Amalgamated free product of lattices.
 I. The common refinement property

G. GRÄTZER and A. P. HUHN

Abstract

1. Introduction. The common refinement property has been investigated for many algebraic constructions. Intuitively, we say that the common refinement property holds for the construction $*$ (e.g., direct product or free product) if, whenever $A_{0}, A_{1}, B_{0}, B_{1}$ are algebras for which $*$ is defined, $L=A_{0} * A_{1}=B_{0} * B_{1}$, and $A_{0}, A_{1}, B_{0}, B_{1} \sqsubseteq L$, then

(1) $A_{i}=\left(A_{i} \cap B_{0}\right) *\left(A_{i} \cap B_{1}\right), \quad i=0,1$,
(2) $B_{j}=\left(A_{0} \cap B_{j}\right) *\left(A_{1} \cap B_{j}\right), \quad j=0,1$,
(3) $L=\left(A_{0} \cap B_{0}\right) *\left(A_{0} \cap B_{1}\right) *\left(A_{1} \cap B_{0}\right) *\left(A_{1} \cap B_{1}\right)$.

This is, of course, not a definition; we did not even specify what is meant by the right side of (3). In most concrete cases, however, the meaning of (1), (2), and (3) is clear: direct product of groups and rings, direct product of lattices with 0 , free product of lattices (G. Grätzer and J. Sichler [4]), and free product of algebras in a regular variety (B. Jónsson and E. Nelson [6]) are examples of algebraic constructions satisfying the common refinement property.

The present investigation was prompted by Problem VI. 2 in G. Grätzer [1], asking whether or not free $\{0,1\}$-product of bounded lattices satisfies the common refinement property. We answer this question in the affirmative; the method of the proof, however, leads much farther. It will be shown that two free products amalgamated over the same finite lattice Q always have a common refinement. The Theorem gives, for an arbitrary lattice Q and any two representations of a lattice L as free Q-products, a necessary and sufficient condition for the existence of a common refinement.
2. Results. To define the concept of an amalgamated free product, let Q, A_{0}, A_{1} be lattices ($Q=\varnothing$ is allowed), let Q be a sublattice of both A_{0} and A_{1}, and let

[^0]$A_{0} \cap A_{1}=Q$. Then $A_{0} \cup A_{1}$ is a partial lattice in a natural way (see Section 3 for a detailed definition). The free lattice generated by this partial lattice will be called the free product of A_{0} and A_{1} amalgamated over Q, or the Q-free product of A_{0} and A_{1}; it will be denoted by $A_{0} *_{Q} A_{1}$. In this paper, the formula $L=A_{0} *_{Q} A_{1}$ always assumes that L is a lattice, A_{0} and A_{1} are sublattices of $L, Q=\varnothing$ or Q is a sublattice of both A_{0} and A_{1}.

Our main theorem is as follows (for a more complete version see Section 4):
Theorem. Let $L=A_{0} *_{Q} A_{1}=B_{0} *_{Q} B_{1}$. These two decompositions of L have a common refinement, that is, conditions (1)-(3) of Section 1 hold for $*_{Q}$ if and only if for any $i, j \in\{0,1\}, x \in A_{i}, y \in B_{j}$, the inequality $x \leqq y$ in L implies the existence of a $z \in A_{i} \cap B_{j}$ such that $x \leqq z$ in A_{i} and $z \leqq y$ in B_{j}.

This theorem has several consequences.
Corollary 1. If Q satisfies the Ascending Chain Condition or the Descending Chain Condition, then any two Q-free decompositions of a lattice have a common refinement.

Clearly, the special case $Q=\{0,1\}$ of Corollary 1 answers Problem VI. 2 of [1] in the affirmative.

Corollary 2. Let $L=A_{0}{ }_{Q} A_{1}=B_{0}{ }_{Q} B_{1}$. If, for any $i, j \in\{0,1\}$, either A_{i} or B_{j} is convex in $A_{i} \cup B_{j}$, then the two decompositions have a common refinement.

The most important open problem in this investigation is whether the condition given in the Theorem is a tautology or not; that is, whether Q-free products always have common refinements.

It follows easily from the main result of G. Grätzer and J. Sichler [4] that the free factors of a lattice L form a distributive lattice. This statement remains valid for Q-free factors ($Q \subseteq L$) if Q-free products always have common refinements (see Section 8). The next two corollaries establish distributivity like properties of the set of all Q-free factors for an arbitrary Q.

