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Factor lattices by tolerances 

GÁBOR CZÉDLI 

1. Introduction 

Given a lattice L, a binary, reflexive, symmetric and compatible relation gQLXL 
is said to be a tolerance relation (or shortly tolerance) of L. Tolerances of lattices 
were firstly investigated by CHAJDA and ZELINKA [2]. Recently the importance of this 
concept has grown : a finite lattice is monotone functionally complete iff it has the 
trivial tolerances only (cf. KINDERMANN [ 4 ] ) . Moreover, KINDERMANN [ 4 ] has shown 
that the algebraic functions on a finite lattice are just the monotone functions pre-
serving its tolerances. 

Our aims in the present paper are to introduce the concept of Ljg (i.e., factor 
lattice by a tolerance g), to give a more handlable description of L/Q, and to give 
a structure-like theorem for lattices with the following consequence: every finite 
lattice is isomorphic to D/g for a suitable finite distributive lattice D. A characteri-
zation for tolerances of lattices will be presented in Theorem 2. 

Given a reflexive and symmetric relation g over a non-empty set A, a subset 
H of A is called a block of g if H2Qg but G2Qg for no HŒG^A. I.e., H is 
a block of g if it is maximal with respect to the property: for any a,b£H agb. 
Let the set of all blocks be denoted by c€q. On the other hand, certain subsets of 
P+ (A), the set of non-empty subsets of A, can be called quasi-partitions on A (cf. 
CHAJDA, NIEDERLE, and ZELINKA [ 1 ] ) . The connection of these two concepts (see 
[1] again) is the following. If g is a reflexive and symmetric relation then 
(ëe is a quasi-partition. For a quasi-partition ^ the relation q,€= {(a, b) : {a, b}QH 
for some H d ^ } is reflexive and symmetric. The map from the set of reflex-
ive and symmetric relations on A into the set of quasi-partitions on A, is bijective 
and its inverse map is . Moreover, a reflexive and symmetric relation g 
is an equivalence iff (€e is a partition. Therefore the following notion of factor latti-
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ces by tolerances seems to be a natural generalization of that of factor lattices by 
congruences. 

For definition, let Q be a tolerance of a lattice L. For blocks G and H of and 
°€{A, V} we define GoH to be the unique block of q for which {goh: g€G, 
H£H}QGCH. (The correctness of this definition will be shown!). NDW L/Q, the 
factor lattice by Q, is the set of all blocks of Q equipped with the above defined A 
and V operations. I.e., the notation L/Q is used instead of (6E and L\Q={L\Q\ A, V). 
It is worth mentioning that L/Q is the factor lattice in the usual sence whenever the 
tolerance e happens to be a congruence relation. 

2. L/Q is an algebra 

In this section the correctness of the definition of L/Q will be shown. Suppose 
G,H£LIQ. If GI£G, H^H ( i = 1, 2) then the compatibi l i ty of Q yields (G^HY, 
GA°H2)€Q. I.e., {goh: g£G, H£H}2QG. Now Z o r n L e m m a applies and {goh: 
g£G,h£H}QE f o r some E£L/Q. 

To show the uniqueness of E some preliminaries are needed. In what follows in 
this section let q be a fixed tolerance of a lattice L. 

L e m m a 1 (CHAJDA and ZELINKA [2]). For a,b£L, (a,b)£Q if and only if 
[a/\b, a\'bfQQ. 

L e m m a 2. The blocks of q are convex sublattices of L. 

P r o o f . Let C be a block of Q, and suppose a,b£C. For an arbitrary x£C 
agx and bgx, whence a\/bQx\fx—x. I.e., ( C U { A V B } ) 2 ^ G and the maximality 
of C yields a\/b{_C. Therefore C is a sublattice. If a, b£C, u£L, and a^u^b, 
then, for any x£C, a/\x£C and b\JxdC. Thus a/\xgb\Jx, and Lemma 1 yields 
XQC. Finally, U£C follows from the maximality of C again. Q. e. d. 

