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Amalgamated free product of lattices. 
I. The common refinement property 

G. GRATZER and A. P. H U H N 

1. Introduction. The common refinement property has been investigated for 
many algebraic constructions. Intuitively, we say that the common refinement prop-
erty holds for the construction * (e.g., direct product or free product) if, whenever 
A0, Ax, B0, B1 are algebras for which * is defined, L=A0 * Ax—Bo * B±, and 
A0, AX,B0, Bx^L, then 

(1) A, = (AinB0)*(AinB1), i = 0, 1, 
(2) B j = ( A o r ) B j ) * ( A x n B j ) , j = 0 , 1 , 

(3) L =(A0i]B0)*(A0r\B1)*(AiriB0)*(AxnB1). 

This is, of course, not a definition; we did not even specify what is meant by the 
right side of (3). In most concrete cases, however, the meaning of (1), (2), and (3) 
is clear: direct product of groups and rings, direct product of lattices with 0, free 
product of lattices ( G . GRATZER and J . SICHLER [ 4 ] ) , and free product of algebras in 
a regular variety ( B . J6NSSON and E . NELSON [6]) are examples of algebraic construc-
tions satisfying the common refinement property. 

The present investigation was prompted by Problem VI. 2 in G . GRATZER [1], 
asking whether or not free {0, l}-product of bounded lattices satisfies the common 
refinement property. We answer this question in the affirmative; the method of the 
proof, however, leads much farther. It will be shown that two free products amal-
gamated over the same finite lattice Q always have a common refinement. The Theo-
rem gives, for an arbitrary lattice Q and any two representations of a lattice L as 
free Q-products, a necessary and sufficient condition for the existence of a common 
refinement. 

2. Results. To define the concept of an amalgamated free product, let Q, A0, Ax 

be lattices (<2=0 is allowed), let Q be a sublattice of both A0 and At, and let 
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AONJ1=Q. Then .¿„LMi is a partial lattice in a natural way (see Section 3 for a 
detailed definition). The free lattice generated by this partial lattice will be called the 
free product of A0 and A, amalgamated over Q, or the Q-free product of A0 and AY; 
it will be denoted by A0*QA1. In this paper, the formula L=A0 *QAX always 
assumes that L is a lattice, A0 and AX are sublattices of L,Q = 0 or Q is a sublattice 
of both A0 and AY. 

Our main theorem is as follows (for a more complete version see Section 4): 

T h e o r e m . Let L = A0* QA1=B0* QBX. These two decompositions of L have a 
common refinement, that is, conditions (1)—(3) of Section 1 hold for *Q if and only if 
for any i,j(L {0, 1}, x£Ah y£Bj, the inequality x^y in L implies the existence of a 
zdA^Bj such that xSz in At and z^y in Bj. 

This theorem has several consequences. 

C o r o l l a r y 1. If Q satisfies the Ascending Chain Condition or the Descending 
Chain Condition, then any two Q-free decompositions of a lattice have a common re-
finement. 

Clearly, the special case Q={0, 1} of Corollary 1 answers Problem VI. 2 of 
[1] in the affirmative. 

C o r o l l a r y 2. Let L=A0*aAi=B0*QB1. I f , for any i,j£{0, 1}, either Ai 

or Bj is convex in A^Bj, then the two decompositions have a common refinement. 

The most important open problem in this investigation is whether the condition 
given in the Theorem is a tautology or not; that is, whether Q-free products always 
have common refinements. 

It follows easily from the main result of G . GRATZER and J . SICHLER [ 4 ] that the 
free factors of a lattice L form a distributive lattice. This statement remains valid 
for <2-free factors ( Q ^ L ) if Q-free products always have common refinements 
(see Section 8). The next two corollaries establish distributivity like properties of 
the set of all g-free factors for an arbitrary Q. 

C o r o l l a r y 3. I f A0*QA^AQ*QA2 and A^A2, then A1=A2. 

C o r o l l a r y 4. If A0*QA1—A0*QA2=A1*QA2, then Q—A0 — A1 = A2. 

