

and consider E as a subset of $\hat{\mathbf{D}}$ where \mathbf{D} is given the discrete topology. Now the integer accumulation points of E in $\hat{\mathbf{D}}$ belong to E so it follows that E is a closed subset of \mathbf{Z} in the relative tolopogy of $\beta(\mathbf{Z})$. Notice that E has natural density zero so by Wiener's Theorem it follows that if supp $\hat{\varrho} \subset E$ then ϱ is continuous and this in turn implies that $\mathbf{Z} \setminus E = \mathbf{Z} \setminus \overline{E}$ is dense in $\beta(\mathbf{Z})$. Clearly E is not a Rajchman set since it contains the spectrum of an infinite Riesz product.

Remark. An easy application of Theorem 1 and Corollary 2 of [5, p. 2] establishes the following assertion: Let $E \subset \Gamma$ satisfy (2) with respect to some $h=h^2 \in \bar{\Gamma} \setminus \Gamma$ and let S be an infinite Sidon subset of Γ ; then $E \cup S$ satisfies (2) with respect to h.

The authors wish to thank Professor Colin Graham of Northwestern University for helpful correspondence.

References

- I. GLICKSBERG, Weakly almost periodic functions and generators of invariant filters, Duke Math. J., 42 (1975), 409-422.
- [2] I. GLICKSBERG and I. WIK, The range of Fourier-Stieltjes transforms of parts of measures. Conference on Harmonic Analysis Lecture Notes in Mathematics, 266, 73-77.
- [3] B. HOST et F. PARREAU, Sur les mesures dont les transformées de Fourier-Stieltjes ne tendent pas vers 0 à l'infini, Collog. Math., 41 (1979), 297-301.
- [4] K. IZUCHI, Sidon sets and Fourier-Stieltjes transforms of some prime L-ideals, Math. Scand., 40 (1977), 46-50.
- [5] K. IZUCHI, Cluster points of the characters in the maximal ideal space of the measure algebra, *Rep. Fac. Engrg.*, Kanagawa Univ., 16 (1978), 1-3.
- [6] J. M. LÓPEZ and K. A. Ross, Sidon Sets, Marcel Dekker, Inc. (New York, 1975).
- [7] L. PIGNO, Fourier-Stieltjes transforms which vanish at infinity off certain sets, *Glasgow Math. J.*, 19 (1978), 49-56.
- [8] J. L. TAYLOR, Measure Algebras, CBMS Regional Conference, No. 16, 1973.

KANSAS STATE UNIVERSITY MANHATTAN, KANSAS, U.S.A.