For a subset X of L let [X) and {X] denote the dual ideal and ideal generated 
by X, respectively. We write [a) instead of [{a}), and dually. 

L e m m a 3 (GRATZER [3]). For any convex sublattice C of L the equality C= 
= [ C ) D ( C ] holds. Moreover, if C is the intersection of a dual ideal D and an ideal I, 
then D=[C) and / = ( C ] , 

D e f i n i t i o n 1. For ideals 7X and /2 let / j A ^ ^ / i H ^ , I1S/I2={x: x^cyd 
for some c£ / l s ¿/6/2}=(/iU/2], and let mean / j g / 2 . On the other hand 
for dual ideals and I>2 let D1/\D2={x: x^cf\d for some c£Dlt d£D2}=[D1{JD2), 
D i V D ^ D i d D a , and let D t ^ D 2 mean D ^ D 2 . 

The motivation of this definition will be given in the remark to Lemma 4. 
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P r o p o s i t i o n 1. If (C] = (£>] for C,D£LIQ then C=D. 

P r o o f . First we show that U=([C)A[D))f)(C]eL/g. Suppose x1, x 2 €U. 
Then x^c'tAdi for c,-€[C) and <€[Z>) , /= 1,2. Let c€C and deD, and set 
ci=c'if\c, di = d'iAd 0 = 1, 2). Then, by Lemma 3, we have x^cAd^ c^C, and d^D 
for i = l , 2 . Set a=xl\/c1\Jx^\Jc2 and b=xlydiVx2\/d2. By (C]=(D] and 
Lemma 3 we obtain adC, b£D, and aybdCOD. Since c1Ac2£C and d^d^D, 
(c 1 Ac 2 , a\/b)£g and (i/IA<^> a\Jb)£g follow. The compatibility of g yields 
(¿WaA^iA^. a\/b)€g. But xx, x2€[c1/\d1Ac2Ad2, ayb], whence Lemma 1 im-
plies XaKf?- We have shown that U2QQ. i / 2 [ C ) f l ( C ] = C and the maximal-
l y of C yields U=C^Ljg. By making use of (C]=(X>] we obtain U^[D)f](D]=D 
similarly. Therefore U=D as well. Q. e. d. 

P r o p o s i t i o n 2. Suppose C,D,E^L\Q and {c\/d\ c£C, D£D}QE. Then 
[C)V[D)=[E). 

P r o o f . Let {cwd: c£C, d£D) be denoted by U. Since [J7)=[C)fl[Z>)= 
= [C)V[Z>), [ C ) V [ f i ) i [ £ ) follows easily. To show the required equality let [C)fl[£»)= 
=[C)\J[D)c:E be assumed. Then [£ ,)\([C)fl[X>))7i 0 , and one can easily see 
that £ \ ( [C) f l [Z) ) )7 i 0 as well. Therefore an element a can be chosen so that 
a£E and, e.g., a$[C) . Choosing elements c£C and d£D we can assume that 
a-^cyd. (Otherwise a could be replaced by (c\Jd)Aa, because c\/d, (c\/d)Aa£E and 
(cyd)Aa$ [C).) Evidently we have aAc$C. For an arbitrary x£C we can proceed as 
follows. From (x\/c)\Jd£UQE and a£E we obtain (x\Jc\Jd, a)£g. From x, c€C and 
Lemma 2 (x\/c , xAc) € Q follows. By meeting we obtain (x\/c, a Ax Ac) 6 g. From 
Lemma 1 (x, a Ac) £ g can be concluded. Consequently (CU {aVc})2ij£>, a contra-
diction. Q. e. d. 

Now Propositions 1 and 2 and their dual statements imply the correctness of 
the definition of L/g. 

3. L/g is a lattice 

Before proving what is stated in the title of this section, a more handlable de-
scription of L/Q is necessary. 