3. Amalgamated free products. We need a lemma before we give the definition 
of an amalgamated free product. 

L e m m a 1. Let A0 and Ax be lattices, let Q be a sublattice of both A0 and A1 or 
< 2 = 0 , and let Aor\A1 — Q. Then there exists a smallest partial lattice on the set 
AgUAi extending the operations of A„ and Ax. 
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P r o o f . Since the Amalgamation Property holds for lattices, there is an em-
bedding of AOUAX into a lattice preserving the operations of A0 and AX. Restricting 
the operations of this lattice to AGUAI, we get a partial lattice on the set A0UA1. 
Therefore, the set of all partial lattices on the set A0UA1 whose operations are ex-
tensions of the operations of A0 and AX is nonempty. Now let (AGUA^, Ay, Vy), 
be partial lattices on the set A0UA1. Let A and V be the intersection of the 
Ay's and Vy's, respectively (Ay and \Jy are sets, in fact, they are subsets of 
0 4 0 U A ) 2 X 0 4 0 I M ) ) . We shall prove that < ^ 0 U A ; A, V> is a partial lattice. 
This, will prove Lemma 1. 

Here we need N. Funayama's characterization of partial lattices (see, e.g., 
G . GRATZER [1]): A partial algebra (H\ A, V) is a partial lattice if and only if, for 
arbitrary a,b,c£H, the following five conditions and their duals hold. 

(i) a/\a exits and aAa—a. 
(ii) If a/\b exists, then b/\a exists and a/\b=bf\a. 

(iii) If af\b, (a/\b)/\c, b/\c exist, then af\{bt\c) exists, and (af\b)f\c 
—aA(b/\c). If bf\c, af\{bf\c), af\b exist, then ('af\b)/\c exists and 
(aAb)Ac=aA(bAc). 

(iv) If aAb exists, then ay (aAb) exists, and a=a\/(aAb). 
(v) If [a)V[fe)=[c) in D0(H), then aAb exists in H and equals c. (Here 

D0(H) denotes the lattice consisting of 0 and all dual ideals of H. D0(H) 
is ordered by inclusion.) 

Now we prove (v) for (AQUA^, A, V), the proof of the other four condi-
tions is similar. Every </ i 0 UA; Ay, V7), f^T, is a partial lattice, therefore, (v) 
holds for (AQUAI, Ay, Vy). Assume that [a)V[6)=[c) in D0((A0[JAJ] A, V))-
Then [fl)V[&)=[c) in A i O ^ o U A ; A,, V,» for all y£ r . In fact, A, is an exten-
sion of A; therefore, the dual ideals generated by a and b relative to Ay contain the 
dual ideals generated by a and b relative to A, respectively. Thus [«)V[fc)2[c) in 
D0((A0U AI', AY, Vy>). The reverse inclusion is trivial. Now, by (v), aAyb=c for 
all y ^ r . Hence aAb=c. This completes the proof. 

D e f i n i t i o n 1. Let Q, A0, Ax be as in Lemma 1. Let P(A0, Alf Q) denote the 
smallest partial lattice of Lemma 1. If Q=A0C\A1 is understood, we write P(A0, AJ. 
for P(A0, Alt Q). Then the free lattice generated by P(A0, Alt Q) will be called the 
free product of A0 and Ax amalgamated over Q, and it will be denoted by A0*QA1. 

A warning is in order here. We can partially order A0UA1 by the smallest par-
tial order containing the ordering of A0 and the ordering of AT. If we take AGUAX 
together with all the existing g.l.b.'s and l.u.b.'s relative to this ordering, then the 
resulting partial lattice is generally different from the one defined above. 
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Definition 1 can easily be extended to a definition of the Q-free product of an 
arbitrary finite number of lattices containing Q. In particular, if L—A0*QA1 = 
—B0*QB1, then (A0P\B0)*Q(A0C]B1)*Q(AyDB0)*Q(AlHBy) is the free lattice gen-
erated by the smallest partial lattice on the set G4 0 n£ 0 )U(y4 0 n .B i )U(^ i n5 0 )U 
U i A D ^ ) whose operations extend the operations of all Atr\Bj, i,j=0, 1. 

We shall need a description of the ordering and of the ideals of P(A„, Ay). 

L e m m a 2. Let x£A0 and yd Ay. Then xSy in P(A0, Ay) if and only if 
there is a z£Q with xSz in A0 and zS.y in Ay. 

P r o o f . Define ^ on A0UAy as follows: ^ retains its meaning on A0 and Ay, 
for x€A0 and yd Ay (or x£A x and y£A0) define ^ as in the lemma. It is obvious 
that S is a partial ordering on A0UAy. (This is used in the proof of the Amalgama-
tion Property for lattices.) Consider the partial lattice (A0UAy; A, V)> where 
af\b=c iff c is the greatest lower bound of a and b with respect to ^ ; aWb—c is 
defined dually. 

