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On random censorship from the right 

SÁNDOR CSÖRGŐ and LAJOS HORVÁTH 

1 . Introduction. B U R K E et al. [ 4 ] introduced the following censorship model. 
Let X be a real random variable with distribution function F ( / ) = p r {X^t}. For 
a fixed integer A:Si let A1, Ak be pairwise disjoint random events, and define 
the sub-distribution function F ' ( i ) = p r {X<t, A1}, i = l , ..., k. We are interested 
in the joint behaviour of the pairs (X , A1) as expressed by 

S'(r) = exp(- / ! ' ( / ) ) , i = l, ...,fc, 

where A1 is the i-th hazard function I J — j I 

¿ ' (0 = f(l-F(s))-idFHs). 
— oo 

So let {X„, Al, ..., Ak} be a sequence of independent replicas of {X, A1, ..., Ak}, 
/1=1,2, .... We assume throughout that the functions F, F1, ..., Fk are continuous. 
Define the product-limit estimates 

5 , 1 ( 0 = 1 - / 2 ( 0 = n ( T W Í ' i f ^ m a x ^ , . . . , ^ ) sjsn: Xj^t}\tl— Kj+l ) 
0, otherwise, 

i=l, ...,k, where <5J is the indicator of A), and Rj is the rank of ( X j , 1 —<5V) in the 
lexicographic ordering of the sequence (X l t 1—<5j), ..., , 1 —S'„). Finally, intro-
duce the /-th product-limit process 

Zi(t) = n1/2(Sl(t) —Sfrj), 

and, for x = ( x l 5 ..., xk), the corresponding vector process 

Z„(x) = (Z„1(x1), ...,Z„Hxk)). 
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However general is this model, the most important special cases are a) and b) 
below. By working in this generality we merely would like to emphasize the fact that 
the asymptotic theory of random censorship on the right requires only the above 
structure. When dealing with random censorship on the left the basic ingredients S' 
and §'„ should be accordingly modified. This is done in [9]. 

a) Let X°, X°,... be a sequence of independent random variables with common 
continuous distribution function F°. These are censored on the right by Y1,Y2, ••• 
a sequence of independent random variables, independent of the X° sequence, with 
common continuous distribution function H. One can only observe the sequence 
(Z„=min Y„), Sn), where Sn=Sl is the indicator of An=Al={Xn^X°}. In this 

t 
case k=2,1 — F = ( l — f ° ) ( l —H), F1{t)= f (1 -H)dF°, thus S1(t) = S(t) = 

= 1—F°(t), and §*=§„ reduces to the usual product-limit estimate. This is the 
KAPLAN—MEIER [15 ] model as defined by EFRON [12]. It was investigated by BRESLOW 

and CROWLEY [3], MEIER [19] , HALL and WELLNER [14], BURKE et al. [4] and others. 
The useful special case when 1 — H—(l — F°Y, J3>0, was considered by KOZIOL 

and GREEN [18 ] , and their model was investigated by CSÖRGŐ and HORVÁTH [7] and 
KOZIOL [ 1 7 ] . 

b) For k>\ consider k independent sequences Y[,Y2,... {i=\, ...,k) of 
independent random variables with common continuous distribution function H ' , 
and let Ar„=min (Yj, ..., Y*). One observes the sequences (X„,ö'n),i=\, ...,k, 
where ¿'n is the indicator of the event A'n = {Xn—Y'n}. This is the competing risks 
model (giving back the above Kaplan—Meier model for k=2) considered by many 
authors, notably, from the present viewpoint, by Y A N G [ 2 2 ] and BURKE et al. [4 ] . 

Here, as BERMAN [2] proved, the above Sl reduces to Si(t) = l—Hi(t). 
On the basis of the Efron-transformed variant of the Breslow—Crowley weak 

convergence theorem, GILLESPIE and FISHER [13 ] constructed asymptotic confidence 
bands for the survival curve 1 — F° in the Kaplan—Meier model. However, their 
Monte Carlo study has shown that sample size n=200 is not large enough to apply 
the asymptotic bands with high precision. Their results were a strong motivation 
for us to work out a strong approximation theory in [4] for the above general Z„ 
and related processes. A variant of one of the main approximation theorems is for-
mulated in the next section. This result enabled us to build the approximation rates 
into the construction of the Gillespie—Fisher type bands, i.e., we could construct 
"exact" confidence bands ([4]) for the general survival functions S* under the '7-th 
risk A1". We also indicated that these constructions should give reasonable bands 
for much less sample sizes than the asymptotic ones of Gillespie and Fisher. 