L e m m a 4. Suppose E=C\/D and F=CAD for C, D, E, Ft L/Q. Then we 
have [ C ) V [ £ > ) = [ £ ' ) and (C]VCD]Ï=(£]. The dual statement, and 
(C]A(L>]=(F], also holds. 

R e m a r k . If for X£{C, D, E, F}QL/g X is an interval [x l 5x2] , and E= 
=C\JD,F=CAD, then Lemma 4 yields cl\Jdl=<?x, c^Jd2 ^ e2, c1Ad1 ë f , and 
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c^Kd^—fî- (This is always the case when L is a finite lattice.) This remark can supply 
a motivation of Definition 1. 

P r o o f . Since {c\Jd: c€C, d£D}QE, we have (C]V(£>]=({cVd: cÇC, d£D}]Q 
Q(E], implying (C]V(£>]S(£]. The rest follows from Proposition 2 and the Duality 
Principle. 

This lemma enables us to strengthen Proposition 1 : 

C o r o l l a r y 1. For C, D£L/g we have [C)^[Z>) if and only if (C]^(D], 
Really, Proposition 1 follows from this corollary and Lemma 3. 

P r o o f . Suppose [C)^[D), then [C)V[Z>)=[Z>). Proposition 2 and the dual 
of Proposition 1 imply CV D—D. By making use of Lemma 4 we obtain ( C ] ë 
—(C]VCD]=(-D]- The Duality Principle yields the converse implication. Q. e. d. 

T h e o r e m 1. For any tolerance g of an arbitrary lattice L, L/g is a lattice 
again. 

P r o o f . By the Duality Principle it is enough to show that the V operation is 
commutative and associative, and one of the absorption laws holds. Since the join 
for dual ideals in Definition 1 is commutative and associative, the commutativity 
and associativity are straightforward consequences of Proposition 2 and the dual of 
Proposition 1. To show C V ( C A J D ) = C , for C,D£L/Q, by the dual of Proposition 
1 it is enough to check [ C V ( C A D ) ) = [ C ) . But, by Lemma 4, [C)I=[C)A[£>)== 
S [ C A £ > ) , a n d s o [ C V ( C A £ > ) ) = [ C ) A [ C A D ) = [ C ) . Q . e . d . 

The following theorem deals with the connection between tolerances and cor-
responding quasi-partitions on lattices. For a tolerance g on a lattice L, e—Ljg 
and P + (L) were defined in the Introduction. 

T h e o r e m 2. Given a lattice L, for any + (L) the following two conditions 
are equivalent. 

(a) <6=e6Q( = L\g) for some tolerance g on L. 
(b) H has the following six properties: 

(CI) The elements of are convex sublattices of L; 
( C 2 ) U C=L\ cçn 
( C 3 ) For any C,DeV, [ C ) = [£>) is equivalent to ( C ] = ( £ > ] ; 

(C4) For any C,Dthere exist E, F£such that [ C ) V [ D ) = [ E ) , 
(C]V(£>]ë(£], and [C)A[£>)S[F), ( C ] A ( £ ] = ( F ] ; 

(C5) Let XÇ.L, d£C£<# be arbitrary. If for any e£CC\(d] there exists Ce 

such that {e, x}QCe£<ë then and, dually, if for any f£Cf][d) there exists 
Cf such that {f,x}QCf£<8 then X € [ C ) ; 

(C6) If U is a convex sublattice of L and for any a, b£ U there exists D^é 
containing both a and b, then UQC for some CÇ^. 



Factor lattices by tolerances 39 

Moreover, if L is a finite lattice then (C5) and (C6) follow already from (CI), 
(C2), (C3), and (C4). 

P ro of. (a) implies (b). (CI), (C3) and (C4) is involved in Lemma 2, Corrollary 1, and 
Lemma 4, respectively. Zorn Lemma yields (C2) and (C6). Suppose x£L, d£C£^e= 
=L/g, and for any C D ( d ] there exists Ce£L/g such that {e, x}QCe. Consid-
ering the set X= {x}U (Cfl(<f]) we have X2Qg. Extending X to an element 
of L/g, say E, we obtain [ C ) = [ C n ( J ] ) i [ Z ) c [ £ ) , i.e. [C)S[F) . Corollary 1 yields 
(C] *s(E], Hence x£XQEQ(E]Q(C]. The proof of (C5) is completed by the Dual-
ity Principle. 