Corollary 3. If $A_{0} *_{Q} A_{1}=A_{0} *_{Q} A_{2}$ and $A_{1} \subseteq A_{2}$, then $A_{1}=A_{2}$.
Corollary 4. If $A_{0} *_{Q} A_{1}=A_{0} *_{Q} A_{2}=A_{1} *_{Q} A_{2}$, then $Q=A_{0}=A_{1}=A_{2}$.
3. Amalgamated free products. We need a lemma before we give the definition of an amalgamated free product.

Lemma 1. Let A_{0} and A_{1} be lattices, let Q be a sublattice of both A_{0} and A_{1} or $Q=\varnothing$, and let $A_{0} \cap A_{1}=Q$. Then there exists a smallest partial lattice on the set $A_{0} \cup A_{1}$ extending the operations of A_{0} and A_{1}.

Proof. Since the Amalgamation Property holds for lattices, there is an embedding of $A_{0} \cup A_{1}$ into a lattice preserving the operations of A_{0} and A_{1}. Restricting the operations of this lattice to $A_{0} \cup A_{1}$, we get a partial lattice on the set $A_{0} \cup A_{1}$. Therefore, the set of all partial lattices on the set $A_{0} \cup A_{1}$ whose operations are extensions of the operations of A_{0} and A_{1} is nonempty. Now let $\left\langle A_{0} \cup A_{1} ; \wedge_{\gamma}, \vee_{y}\right\rangle, \gamma \in \Gamma$, be partial lattices on the set $A_{0} \cup A_{1}$. Let \wedge and \vee be the intersection of the Λ_{γ} 's and V_{γ}^{\prime} 's, respectively (Λ_{γ} and V_{γ} are sets, in fact, they are subsets of $\left.\left(A_{0} \cup A_{1}\right)^{2} \times\left(A_{0} \cup A_{1}\right)\right)$. We shall prove that $\left\langle A_{0} \cup A_{1} ; \Lambda, \vee\right\rangle$ is a partial lattice. This, will prove Lemma 1.

Here we need N. Funayama's characterization of partial lattices (see, e.g., G. Grätzer [1]): A partial algebra $\langle H ; \wedge, \vee\rangle$ is a partial lattice if and only if, for arbitrary $a, b, c \in H$, the following five conditions and their duals hold.
(i) $a \wedge a$ exits and $a \wedge a=a$.
(ii) If $a \wedge b$ exists, then $b \wedge a$ exists and $a \wedge b=b \wedge a$.
(iii) If $a \wedge b,(a \wedge b) \wedge c, b \wedge c$ exist, then $a \wedge(b \wedge c)$ exists, and $(a \wedge b) \wedge c$ $=a \wedge(b \wedge c)$. If $b \wedge c, a \wedge(b \wedge c), a \wedge b$ exist, then $(a \wedge b) \wedge c$ exists and $(a \wedge b) \wedge c=a \wedge(b \wedge c)$.
(iv) If $a \wedge b$ exists, then $a \vee(a \wedge b)$ exists, and $a=a \vee(a \wedge b)$.
(v) If $[a) \bigvee[b)=[c)$ in $D_{0}(H)$, then $a \wedge b$ exists in H and equals c. (Here $D_{0}(H)$ denotes the lattice consisting of \varnothing and all dual ideals of $H . D_{0}(H)$ is ordered by inclusion.)

Now we prove (v) for $\left\langle A_{0} \cup A_{1} ; \wedge, \vee\right\rangle$, the proof of the other four conditions is similar. Every $\left\langle A_{0} \cup A_{1} ; \wedge_{\gamma}, \vee_{\gamma}\right\rangle, \gamma \in \Gamma$, is a partial lattice, therefore, (v) holds for $\left\langle A_{0} \cup A_{1} ; \Lambda_{\gamma}, \vee_{\gamma}\right\rangle$. Assume that $[a) \bigvee[b)=[c)$ in $D_{0}\left(\left\langle A_{0} \cup A_{1} ; \wedge, \vee\right\rangle\right)$. Then $[a) \bigvee[b)=[c)$ in $D_{0}\left(\left\langle A_{0} \cup A_{1} ; \Lambda_{\gamma}, V_{\gamma}\right\rangle\right)$ for all $\gamma \in \Gamma$. In fact, Λ_{γ} is an extension of Λ; therefore, the dual ideals generated by a and b relative to Λ_{y} contain the dual ideals generated by a and b relative to Λ, respectively. Thus $[a) \vee[b) \supseteqq[c)$ in $D_{0}\left(\left\langle A_{0} \cup A_{1} ; \wedge_{\gamma}, \vee_{\gamma}\right\rangle\right)$. The reverse inclusion is trivial. Now, by (v), $a \wedge_{\gamma} b=c$ for all $\gamma \in \Gamma$. Hence $a \wedge b=c$. This completes the proof.