H A L L and WELLNER [14 ] utilized Doob's transformation of the Brownian motion 
into the Brownian bridge, and hence proposed the corresponding transformation 
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of the product-limit process in the Kaplan—Meier model. The resulting process 
converges weakly to a transformed Brownian bridge. Although Doob's transfor-
mation belongs to the statistical folklore nowadays, its use by Hall and Wellner in 
the present context is a remarkable step in the asymptotic theory of censored empiri-
cal processes. The resulting asymptotic confidence bands constructed by H A L L and 
WELLNER [14 ] enjoy many advantages over those of GILLESPIE and FISHER [13 ] as 
they explain it in detail. For example, they reduce in the uncensored case to the 
classical Kolmogorov bands. Following H A L L and WELLNER [14 ] , KOZIOL [ 1 7 ] 

considered Kolmogorov, Kuiper and Cramér—von Mises statistics corresponding 
to the transformed product-limit process in the Kaplan—Meier model for testing 
goodness of fit (cf. Section 3 here). 

Following AALEN [1], N A I R [20] proposed another clever transformation of the 
product-limit process in the Kaplan—Meier model. It is a modification of Efron's 
transformation, where the limit process is a scale-changed Wiener process. The re-
scaling depends on censoring, but the Kolmogorov—Smirnov, Kuiper and Cramér— 
von Mises functionals of this process are distribution-free. 

The aim of the present note is to develop strong approximation theorems cor-
responding to the transformations of Hall and Wellner and of Aalen and Nair in 
the general setting of the first paragraph of this section. This is done in Sections 3 
and 4, respectively, after some preliminaries from Burke et al. Convergence rates are 
deduced from these theorems for the above mentioned statistics in Sections 3 and 4. 
Using the approximation rates, we show in Section 5 a possibility for making exact 
the asymptotic bands of Hall and Wellner. This is done again in the general setting. 
Comulative hazard processes are investigated in a similar manner by CSÖRGŐ and 
HORVÁTH [8] . 

2. Preliminaries. Let 7V=inf {/ : F(/) = 1} and define 

If d denotes the inverse of d\ then the vector process with components ¿'„(a'ixi)), 

t 
f (1 -F(s))-*dF>(s), t^TF 

(2.1) A O - T; 
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(0, is the one which was called by BURKE et al. [4] as the Efron transform of 
Z„. All of our approximations will take place on the infinite cube ( — T J f where 
Tn is a sequence of numbers satisfying first the condition: 

(2.2) Tn < Tr and 1 - F(Tn) £ (2en - 1 log n)1'2 

where, throughout this note, e is some arbitrarily fixed positive number. Let 

(2.3) bn = (l-F(TJ)~\ 

and introduce the following (rather messy) rate-sequence 

(2.4) r(n) - v(n) + jn-H*{v(n)+3(e/2yl* b2(log n)1'2}2 

where 

»00 = [bl{(2k+ l)5A1+(2+(5(2k+ l)/AJ)e +((2/3)e+e2)1'2}+6® 4 e ] n l o g n + 

+ &2(12e)1/2n~1/3(log n)1/2 + bl(2k+\) {Ax + ( e / ^ J e 1 ' 2 n " ^ ^ l o g n)3'2 + b„ In'1'2. 
For x=(xt, ...,xk) let ||x|| —max (l^il,. . . , denote the maximum norm. In 
[4] we constructed a special probability space (Q, sá, P) carrying k sequences {Wn} 
of Wiener processes such that for the vector process 

we have 

T h e o 
r em A (BURKE, CSÖRGŐ, HORVÁTH [4] ) . If Tn satisfies condition (2.2), 

then 
P { sup \\Zn(x)-fVl(x)\\>r(n)bn}^kQn->, 

where g=10A(2A: + l) + 100+16Z). 