(b) implies (a). Suppose ^ satisfies the requirements of (b) and let g denote 
g%={(a,b)€L2: {a, b}QC for some The relation g is evidently symmetric, 
and it is reflexive by (C2). If C,D,E^€, U denotes the set {cVd: c£C, d£D), 
[C)V[/))=[£•), and (C]V(/) ]^(£] then UQE. Indeed, C/g[C)f l [ / ) )=[£) , UQ 
<^{C]\J(D]<^{E], and, by Lemma 3, E=[E)C\{E]. Now (C4) and the Duality 
Principle yield the compatibility of g. Therefore g is a tolerance on L, and 
has to be shown. Suppose C T h e n C2Qg. If (x,c)€g for any c€C then 
x € [ C ) f l ( C ] = C by (C5) and Lemma 3. Thus and Conversely, if 

then UQC for some C^ by (C6). But then both U and C belong to , 
whence U=C. has been shown. 

Finally, suppose L is a finite lattice, <#QP + (L) and # satisfies (CI), (C2), (C3), 
and (C4). Since any convex sublattice of L is an interval, (C6) evidently holds. Sup-
pose x£L, d£C=[a, b]£ré and for any e£Cf}(d] there exists Ce such that {e, 

Then {a,x}QCa=[u,v], Since u^a, we obtain [C)V[Cf l)=[C). Now 
(C4) together with (C3) yield (C]V(Ca]=(C], i.e., b\v=b. Hence x^v^b, which 
implies J C £ ( C ] . ( C 5 ) is satisfied by the Duality Principle. Q . e. d. 

Note that usually it is convenient to give e6Q instead of g. For example, let D be 
a five-element chain, say D—{0<1<2<3<4}, let L—D2\{(0,4)}, a sublattice 
of D\ and let <^e={[(0,0), (2,1)], [(3,0), (4, 1)], [(3,2), (4,4)], [(0,2), (2, 3)], 
[(1,2), (2,4)]}. Then Theorem 2 makes it easy to check that g is a tolerance and 
L/g is isomorphic to N5, the five-element non-modular lattice. 

Proposition 1 yields that for any tolerance g on a finite lattice L, L/g cannot 
have more element than L. That is why the following example can be of some inter-
est. Define g over Q, the set of rational numbers, by g={(x,y) : = 1}. Armed 
with the usual ordering Q turns into a lattice and g is a tolerance on it. By making 
use of the results of this section it is easy to check that the factor lattice Q/g is 
isomorphic to R, the set of real numbers with the usual ordering. (Indeed, the 
map Q/g—R, CV->-infC is an isomorphism.) 
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4. Lattices as tolerance-factors of distributive lattices 

The first example in the previous section indicates that forming factor lattices by 
tolerances preserves neither distributivity nor modularity. It is a naturally arising 
question which lattice identities are preserved. No non-trivial ones, as it will appear 
from the forthcoming theorem. Let T, I, H, S, P, and Pf denote the operators of 
taking factor lattices by tolerances, isomorphic lattices, homomorphic images, 
sublattices, direct products, and direct products of finite families, respectively. 
Note, that H VQYT V for any class V of lattices. Moreover, as it can be deduced 
from Theorem 2, IT V—ll'l V for any class V of lattices. (To keep the size of the 
paper limited, the proof, which is similar to that of Homomorphism Theorem, will 
be omitted.) Let 2 denote the two-element lattice. 

T h e o r e m 3. ISTSP {2} is the class of all lattices, while ITSP /{2} is the 
class of all finite lattices. 