Definition 1. Let $Q, A_{0} ; A_{1}$ be as in Lemma 1. Let $P\left(A_{0}, A_{1}, Q\right)$ denote the smallest partial lattice of Lemma 1. If $Q=A_{0} \cap A_{1}$ is understood, we write $P\left(A_{0}, A_{1}\right)$. for $P\left(A_{0}, A_{1}, Q\right)$. Then the free lattice generated by $P\left(A_{0}, A_{1}, Q\right)$ will be called the free product of A_{0} and A_{1} amalgamated over Q, and it will be denoted by $A_{0}{ }_{Q} A_{1}$.

A warning is in order here. We can partially order $A_{0} \cup A_{1}$ by the smallest partial order containing the ordering of A_{0} and the ordering of A_{1}. If we take $A_{0} \cup A_{1}$ together with all the existing g.l.b.'s and l.u.b.'s relative to this ordering, then the resulting partial lattice is generally different from the one defined above.

Definition 1 can easily be extended to a definition of the Q-free product of an arbitrary finite number of lattices containing Q. In particular, if $L=A_{0} *_{Q} A_{1}=$ $=B_{0} *_{Q} B_{1}$, then $\left(A_{0} \cap B_{0}\right) *_{Q}\left(A_{0} \cap B_{1}\right) *{ }_{Q}\left(A_{1} \cap B_{0}\right) *_{Q}\left(A_{1} \cap B_{1}\right)$ is the free lattice generated by the smallest partial lattice on the set $\left(A_{0} \cap B_{0}\right) \cup\left(A_{0} \cap B_{1}\right) \cup\left(A_{1} \cap B_{0}\right) \cup$ $\cup\left(A_{1} \cap B_{1}\right)$ whose operations extend the operations of all $A_{i} \cap B_{j}, i, j=0,1$.

We shall need a description of the ordering and of the ideals of $P\left(A_{0}, A_{1}\right)$.
Lemma 2. Let $x \in A_{0}$ and $y \in A_{1}$. Then $x \leqq y$ in $P\left(A_{0}, A_{1}\right)$ if and only if there is a $z \in Q$ with $x \leqq z$ in A_{0} and $z \leqq y$ in A_{1}.

Proof. Define \leqq on $A_{0} \cup A_{1}$ as follows: \leqq retains its meaning on A_{0} and A_{1}; for $x \in A_{0}$ and $y \in A_{1}$ (or $x \in A_{1}$ and $y \in A_{0}$) define \leqq as in the lemma. It is obvious that \leqq is a partial ordering on $A_{0} \cup A_{1}$. (This is used in the proof of the Amalgamation Property for lattices.) Consider the partial lattice $\left\langle A_{0} \cup A_{1} ; \wedge, \vee\right\rangle$, where $a \wedge b=c$ iff c is the greatest lower bound of a and b with respect to $\leqq ; a \vee b=c$ is defined dually.

Let $\leqq{ }_{1}$ denote the ordering of $P\left(A_{0}, A_{1}\right)$. Since $P\left(A_{0}, A_{1}\right)$ is the smallest partial lattice on $A_{0} \cup A_{1}$, \leqq_{1} must be contained in \leqq. To prove the converse, let $a \leqq b$, $a, b \in A_{0} \cup A_{1}$. If $a, b \in A_{i}$ for some i in $\{0,1\}$, then $a \leqq b$ in A_{i}. Hence, by the definition of $P\left(A_{0}, A_{1}\right), a \leqq{ }_{1} b$. Therefore, and by symmetry, we may assume that $a \in A_{0}$ and $b \in A_{1}$. Thus there is an element c in $A_{0} \cap A_{1}$ such that $a \leqq c$ in A_{0} and $c \leqq b$ in A_{1}. The same inequalities hold in $P\left(A_{0}, A_{1}\right)$, that is, $a \leqq{ }_{1} c \leqq{ }_{1} b$, as claimed.

Lemma 3. Every ideal of $P\left(A_{0}, A_{1}\right)$ is the union of an ideal I_{0} of A_{0} and an ideal I_{1} of A_{1} satisfying $I_{0} \cap Q=I_{1} \cap Q$. Conversely, if I_{0} is an ideal of A_{0} and I_{1} is an ideal of A_{1} with $I_{0} \cap Q=I_{1} \cap Q$, then $I_{0} \cup I_{1}$ is an ideal of $P\left(A_{0}, A_{1}\right)$.