The constants Alt A2 and A3 in r(n) (A2 also in Q) are the C, K, / constants of 
Theorem 3 of KOMLÓS, MAJOR and TUSNÁDY [16] (quoted as Theorem 2. A in [4]), 
respectively. According to TUSNÁDY [21] (cf. also M. CSÖRGŐ and P. RÉVÉSZ [5]) 
A1,A2 and A3 can respectively be taken as 100, 10 and 1/50. Constant D (in Q) is 
the absolute constant of Lemma 2 of DVORETZKY, KIEFER and WOLFOWITZ [11]. 
The smallest available value for D known to us at present is 2{1 +32/(67t)1/a+ 
+8/31 /2+21 /24exp(71/18)}=s611 due to DEVROYE and WISE [10]. But in practice 
one can probably use without harm the well-known conjecture (which was empiri-
cally verified in a number of situations) that D is 2. 

We should also point out here that originally (Theorem 5.6 of [4]) we had the 
factor rE(n)= max^ exp ( / f ( r „ ) ) of kr(n) instead of b„. But it is not hard to see that 

rE(n)^b„ and the above form of Theorem A is more fortunate since the whole rate-
sequence r(ri)b„ depends on the censoring only through b„ of (2.3). 



On random censorship from the right 27 

3. Approximation theorems for the Hall—Wellner transformation. Goodness of fit. 
Introduce (with d' of (2.1)) 

Kl{t) = d'(0/(I+d'(0), ^ i < i = l,..., k. 

K\t) is a sub-distribution function in general for each i. It is a distribution function 
(as HALL and WELLNER [14] point out) in the Kaplan—Meiner model (k=2). In 
the competing risks model Kl is a distribution function for those i for which 
TF=THi^mm (THl, ..., THu), where TH, is defined analogously to TF. The empirical 
counterpart of d\t) was considered by BURKE et al. [4] as 

di(i)= j\l-FH(s))-*dF'M i = l,..;k, 

where F„ is the (left continuous) empirical distribution function of Xlt ..., Xn and F'n 

is the empirical sub-distribution function defined as 

Fl
n(t) — n _ 1 # {m: 1 S m ^ n, Xm < t and Al

m occurs}, i = 1, ..., k. 

Independently of us but earlier, HALL and WELLNER [14] have also considered dl
n 

(in the Kaplan—Meier model) but pointed out that it fails to satisfy their reduction 
property. Instead they proposed the following modification of it: 

4 ( 0 = f\l-Fn(s))-1(l-Fn+(s))-idFi
n(s)=n £ {n-j)-\n-j+\)^d) 

U-.x^t) 

where F+ is the right-continuous version of Fn. Although we could have worked 
with dl

n, we adopted this modification for the sake of accordance. 
Lemma 6.2 of [4] estimates the distance of dj, and d'. Using Lemma 4.1 of that 

paper, it is trivial that if T„ satisfies condition (2.2), then 

p r { sup |d i ( i ) -c i (OI ^ 8&»n"1} S 2 0 n - . 

Let 
* , ! ( 0 = 4 ( 0 / ( 1 + 4 ( 0 ) , i = 1, . . . , k. 

Evidently 
| A 2 ( 0 - * ' ( 0 l s | c i ( 0 - d ' ( 0 l , 

and hence, putting together Lemma 6.2 of [4] and the last probability inequality, we 
obtain 

L e m m a 3.1. If T„ satisfies (2.2), then for each i= 1, k 

pr{ sup ^ ^ ( n ) } ^ 8ZJn-£, 

where r1(«) = 12(e/2)1/2/j-1/2^(log «)1 /2+86n
3rr l . 
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Consider now 

¿1(0 = (1 -Ki(0) exp(A'(t))ZXO, / = 1, .... fe, 

and let Bi
a(t)=(\—t)Wi

n{tl{\.—t)) be the sequence of Brownian bridges supplied 
by {fV,j} of Theorem A. For . . . ,x k) let 

¿n(x) = (¿l(Xl), ..., Zk(xk)) 
and 

B^x) = (BKK^x,)), ...,Bk(Kk(xk))). 

T h e o r e m 3.2. If T„ satisfies (2.2), then 

P{ sup \\tn(x)-BK
n(x)\\ > ^ ( n ) } ^ kRin-\ 

where q1(n) = r(n)b„+r2(n) with r2(n)=2eU2r1(n) ¿„(log n)l/\ and R1 = Q + 8D+2 = 
= 10A2(2k+1) +102 +24Z>. 