Let S j denote the ordering of P{A„, Ay). Since P(A0, Ay) is the smallest partial 
lattice on A0UAy, ^y must be contained in To prove the converse, let a s i ? , 
a, b€A0UAy. If a,bdAt for some i in {0, 1}, then a^b in At. Hence, by the de-
finition of P(Ao, Ay), a^yb. Therefore, and by symmetry, we may assume that 
a£A0 and bdAy. Thus there is an element c in A0i]Ay such that a S c in A0 

and c ^ b in Ay. The same inequalities hold in P(A0, Ax), that is, a ^ y C ^ y b , as 
claimed. 

L e m m a 3. Every ideal of P(A0, Ay) is the union of an ideal 70 of A0 and an ideal 
ly of Ay satisfying ItsC\Q=I1C\Q. Conversely, if 70 is an ideal of A0 and Iy is an ideal 
of Ay with IaC\Q=lyC\Q, then 7 0( jA is an ideal of P(A0,Ay). 

P r o o f . Let I be an ideal of P(A0,Ay). Then Ii=I(~)Ai is an ideal of At, 
/ = 0 , 1 , and f0n<2=inA0nQ=jnA0nA1=/nAinQ=/inQ, which proves the 
first statement. 

To prove the converse, consider the partial algebra ( A 0 U A y ; V, A), where 
xAy (resp., x\Jy) is defined if and only if x and y are in the same At and xAy 
(resp., xVy) is the meet (resp., join) of x and y in At. Call a set I an ideal of the par-
tial algebra (A0DAy\ A, V) if, whenever x,y£l and x\Jy is defined, then xVydl 
and whenever xdl,y£A0UAy, and y^x, then ydl. (The partial order ^ was 
defined in Lemma 2.) Now let 70 be an ideal of A0 and let Iy be an ideal of Ay with 
Ior\Q=IyC\Q. The latter condition ensures that I0UIy is an ideal of (A0UAy; 
A, V). Now we prove that 70U7X is an ideal of P(A0, Ay). In fact, P(A0, Ay) is the 
smallest partial lattice in which, besides the partial operations of (A0UAy; A, V), 
all the meets and joins are defined that follow by iterated application of conditions 
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(i) to (v) and their duals. Therefore, it is sufficient to check that a single application 
of any one of (i) to (v) and their duals does not change the ideals; this is evident. 

4. Smooth representations of ideals. The proofs in G . GRATZER and J. SICHLER 
[4] rely on two facts: 

1. In a free product L=A0*A1 every element has a lower A0-cover, which is 
an element of (A0)b (that is, A„ with a new 0 and 1 adjoined); 

2. Forming lower .¿„-covers is a homomorphism of L into (A0)b. 
In general, these statements do not hold for amalgamated free products. In this 

section we find some statements that hold for amalgamated free products; these 
statements can be viewed as substitutes for the two facts mentioned above. 

Throughout this section, let Q, A0, A1, L be lattices, let L=A0*QA1, and let 
A=P(A0, Alt Q) as defined in Section 3. Let /(A) (respectively, l(A^) denote the 
ideal lattice of A (respectively, of At). For any ideal / of L or of A define 

( /) ; = / r u ; , i = 0 , l 

and for an ideal I of L define 
IA = I HA. 

For a principal ideal / of L, the ideals (/), and IA correspond to the usual lower 
covers (see, e.g., [1]), however, /—(/),-, I£I(L), is not a homomorphism, that is, 

(1) (pOo, In-d)i = P{Uo)i, (In-d.) 

does not hold for all polynomials p. For certain polynomials, however, (1) does hold 
(see Definition 2) and it will turn out (Lemma 8) that this happens often enough, 
making it possible to carry out some of the proofs of [4] under more general condi-
tions. 

D e f i n i t i o n 2. Let p—p(x0, ..., xn_i) be an w-ary lattice polynomial, let 
/, /„, . . . , / n - i be ideals of L (of A, At, respectively), and let I=p(Ia, in 
I(L) (in 1(A), I(Ai), respectively). We say that p(I0, •••,/„-1) is a smooth represen-
tation of / (or t h a t p ( I 0 , ..., /„-1) is smooth) iff one of the following conditions holds: 

a) p=Xi\ 
b) P=Pnf\Pi and both p0(I0, ..., /n_x) and ^(/Q , . . . , / „ - ^ are smooth; 
c) p=p0\/pi, both p0(I0, . . . , /n_i) and P i ( / 0 , 4 - 0 are smooth, and, for 

any q£Q, 

q£p(I0, j) implies that qip0(h, ..., /„-L) or 

•••> 4 - L ) -

The following lemma shows that every representation of an element of L can 
be turned into a smooth representation. 
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L e m m a 4. a£L, a0, ..., On-xdAoUAx, and let a=p(a0, ..., an_1) where 
p is a lattice polynomial. Then there exist an integer m^O, a polynomial p in n + m 
variables, and subsets Q0, Qm-i of Q such that 

(a] =p({aj, ...,(an-il (Qol-AQm-J) 

is a smooth representation of (a] in I(L). 