Proof. Let I be an ideal of $P\left(A_{0}, A_{1}\right)$. Then $I_{i}=I \cap A_{i}$ is an ideal of A_{i}, $i=0,1$, and $I_{0} \cap Q=I \cap A_{0} \cap Q=I \cap A_{0} \cap A_{1}=I \cap A_{1} \cap Q=I_{1} \cap Q$, which proves the first statement.

To prove the converse, consider the partial algebra $\left\langle A_{0} \cup A_{1} ; \vee, \Lambda\right\rangle$, where $x \wedge y$ (resp., $x \vee y$) is defined if and only if x and y are in the same A_{i} and $x \wedge y$ (resp., $x \vee y$) is the meet (resp., join) of x and y in A_{i}. Call a set l an ideal of the partial algebra $\left\langle A_{0} \cup A_{1} ; \wedge, \vee\right\rangle$ if, whenever $x, y \in I$ and $x \vee y$ is defined, then $x \vee y \in I$ and whenever $x \in I, y \in A_{0} \cup A_{1}$, and $y \leqq x$, then $y \in I$. (The partial order \leqq was defined in Lemma 2.) Now let I_{0} be an ideal of A_{0} and let I_{1} be an ideal of A_{1} with $I_{0} \cap Q=I_{1} \cap Q$. The latter condition ensures that $I_{0} \cup I_{1}$ is an ideal of $\left\langle A_{0} \cup A_{1}\right.$; $\wedge, \vee\rangle$. Now we prove that $I_{0} \cup I_{1}$ is an ideal of $P\left(A_{0}, A_{1}\right)$. In fact, $P\left(A_{0}, A_{1}\right)$ is the smallest partial lattice in which, besides the partial operations of $\left\langle A_{0} \cup A_{1} ; \wedge, \vee\right\rangle$, all the meets and joins are defined that follow by iterated application of conditions
(i) to (v) and their duals. Therefore, it is sufficient to check that a single application of any one of (i) to (v) and their duals does not change the ideals; this is evident.
4. Smooth representations of ideals. The proofs in G. Grätzer and J. Sichler [4] rely on two facts:

1. In a free product $L=A_{0} * A_{1}$ every element has a lower A_{0}-cover, which is an element of $\left(A_{0}\right)^{b}$ (that is, A_{0} with a new 0 and 1 adjoined);
2. Forming lower A_{0}-covers is a homomorphism of L into $\left(A_{0}\right)^{b}$.

In general, these statements do not hold for amalgamated free products. In this section we find some statements that hold for amalgamated free products; these statements can be viewed as substitutes for the two facts mentioned above.

Throughout this section, let Q, A_{0}, A_{1}, L be lattices, let $L=A_{0} *_{Q} A_{1}$, and let $A=P\left(A_{0}, A_{1}, Q\right)$ as defined in Section 3. Let $I(A)$ (respectively, $\left.I\left(A_{i}\right)\right)$ denote the ideal lattice of A (respectively, of A_{i}). For any ideal I of L or of A define

$$
(I)_{i}=I \cap A_{i}, \quad i=0,1
$$

and for an ideal I of L define

$$
I_{A}=I \cap A
$$

For a principal ideal I of L, the ideals $(I)_{i}$ and I_{A} correspond to the usual lower covers (see, e.g., [1]), however, $I \rightarrow(l)_{i}, I \in I(L)$, is not a homomorphism, that is,

$$
\begin{equation*}
\left(p\left(I_{0}, \ldots, I_{n-1}\right)\right)_{i}=p\left(\left(I_{0}\right)_{i}, \ldots,\left(I_{n-1}\right)_{i}\right) \tag{1}
\end{equation*}
$$

does not hold for all polynomials p. For certain polynomials, however, (1) does hold (see Definition 2) and it will turn out (Lemma 8) that this happens often enough, making it possible to carry out some of the proofs of [4] under more general conditions.