P r o o f . Only one argument is needed to prove this theorem consisting of two 
statements, just we have to show that our embeddings are surjective for the case of 
finite lattices. We have to show that an arbitrary (finite, respectively) lattice L be-
longs to ISTSP{2} (to ITSP /{2}, resp.). First of all we can assume that L is 
complete, since the map L — I ( L ) , x»->-(x] is an (surjective for finite L) embedding 
of L into its ideal lattice, i.e., into a complete lattice. 

Claim 1. There are complete distributive lattices D0 and in P{2} and in-
jective 0-and 1-preserving maps (p0: L—D0, \ such that cp0 preserves arbi-
trary joins and <Px preserves arbitrary meets. If L is finite then D0, Z>1CP/{2}. 

P r o o f . Let A be P(L\{0}), the Boolean lattice of all subsets of JL\{0}, 
and define <px\L^-Dx as JC>-*(JC]\{0}. The completeness of L yields (A ydT)] = 
— fl ((*,]: y € r ) , whence the required properties of are trivial. Moreover, Dy 

is isomorphic to 2lL '_ 1 . Q. e. d. 
Now let D be D0+Dx, the ordinal sum of D0 and Dx. I.e., D is the disjoint union 

of D0 and £>! equipped with the following ordering: x^y iff x£D0 and y£Dlr 

or x,y£Di and x^y for some /€{0,1}. Note that D is complete and it can be 
embedded into the direct square of 2 | i | _ 1 , thus it is in ISP{2} (in ISP /{2} for 
finite L). With the help of functions in Claim 1 define VQP + (D) by 

&={C: 0 ^CQD, for any c,d£C there exists a£L such that 

{c, d}Q[acp0, acpi], and C is maximal with respect to this property}. 

Now, by making use of Theorem 2, we show that ^ ^ ^ q ( — D \ q ) for some tolerance 
Q on D. 
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To check (CI) suppose x, For an arbitrary z£C there exist a,b£L 
such that x, z£[a<p0, a<pj\ and y, [b<pa, bcpy]. Since <p0 preserves joins and <px 

is monotone, we obtain xVy, z£ [a(p0\/b(p0, aq»^ bcpy] Q [(a\Jb)(p0, (aViOPil- From the 
maximality of C we obtain xVyiC, showing that C is a sublattice. Let c, d£C, x£D 
and c<x<d. Suppose that, e.g., x£D0, and let z be an arbitrary element of C. 
Then c, z£[a<p0, acpj] for some a£L. But a<pi£D1 implies x<a(py, whence 
x, z£[a(p0, a(pj]. The maximality of C yields xdC, i.e. C is a convex sublattice. By 
the maximality of C, l(p0£C, so C is not empty. 

F r o m [0<p0, 0<pjU[l<p05 l < P i ] = i and Z o r n L e m m a (C2) fo l lows. 
Now suppose that, in contrary to (C3), [ C ) = [ £ ) and ( C ] ^ ( £ ] for C,E 

Then one of ( C ] \ ( £ ] and ( £ ] \ ( C ] , say (C]\(£"] is not empty. Fix an element d 
from C \ ( i i ] and let x be an arbitrary element of E. Since i/Ax6(C]A[is)=[C) = 
[E), Lemma 3 yields d,dAx£C and x,dAx£E. Hence CKp^dAx^d^acpy 
and bcpoSdAx^x^btyx for some a,b£L. By forming join we obtain (ayb)(p0— 
=a(p0Vbcp^dAx^dVxSa^Vb(p!^(a\/b)^. Thus x,d€[(aVb)<p0,(aVb)(pJ, con-
tradicting the maximality of E. The rest of (C3) follows from the Duality Principle. 