P r o o f . We prove this statement by induction on the rank of p. 
If p=xn then we can choose >n=0,p=p. 
If p=paVpi, then, by the induction hypothesis, there exist an m S 0 , poly-

nomials p0 and px of n+m—\ variables, and subsets Q0, ..., Qm~2 of Q such that 

p,((aj, K-lL (£„]> - AQm-J) 

is a smooth representation of/>,((a0], ..., ( « „ . J ) for i = 0 and 1. Let Qm-i=(a]C\Q. 
We claim that 

A>((flo]. (Go 1, ->(Qm-J)V 

V ( M « o ] . . . . ( f l . - J , (G<J, -,(Qm-&V(Qm-il) 

is a smooth representation of (a]. Indeed, by the definitions of p t and of QM~I, this 
ideal equals (a]. Moreover, />i((a0], . . .)V(Om-i] is smooth because its components 
are smooth and if, for qeQ, q€p1((a0], ...)V(Gm-i]> then q£(a]; thus, qd(Qm-J 
by the definition of Qm-V Similarly, p0((a], ...)V (A((aoL . . .)V(Gm-i]) is smooth. 

Fina l l y , if p=p0Api, t h e n le t pi((a0], ..., ( ¿ / „ . J , (Q0], ..., (Qm-x]) b e a s m o o t h 
representation of />j((a0]» • ••> (a„-i]) for / = 0 and 1. The meet of these two poly-
nomials is obviously a smooth representation of (a]. 

In the remainder of this section we have to compute polynomials in L, I(L), 
1(A), and I(Ai), i=0,1. We shall distinguish between the operations in 1(A) and 
I(Ai) by superscripting them by A and i, respectively. 

The following lemma is a consequence of the solution of the word problems 
for lattices freely generated by a partial lattice (see, e.g., G . GRATZER, A. HUHN, 
a n d H . LAKSER [2]). 

L e m m a 5. Let x,y£L. Then 

(xVy)C\A =((x]rM)V'4(0']rU), and (xt\y]C\A = ((x]n^)*i(0']n>4). 

L e m m a 6. Let I and J be ideals of L. Then 

(IVJ)A = (I)AVA(J)A. 

Furthermore, if IVJ is smooth, then so is (.1)AVa(J)A-
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P r o o f . We prove that (IV J)A=(I)AV A(J)A (the reverse inclusion is obvious). 
Let (IVJ)A. Then a£A and there exist /£ / and jdJ such that a^iVj. From 
Lemma 5, it follows that 

a£(iVj]nA Q ((i\f)A)VA((j]nA)Q(I)AVA(J)A. 

This proves the first half of the lemma. 
Assume now that IVJ is smooth. We have to prove that so is (I)AVA(J)A. 

Let q£Q and let 
9HI)AVA(J)A. 

Then qOVJ\ thus, q£l or q£J, say q£I. Since qtQ^A, we have q£lC\A=(I)A. 
This completes the proof. 

Most of the results of this section are summarized in the following two lemmas 
that show that one can work with smooth representations as if forming lower covers 
were a homomorphism. 

L e m m a 7. Let I and J be ideals of A and let us assume that IVAJ is smooth. 
Then 

(WAJ), = (I)iVt(J)i far » = 0,1 

and the right side of the equation is smooth. 

P r o o f . We claim that 

( ( / ) o V ° c / ) o ) n e = ( ( / ) i V i ( / ) i ) n f i . 

Indeed, let q£Q and let q£(I)0V0(J)0- Then q£lVAJ; therefore, q is in I or J, 
say, q£I. Then ?6(/)i^(/)iV 1(/) 1, which verifies that the left side is contained in 
the right side. Repeating this argument starting with the right side, we verify the claim. 

This claim, by Lemma 3, shows that 

( W o v m M / x v H A ) 

is an ideal of P(A„, Ax); obviously, it is the smallest ideal containing both I and J, 
that is, 

ivA J = ((/ioVmMi/xw)!)-

Now we compute (using the above claim again): 

(IVAJ)0 = 

= ( ( ( ^ o v w u a / x v v ) ) ! ) ^ = 

= ((/)oV°(/)o)u(((/)1vi(/)1)ne) = 

= ((/)oV o(/)o)U(((/)oV ° ( y)o ) n 0 = 

= (/)oV°GOo-
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Finally, we can see that (/)0V°(/)0 is smooth arguing as we did in Lemma 6. 