P r o o f . It is enough to show that 

P{sup \ i \ , { t ) > ft(II)} ^ 

for each / = 1, ..., /c, where unspecified sup means sup . The last probability 

is not greater than 

i>{sup (1 - K & ) ) | z i ( 0 - ^ ( d ( 0 ) | >r (B) &„}+ 

+ Jp{sup | # ( 0 - * ' « l K ( d ' ( 0 ) | > r2(n)} == 

S (Q + 8D) n ~£ + P { sup ¡1^1,(^(0)1 > 2e1/2b„(log n)1'2} 

S ( e + 8 Z ) ) « - c + 2 P { F U ^ ) / f c J > 2e1/2(log n)1/2} 

by Theorem A, Lemma 3.1, and the fact that b l^d ' (T n ) . The last probability is 
less than or equal to n~e, and hence the theorem. 

The components ¿'n of our vector (-vector) process are in fact weighted proces-
ses, the weight being exp (/4'(0). It is then natural to replace this weight with an 
empirical counterpart of it and investigate the convergence of the resulting "twice 
estimated" product-limit process. In principle there are two empirical candidates for 
doing this. One is the exponential empirical hazard function exp (/41,(0) (cf.[4]) 
and the other is the product limit estimate itself. The latter being more natural here, 
consider 

z j ( 0 = (l - ^ ( 0 ) z i ( 0 / ^ ( 0 = (1 - ^ ( 0 ) ( e x p ( - ^ ( O ) - ^ ( O V ^ ( O 
/=1 , . . . ,k , and the corresponding vector process 

Z„ (x )=(Z i (x 1 ) , . . . ,Z i (x k ) ) 
for ...,xk). 
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For T„ we introduce a slightly stronger regularity condition instead of (2.2): 

(3.1) r „ < 7 V and 1 — F(Fn) & 2n~ll2r3(n), 
where 

r3(n) = r(n) + 3(e/2)1/262(logn)1/2. 

By definition (2.4) of r(n) it can be shown that a rough sufficient condition for con-
dition (3.1) to be satisfied is that ( T „ / T F so slowly that) 

(3.2) bn = (1 - F i ^ ) ) - 1 == Mt(n\log n)1'9 

with some constant Mt depending only on E, which can be computed from r3(n). 
Just as Lemma 5.1 of [4] was deduced form an approximation theorem, the 

first statement of the next lemma easily results from Theorem 5.5 of [4] which is the 
original Breslow—Crowley-type variant of the Efron-type theorem cited here. When 
deducing it, one also should apply the already mentioned fact that exp (—/l ' (7 ' n ) )s 
s i — F(Tn). The second statement of the lemma follows from the first just as Lemma 
4.1 of [4] followed from the Dvoretzky—Kiefer—Wolfowitz bound. 

L e m m a 3.3. If T„ satisfies (3.1), then 

pr{ sup |Zj(OI > r3(n)} == ( g + 6) n - £ 

and 

p r j sup ^ J — > . 2 — ( g + 6)n-£ . P \-„J*TnSl(t) e x p ( - y t ' C r j ) / 

T h e o r e m 3.4. If T„ satisfies (2.2), then 

sup \\Zn(x)-BK(x)\\>q2(n)} ^ kR2n~\ 

where qa(n) = 9 1 (n)+2«- 1 / 2 6 2 ( r 3 («)) 2 and R2 = R^IQ + M = 3 0 + 14 + 8/) = 
=3QA2(2k+\)+3l4+56D. 

P r o o f . 

|zi(0-Bi(*'(0)| ^ -B'm(K\t))\+|z;(0 - 2 1 ( 0 1 ^ 

^ | 2 ; ( f ) - B'n(K'(t))\ + n~1/2\Z'n ( 0 l 2 / { 3 ( 0 exp ( - / l ' (0)}. 