To show (C4), let C,E£<# and define X= {cVe: c£C, e£E}. For any two ele-
ments in X, say CiV^i and c2\le2 (cfcC, efcE), there exists an u£L such that 
c^ e £[14 q>Q, ucpy] for / = 1 , 2 . Indeed, c£[a(p0, acpj] and e^[b(p0, btpj] (/ = 1,2 
and a,b£L), and u can be defined as a\Jb. From Zorn Lemma we obtain the exis-
tence of an such that XQF. Since (C]V(£ ' ]=(Z]S(F] is evident, 
[C)V[£)=[F) has to be shown. If x€ [C)V[£)=[C) f l [£ ) then x ^ c and 
for c£C,e£E, Hence x^cVe^F implies x€[F), showing that [C)V[£')g[F). 
Suppose that [C)V[£)cz[F). Then F \ ( [ C ) n [ £ ) ) and so, e.g., F \ [ C ) are not 
empty. Fix elements d, c, and e in F\[C), C, and E, respectively. For an arbitrary 
xCC we have xAc, x\Jc£C and d, ((*Vc)V<?)Vd£F. Therefore a<p0SxAc^ 
•^tx\lc^aq>j and bq>^dSx\!cVe\Jd^bcp± for some a,b£L. By meeting we ob-
tain (aAb)(p0Sa(p0Abq)0^xAcAi/SxVc^a<piAft<pi=(aAfc)9>i- Now cAd$C and 
x, cAd€[(aAb)(p0, (aAb)(p^\ contradicts the maximality of C. The rest of (C4) is 
settled by the Duality Principle. 

Before going on we show that 

(* ) [w<Po> « ^ i K ^ for any u£L. 

Only the maximality of [u(p0, u(py] has to be shown. Suppose [ucp0, wtpj is not maxi-
mal, then [u(p0, ucp^czC for some C^. Fix an element c in C\[u(p0, ucpj]. 
Since C is a sublattice, c0=cAu<p0 and ci=c\/u<p1 are in C, and either c0<u(p0 

or Cx>«(Pi. If, e.g., c0<u<Po, then c0, ucp^C implies a<p0^c0<ucp0-^ucp^atpy 
for some a£L. Hence acp07±u(p0,(a\/u)(p0=a(p0Vu(p0=u(p0, and utp^atp^ucp^ 
=(aAu)q>1. The injectivity of cp0 and (pt yields a^u, aMu=u, and aAu=u, a 
contradiction. 
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Now suppose x£L, d£Cand for any e£C(~\(d] there exists Ce^€ such 
that {e, x}^Ce. Then for any edCC\(d] there exists ae£L such that 
e, x£[fle<p0, ae<Pil- Set u=/\(ae: e€CCl(d]) and h = /\(e: e£CC\(d\). Since 
preserves arbitrary meets and <p0 is monotone, we obtain u(p0=A(aecp0: e£CP\(d])^h 
and e(LCC\(d\)=u<p1, i.e., h, x£[u<p0,u(p1]=E. From ( * ) we conclude 
that ££<<?. Since u<p^h^y holds for any y£C (indeed, h^yAdeCC\(d]), 
[E)^[C). Now (C3) and (C4) imply (£]=§(C] (cf. the proof of Corollary 1). There-
fore x€(C] follows from The rest of (C5) follows from the 
Duality Principle. 

Now let U be a convex sublattice of D and suppose that for any a, U there 
exists Edit containing both a and b. Then a, b€[u(p0,u(px] for some u£L, and 
Zorn Lemma implies (C6). 

We have shown that is associated With a tolerance g on D. Let D/g = 
denote the corresponding factor lattice. For u£L let MI/' denote [ucp0, u<pJ. Then, 
by (* ) , ij/ is a map from L into Dig. If u,v£L then [(HV«)^)=[(«Vv)<p0) = 
=[u(p0Vv(p0)=[u<p0)\/[v(p0)=[u\p)\/[v(p). Lemma 4 and the dual of Proposition 1 
imply (u\Jv)\l> =mj/\lv\!/, showing that \j/ is a homomorphism. Since cp0 is injective, 
so is \p. Therefore £€IST{Z>}. 

In case L is finite, so is D. Then any convex sublattice and, in particular, any 
element of # is an interval. Hence ij/ is surjective, and LdYT{D}. Q. e. d. 
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