L e m m a 8. Let p=p(x0, ..., xn_1) be a lattice polynomial and let J0, ...,/„_1 

be ideals of L, such that p(I0, •••,/„-1) is smooth. Then 

(p(/„, . . . . / „ - , ) ) , = p ( ( / o ) f , . . . , ( / . - 0 l ) 

is a smooth representation of (p(I0, ...,In.1))i. 

P r o o f . By induction: if p—xf or p=p0f\p1, then Lemma 8 is trivial; if 
p = PQWPI , then Lemma 8 is a combination of Lemmas 6 and 7. 

5. Amalgamated free products of sublattices. It was proved in B. J6NSSON [5], 
that, if a variety V has the Amalgamation Property, then the following statement 
holds: for arbitrary algebras A0 and Ax in V and subalgebras A'0 of A„ and A[ of Ax 

the set A'0IJ A'x generates a subalgebra in the free product A0*A1 canonically iso-
morphic to A'0*A[. "Canonically"means that the isomorphism is the identity map 
on A'0 and on A[. J6nsson's proof is valid not only for varieties but also for classes 
closed under the formation of subalgebras and of direct products. Thus the proof 
works for Q-lattices, that is, lattices containing Q as a sublattice such that the ele-
ments of Q are regarded as nullary operations. This yields the following lemma. 

L e m m a 9. Let L—A0*QA1, let A'0 and A'x be sublattices of A0 and A1, respec-
tively, and let Q^A'0and QQA^. Then the sublattice of A0*QA1 generated by A'0{JA[ 
is canonically isomorphic to A'0*QA[. 

There is an alternative proof by using the solution to the word problem for 
lattices generated by a partial lattice. For the case <2 = 0 , such a proof appears 
in G . GRATZER, H . LAKSER, and C . R . PLAIT [ 3 ] . (See also G . GRATZER [ 1 ] . ) 

6. Proof of the Theorem. We introduce some new notation. For an ideal I 
of L, let IAo denote the ideal of L generated by lC\Aa\ we call IAo the lower A0-cover 
of I. Similarly for IBa, and . Note that Lemma 8 holds also for lower A{ 

(resp., j5y)-covers. 
For arbitrary fixed i,y€ {0, 1}, we define ¡¡¡(L) as the set of principal ideals of L 

and the lower ^¡-covers and lower BJ-covers of principal ideals of L. 
We prove the main theorem in a stronger form: 

T h e o rem. Let L=An*QA1
=BQ#QBI. Then the following conditions are 

equivalent. 

( i ) L=(A0R\B0)*Q(A0C]B1)*Q(A1C]B0)*Q(A1DB1). 

(ii) Al=(Aif)B0)*Q(AinB1), for I=0 , 1. 
(iii) B - ^ B ^ Q i A ^ B j ) , for . /=0, 1. 



Amalgamated free product of lattices I. 6 1 

(iv) For any {0,1}, x£Ait and ydBj, x^y in L implies the existence of a 
z^AiOBj such that xS.z in Ai and z^y in B}. 

(v) For any i,j£{0, 1} and for any ideal I of L, I={ir\A^ = {lC\BJ] implies 
that I^mA^Bj]. 

(iv) For any / ,y6{0, l} and for any ideal /€/¡,(1.), /=(/("!/(;]=(/05,] im-
plies that ]=(If]Alf]Bj]. 

P r o o f . We prove the theorem by the following scheme: (i)-<-»(ii), (i)-<-(iii); 
(i), (ii), and (iii) jointly imply (iv); ( iv ) - (v )+(v i ) - ( i i ) . 
(ii) — (i) is clear from the definition of the right side of (i) (given after Definition 1). 
(i)-*(ii). Let a£A0. Then, by (i), a can be expressed in the form 

a = p(Xqo, XQO , ..., , XQI , ..., x10, Xio', ..., Xn, , ...) 

where xu, x'tJ, ...dAjOBj, i, jd {0, 1} and p is a lattice polynomial. By Lemma 4, 
(a] has a smooth representation in I(L): 

(a] = p((x oo]» •••> (*«J, • • • > (*lo]> •••5 C*ll]> (Qol •••)' 

where Q0, ...^Q. Then, by Lemma 8, 

(a] = (AL0 = P((X0oL„> ..., (*IOU0, .... (*0IL„, •••. (*IIL0, -AQOL •••)• 

We claim that, (x10\Ao, as well as (xn]A , is generated as an ideal by elements 
of Q. Indeed, let (x10]/4o be generated by xy, y£F, in A0. By Lemma 2, for every 
7€F, there is a yydQ with x y ^ y y ^ x 1 0 . Thus {yy |v€r} generates Oc10]^o, and 
{j^Iy^T} is a subset of Q. Summarizing, 