- and the theorem follows from Theorem 3.2 and Lemma 3.3. 
As to the order of our rate sequences q1(n) and q2(n), we note that since 

r(n) = 0 (max {fc2n~1/3(log n)3'\ b^n'1'2 log n}), 
we have 

qi{n) = 0 (max {b»n-1/3(log n)3/\ b\ji~1/2log n}), 

q2(n) = 0 (max { ¿ ^ " ^ ( l o g n)3/2, b«n~112 log n}). 
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Now we formulate the corresponding consequences for approximation on the 
fixed cube ( — T ] k with T<TF. These consequences follow from Theorems 3.2 
and 3.4 in the same way as Corollary 5.7 of [4] did. Note that qx(n), q2(n) and r3(/i) 
are understood from now on with b„ replaced in them by the constant 

b = {l-F(T))~\ 

C o r o l l a r y 3.5. If w/log n^2eb\ then 

P{ sup \\2n(x)-B*{x)\\ > 9 l (n)} S kRin-\ 

and if nll2/rs(n)^2b, then 

P { sup \\Zn{x)-BZ(x)\\>q2(n)}^kR2n-. 

The rough sufficient condition for the second statement here is (3.2) with b in 
place of bn. 

The joint weak convergence of the components of 2„ and Z„ follows from this 
corollary together with rate-of-convergence results. Namely, for many funct iona l i¡/ 
(cf. Corollary of KOMLÓS et al. [ 1 6 ] and Corollary 1 of CSÖRGŐ [6] ) on the space of 
functions defined on (— J]* we obtain 

(3.2) sup { № * ( • ) ) ^ y } \ = 0 ( n - * » ( l o B n r * ) , 
-ee<3*<«o 

where 2 and BK is a copy of B* since, if T (<TF) is fixed, then 

qM = 0(n~1/3(logn)3/2) = q2{n). 

For example, (3.2) holds for the Kolmogorov, Smirnov and Kuiper statistics consid-
ered by KOZIOL [17]. 

4. An approximation theorem for the Aalen—Nair transformation. Goodness of fit. 

Let T be a number such that the inequalities 

(4.1) T^TF, F'(T) =- 0, i = l, ...,fc, 

hold, and consider the processes 

2l
n{t) = 2\l(t)l{d\,(T)yi\ i = l,..., k, 

proposed by AALEN [ 1 ] and N A I R [20] in the Kaplan—Meier case (k=2) where 2l
n 

and d'„ are of Sections 2 and 3 respectively. Also, with Wj, of Theorem A, introduce 

(0 = Wiid'it) WiT))1'2, i = I,..., k, 

and for x=(xlt . . . ,x k ) set 

2n{x) = {2l(x,\ ..., 2l(xk% Wn(x) = {WW(Xl), wp(xk)). 
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We note that, / = 1 , ...,k, 

(4.2) {W?{t): - « < i s r } =B{W{di{t)!di(T))-. 

and this equality in distribution is in fact the main advantage of the Aalen—Nair 
transformation. Introduce the notation (in addition to those of the preceding sections) 

a = max 1 I F H T ) . isia/t 

T h e o r e m 4.1. If w/log w^max (2sb2, Sea2), then 

P { sup \\Zn(x)-Wn(x)\\ > <73(71)} ^ kR3n~\ 

where q3(n) = b(2a)1'2r(n) +12(2)1/2eb5a3'2n~1/2\ogn and R3 = Q + 9D+l = 
= lOA2(2k+l)+25D+№. 

P r o o f . 

sup \2\,(,t)-W?(t)\>q3(n)}^ 

sup (dtiT))-^ IZUO-WiWy > b(2ay'2 r(»)} + - » < I S T 
+P{ sup 1^1(^(0)1 > 2e1/2 b(log ny<2}+P{(d;(r) dUT))-1'2 > (2a2)1/2}+ 

+ P{\(di(T)Y'2-(di
n(T))ll2\ > 12(e^)1 '^4(a/2)1/2«-1/2(log n)1'2}. 