(a] = .p((x00], • • •, ( x j , . . . , (g10], ..., (Qn], ..., (g0], ...), 

where Q10, ..., Qu, •••, Qo, •••r=Q- Hence a can be expressed by a'00, ..., x10, ..., 
and elements of Q. Thus, a is in the sublattice generated by (A0C\B0)\J(A0nB1). 
Therefore, A0ClB0 and A^OBy generate A0. It follows from Lemma 9 that they 
generate A0 freely over Q. 
(i)"-(iii) follows by symmetry. 
(i), (ii), and (iii) jointly imply (iv). By (ii) and (iii), the sublattice [A0UB0] generated 
by A0UB0 is also generated by A0C\B0, AQOBX, and AxClBg. By (i), A0OB0, 
AoDBy, AyDBo freely generate over Q. Thus [Aa{JB^ is freely generated by 
(An.Bo)U04<>nJBi)U(;iinJBo). Hence, it is also freely generated by [(^0n.B0)U 
U ^ o H ^ i ^ U K ^ o n ^ U ^ i n ^ o ) ] . By (ii) and (iii), this set is A0UB0, and the 
relative sublattice of L on this subset is the partial lattice F(A0, B0, A0r\B0). 
Therefore, [A0\JB^ is the free (/40fl50)-product of A0 and B0. Thus, Lemma2 gives 
us (iv) for / = 7 = 0 . Since (i), (ii), and (iii) are symmetric in / and j, condition (iv) 
now follows. 
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(iv)^(v). Let the ideal I be generated by {x 7 |y£r}QA t and by {y6 \5^A}^Bf, 
we can assume that {y6\5£A} is closed under finite joins. By (iv), for any y6T we 
can choose a y'£A and a z^A^Bj satisfying x ^ z r ^ y r . Obviously, {zy. \y'^r}Q 
^ A , r \ B j generates I. 
(v)-"(vi) is obvious since (vi) is a special case of (v). 
(vi)^-(ii). By Lemma 9 and by symmetry, it suffices to prove that A0 is generated 
by ( ¿ o W U ^ o n * , ) . 

For a£A0, there exist a polynomial p and elements b0, b'0, b1,b{, 
€2?!, such that a=p(b0, b'Q, ..., b±, b[, ...). By Lemma 4, there exist a polynomial 
p and Q0, Qi, ...^Q such that 

(a] =p((b0l, (fcfl, (6J, (63, (Qol (0J , - ) 

is a smooth representation of (a]. Then, by Lemma 8, 

(a] = («I«, = p ( ( & a U , • • •» (*>iL„> • • • > ( 0 a L , -•••)• 

In this expression, (20L0
=((?o]> ••• • Furthermore, we shall prove the claim that 

(PoLv(6oW •••» a n d ••• are generated by elements of A0C\B0 and 
AQOBX, respectively. Thus, each ideal occurring in the representation is generated 
by elements of (AgCiB^UiAgClBJ. Therefore, so is (a]. We conclude that a€ 
£[(4on.Bo)U04on.Bi)], which was to be proved. 

To verify the claim, it is sufficient to prove by symmetry that (¿>0U0 generated 
by its elements in A0DB0. 

First, we verify that ( ¿ J ^ is generated by its elements in B0. 
We start with a smooth representation 

(&J = ?((o«l, « 1 - . (f l j , (a',], . . . ,(*„], (J?J, ...), 

where a0, a^, ...€A0, ax, a'lt ... eA1 and R0, Rx, ...^Q. Then 

(fcoLo = •••> (aiL„. •••> (^oL„> •••) = ( ^ U , (-Ro],-) 

and, applying Lemma 8 twice, we obtain 

(&ok = {(K]B0)AO = ^(((aalBoW •••» ((«IWA», - •••)• 
Hence, 

(*>oL„ = q((a0], ..., ( f l j ^ , ..., (/?„], •••) i 9((ao]Bo, - . •••. №>], •••) i 

§ ? ( ( ( f i o k W ' ( O i k U ' •••, ((-RokU, ••• ) = (i>ok 
therefore, 

(*>oL„ = ?(Ook> •••> OiL„> •••> (*o]> •••)• 

The ideals (fl0k> ••• a r e» by definition, generated by elements of B0; the ideals 
( a j ^ , ... are generated by elements of Q by Lemma 2. Since Q0, ...QQ, we con-
clude that (¿„J^ is generated by elements of B0. 
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Finally, since has been proved to be generated by its elements in B0, 
and (¿>0L0 is by definition generated by its elements in A0, and (60]^o€/00(L), all 
the hypotheses of (vi) are satisfied. Condition (vi) yields that (b^Ao is generated by 
elements of A0f]B0, which completes the proof of the claim. 

This finishes the proof of the implication (vi)—(ii) and of the Theorem. 

7. Proof of Corollaries 1—4. P r o o f of C o r o l l a r y 1. Let Q satisfy, for 
example, the Ascending Chain Condition, and let L—A0*QA1=B0*QB1. We 
claim that, for any i,j€{0, 1}, /y(L) consists of all principal ideals of L. Indeed, 
let us take a smooth representation of the principal ideal (x]: 

(*] = P((aoL («a (a J, «], ...,(Qol (Qil •••), 

a0, a0, ...€A„, ax, a[, and Q0,Qi, •••QQ- Then 

(x)Ao = P((a0l (a'0l ..., (ai]Ao, ...,(Q0], ( f i j , ...). 

It follows from Lemma 2 that the ideals ( a j ^ , ..., are generated by elements of Q; 
thus, by the Ascending Chain Condition, these ideals and also (Q]0, ••• are principal. 
Therefore, (x]Ao is a principal ideal. This proves the claim for i = / = 0 . By symmetry, 
the claim is proved. 

Using this claim, it is easy to establish condition (vi) of the Theorem: if the 
single generating element of an ideal in 7lV(£) is both in At and in BJt then it is in 
A,r\Bj. Thus the Theorem shows the existence of a common refinement. 

P r o o f of C o r o l l a r y 2. Let L=A0*QAi=B0*QB1, and let us assume that 
the hypotheses of Corollary 2 hold, that is, for any i,j, At or B} is convex in A^Bj. 
We are going to establish condition (v) of the Theorem. Let {0,1}, let, for in-
stance, Ai be convex in A^Bj. Let lei(L), such that I=(ir\AH=(ir\Bj]. Let G 
be a generating set of I in At and let H be a generating set of / in Bj. We can assume 
that both G and H are closed under finite joins. Then 

/ - :::: g for some g€Gj = S. h for some h£H). 

Thus, for any g£G there exists an hg£H satisfying g^hg and for hg£H there 
exists an g'dG with hg^g'. Therefore, g^hg^g', so by the convexity of At in 
AiUBj, we conclude that hgdA-t-, since h g cGQBj , h ^ A ^ B j . Now it is clear 
that K—{hg\gdG} generates I and K^A^Bj, verifying condition (v) of the 
Theorem. 

P r o o f of C o r o l l a r i e s 3 a n d 4. Under the conditions of the Corollaries, 
[At\JA^ is the free product of Ax and A2 amalgamated over A1(1A2. Thus we may 
apply Lemma 2 to A1UA2. Therefore, both corollaries follow from the following 
observation (due to E . FRIED): 
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Let L=A0*QA1—AQ*QA2. If the conclusion of Lemma 2 holds fo r A1UA2 

(that is, for x£AX and y£A2, x^y iff x^z^y for some z^A1C\A2 and symmetri-
ca l l y f o r X€A2 a n d y£AJ), t h e n A^AZ. 

Indeed, under these conditions (iv) of the Theorem holds, hence there is a com-
mon refinement. Applying condition (ii) of the Theorem we obtain 

AJ. = (A0R\A1)*Q(A2R\A1) = Q*Q(A2NA1). 

Simi l a r ly , A2=Q*Q(A1DA2), h e n c e A1—A2. 

8. Open problems. We repeat the question already mentioned in Section 2. 

P r o b l e m 1. Is there a lattice Q such that Q-free products do not always 
have common refinements? 

An equally important question arises in connection with Corollaries 3 and 4. 
In fact, they suggest, that some sort of a distributive law must be valid for Q-free 
factors. 

P r o b l e m 2. Do Q-free factors of a lattice L form a distributive sublattice of 
the lattice of all sublattices of LI Does there exist some "natural" generalization of 
distributivity that holds for <2-free factors and implies Corollaries 3 and 4? 

A negative answer to Problem 1 would answer both questions of Problem 2 in 
the affirmative; this can be seen from the following observations. 