Since ^ ( r ) s F ^ ( T ) and by an obvious analogue of Lemma 4.1 of [4] 

provided that w/log ns8ea 2 , we obtain, using also Theorem A, that the first term of 
the above sum is not greater than (Q+D)n~e. We saw in the proof of Theorem 3.2 
that the second term is not greater than n~e. By (4.3) the third term is majorized by 
Dn~e. Using again (4.3), the fourth probability is majorized by 

Dn-'+PWi^-dWy > 12(e/2)1 /2i4n -1 /2(log n)1/2} == 7Dn~c , 

where we used Lemma 6.2 of [4] in the last step. This proves the theorem. 
By (4.2) the limit distributions of the Kolmogorov, Smirnov and Kuiper statis-

tics based on the processes 2l
n coincide with the distributions of the corresponding 

functional of {fF(j) : O S i S l } . These distributions are well known, one of them 
is tabulated in [7]. If ^(¿¡,) denotes any of these three statistics and ^/(W) denotes 
its distribution-free limiting random variable, then we have (3.2) for their distri-
bution functions by Theorem 4.1. 

Since the Aalen—Nair modified Efron transformation leads to asymptotically 
distribution-free statistics, this transformation is more advantageous than those of 
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Hall and Wellner when testing goodness of fit. However, the latter seems much better 
when constructing confidence bands. This is why we do not spell out the exact prob-
ability inequalities in the next section corresponding to the confidence bands aris-
ing from the transformation of Aalen and Nair. 

The two-sample processes, or, more generally, their vector-process generaliza-
tion (for the general competing risks model) can be similarly approximated as the 
one-sample processes in Theorems 3.2, 3.4 and 4.1. 

5. Conficence bands. If G is a continuous distribution function and G„ is the n-
stage empirical distribution function of a sample corresponding to G, then it follows 
from Theorem 3 of KOMLÓS et al. (1975) that for any A, E > 0 we have 

-Aan-5 + M(A -(At + (s/A3))n-V* log n) s 

S pr {G„(/)-A/n1 /2 ^ G(t) S G„(t) + Ajn1/2, -oo < t < 

^ M(A+(A1+(elA3)) n ~1/2 log n) - M 2 n -
where 

MO0 = p r { s u p 
0SSS1 

As we have already noted, Alt A2 and A3 can be taken by TUSNADY [21] as 100, 10 
and 1/50, respectively. (It would be interesting to search for smaller A1, A2 and lar-
ger A3 by Monte Carlo through the above inequalities.) By Remark 1 of [6] and the 
fact that sup |5(G0>))| = sup |f i( i) | , the lower half of the above inequality 

— oo<y<oo O^S^l 
remains valid for discontinuous G as well. 

For 0 < a < l set 
Ma(y) = pr { sup 15(5)1 

OSSgfl 

The analogues of the above inequalities for the general right censorship model are 
the following consequences of Corollary 3.5. 

C o r o l l a r y 5.1. Let T<TF. If «/log nS2efc2, thenforany ¿ > 0 and i= 1, ..., k 
we have 

-Rxn-' + Mv^ik-qAn))^ 

pr 
1 + 

Slit) 
A S'(t) ^ 

1 — 
A 

n1/2(l-Kn(t)) 

t S T 

S MKlm(A + qi(n)) + Rin-c. 
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If «1/2//*3(n)s2è, then for any 0 and i—l,...,k we have 

R2n-<+MKI(T)(X-q2(n)) S p r | s < ( / ) - A n1/2(l-Kl(t)) ~ 
s'n(t) 

Si(t) r} ^ MK,m(X + q2(_n)) + R2n-'. 

. Since K'(T)^b2/(l +b2), i = 1,.. . , fc, we have 
= MK,(T)(X—qj(n)), i=l,...,k; 7 = 1 , 2 , thus MK,iT) can be replaced by either 
M (as noted by H A L L and W E L L N E R [ 1 4 ] ) , or MbtK1+bl) in the lower bounds. Since 
the choice of e is ours, the only unknown quantity in the lower bounds Rjn~'+ 
+Mb2/il+bt)(X—qj(n)), j= 1, 2, is b, and this can be estimated by (l —Fn(T))~1. 

If k = 2 and we are in the Kaplan—Meier model, then the symmetric bands of 
the second statement of the above corollary are those of [14] (without rates). Even if 
we compute with the conjecture D=2 but with A1 = lOO,A2=iO and A3= 1/50, 
a practical application of the lower halves of the above inequalities would demand 
rather astronomic sample sizes. Nevertheless, the above inequalities constitute the 
only information presently available for the precision of the bands in question, and 
if one can dream about future values of the A's as Ax, A1/10,^3^10, then this 
information is not disappointing at all. 
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