Let us assume that for a lattice Q, any two Q-free products of a lattice L have 
a common refinement. Let £ be a lattice and let Q be a sublattice of L. Then 
L=A*QA'=B*QB' implies that 

L =(AF\B)* Q[A' U B'~\; 

thus the g-free factors form a sublattice of the lattice of all sublattices of L. Now 
let A, B,C be Q-free factors of L, that is, let 

L = A*QA' = B*QB' = C*QC'. 
Then 

A^[BiJC] = [(A f | U (^ fl Q] , 

since both sides are the Q-free products of APiBClC, APiBDC', and ACiB'PiC. 
9. Appendix: On the definition of amalgamated free products. In Section 3 we de-

fined A0*QA1 as the free lattice generated by the smallest partial lattice on the set 
AQUAX ( A Q H A ^ Q ) extending the operations of A0 and A1. We denoted this 
partial lattice by P(A0,A1} Q). Here we prove the following characterization: 

P(Aa, Ax, Q) is the smallest weak partial lattice on the set A0UA1 extending 
the operations of A0 and A1. 
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By a weak partial lattice (see [1]) we mean a partial algebra {H\ A, V) satisfying 
conditions (i)—(iv) of Section 3 and their duals. 

This result means the following: by definition, P(A0, Ax, Q) is formed by taking 
AoUAy, and extending the A and V of A0 and Ax by iterating (i)—(v) and their 
duals; according to the result of this appendix, condition (v) and its dual are not 
needed in this process. 

Let WP(A0, A1,Q)=WP be the smallest weak partial lattice on A0UAt 

extending the operations of A0 and Ax. The existence of WP can be proved along the 
lines of the proof of Lemma 1. The proof of Lemma 2 shows that the partial ordering 
on WP is the same as the partial ordering on P(A„, Alt Q). We are going to prove 
that WP is a partial lattice, that is, (v) and its dual hold. Then obviously WP— 
=P(A0,A1,Q). 

By duality, it is sufficient to verify (v). To do that, let a, b, cdA0UA1 such that 
(a]V(b] = (c] in the ideal lattice of WP. We have to show that a\/b exists and 
aVb = c in WP. 

If a\Jb exists, then (ay b] is obviously (a]V(&], hence (aV6]=(c]. We 
conclude that a\/b=c. Therefore, it is sufficient to show that if (a] V (£>]—(c], then 
aVb exists. 

If a,b(A0 or a, bdA^, then a\lb exists. Hence we can assume that a£A0 

and bdAx. By symmetry, we can also assume that c£A1. 
By the general description of join of ideals in a weak partial lattice (see Exer-

cise 5.22 of |.l]), (a]V(2>]=(c] implies the existence of a natural number n and ele-
ments 

(1) a = a 0 S f l 1 s . . . S f l „ in A0, 
(2) b = b0 f?! b„ = c in Au 

(3) r0=s qns q in Q 

such that 

(4) r, ^ b„ 0 s i s « , 
(5) qi a„ 1 g i i n , 
(6) bt+1 = btVql+1, 0 S i < /1, 
(7) at+1 = atWri+1, 0 S i < n , 

(8) a n ^ q ^ b n . 

(The symmetric case with </0=''i='?i = ••• O^i^n, r ^ b t , l^i^tt, 
ai+i—atVri+i> 0 = /<«, bi+1=bi\/qi, is handled similarly.) 

In the proof we shall utilize the following two properties of weak partial 
lattices: 

(PI) If x\/y=z and xSu^z, then « V j exists and u\!y—z. 

5 
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Indeed, by the associative identity, 

uV(xVy) = (uV*)V>>, 

the left side exists and equals z\u\!x exist and equals u, hence uVy exists and equals 

z, as claimed. 
(P2) If x\!y=z, x—XiWxs, and x2^y, then XiV.y exists and xYVy=z. 
Indeed, by the associative identity, 

the left side exists and equals z; in the right side x2My exists and equals y, hence by 
(iii), exists and x1Vy=z, as claimed. 

Now we prove a\/b=c by induction on n. Let « = 1 . Then we have the elements 
a0=a, b0=b, bi = c, r0, q1, q, and r0^q^q, r0^b0, r ^ q ^ ^ , a ^ a V / o , bx = 

By (PI), q1\/b=c and q^a^c implies that axyb exist and a^S/b—c. Since 
ax=ayr0 and r0^b, by (P2), a\Jb exists and a\!b=c, as claimed. 

Now let « > 1 . It is clear, that the elements 
^ ...=qn=q satisfy (1)—(8) with «—1. Therefore, a^by exists and a1Vb1=c. 
By (P2), c = alyb1 = a1\J(q1yb) = a1Vb, since q^a^ Again by (P2), c = ai\Jb = 
={a\lr0)Vb—aWbx since r0^b. This proves the theorem. 
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