Definition 2. Let $p=p\left(x_{0}, \ldots, x_{n-1}\right)$ be an n-ary lattice polynomial, let $I, I_{0}, \ldots, I_{n-1}$ be ideals of L (of A, A_{i}, respectively), and let $I=p\left(I_{0}, \ldots, I_{n-1}\right.$) in $I(L)$ (in $I(A), I\left(A_{i}\right)$, respectively). We say that $p\left(I_{0}, \ldots, I_{n-1}\right)$ is a smooth representation of I (or that $p\left(I_{0}, \ldots, I_{n-1}\right)$ is smooth) iff one of the following conditions holds:
a) $p=x_{i}$;
b) $p=p_{0} \wedge p_{1}$ and both $p_{0}\left(I_{0} ; \ldots, I_{n-1}\right)$ and $p_{1}\left(I_{0}, \ldots, I_{n-1}\right)$ are smooth;
c) $p=p_{0} \vee p_{1}$, both $p_{0}\left(I_{0}, \ldots, I_{n-1}\right)$ and $p_{1}\left(I_{0}, \ldots, I_{n-1}\right)$ are smooth, and, for any $q \in Q$,

$$
\begin{aligned}
& q \in p\left(I_{0}, \ldots, I_{n-1}\right) \text { implies that } q \in p_{0}\left(I_{0}, \ldots, I_{n-1}\right) \text { or } \\
& \\
& q \in p_{1}\left(I_{0}, \ldots, I_{n-1}\right) .
\end{aligned}
$$

The following lemma shows that every representation of an element of L can be turned into a smooth representation.

Lemma 4. Let $a \in L, a_{0}, \ldots, a_{n-1} \in A_{0} \cup A_{1}$, and let $a=p\left(a_{0}, \ldots, a_{n-1}\right)$ where p is a lattice polynomial. Then there exist an integer $m \geqq 0$, a polynomial \tilde{p} in $n+m$ variables, and subsets Q_{0}, \ldots, Q_{m-1} of Q such that

$$
(a]=\tilde{p}\left(\left(a_{0}\right], \ldots,\left(a_{n-1}\right],\left(Q_{0}\right], \ldots,\left(Q_{m-1}\right]\right)
$$

is a smooth representation of $(a]$ in $I(L)$.
Proof. We prove this statement by induction on the rank of p.
If $p=x_{i}$, then we can choose $m=0, \tilde{p}=p$.
If $p=p_{0} \vee p_{1}$, then, by the induction hypothesis, there exist an $m \geqq 0$, polynomials \tilde{p}_{0} and \tilde{p}_{1} of $n+m-1$ variables, and subsets Q_{0}, \ldots, Q_{m-2} of Q such that

$$
\tilde{p}_{i}\left(\left(a_{0}\right], \ldots,\left(a_{n-1}\right],\left(Q_{0}\right], \ldots,\left(Q_{m-2}\right]\right)
$$

is a smooth representation of $p_{i}\left(\left(a_{0}\right], \ldots,\left(a_{n-1}\right]\right)$ for $i=0$ and 1. Let $Q_{m-1}=(a] \cap Q$. We claim that

$$
\begin{gathered}
\tilde{p}_{0}\left(\left(a_{0}\right], \ldots,\left(a_{n-1}\right],\left(Q_{0}\right], \ldots,\left(Q_{m-2}\right]\right) \vee \\
\vee\left(\tilde{p}_{1}\left(\left(a_{0}\right] \ldots,\left(a_{n-1}\right],\left(Q_{0}\right], \ldots,\left(Q_{m-2}\right]\right) \vee\left(Q_{m-1}\right]\right)
\end{gathered}
$$

is a smooth representation of (a]. Indeed, by the definitions of \tilde{p}_{i} and of Q_{m-1}, this ideal equals (a]. Moreover, $\tilde{p}_{1}\left(\left(a_{0}\right], \ldots\right) \vee\left(Q_{m-1}\right]$ is smooth because its components are smooth and if, for $q \in Q, q \in \tilde{p}_{1}\left(\left(a_{0}\right], \ldots\right) \vee\left(Q_{m-1}\right]$, then $q \in(a]$; thus, $q \in\left(Q_{m-1}\right]$ by the definition of Q_{m-1}. Similarly, $\tilde{p}_{0}((a], \ldots) \vee\left(\tilde{p}_{1}\left(\left(a_{0}\right], \ldots\right) \vee\left(Q_{m-1}\right]\right)$ is smooth.

Finally, if $p=p_{0} \wedge p_{1}$, then let $\tilde{p}_{i}\left(\left(a_{0}\right], \ldots,\left(a_{n-1}\right],\left(Q_{0}\right], \ldots,\left(Q_{m-1}\right]\right)$ be a smooth representation of $p_{i}\left(\left(a_{0}\right], \ldots,\left(a_{n-1}\right]\right)$ for $i=0$ and 1 . The meet of these two polynomials is obviously a smooth representation of (a].

In the remainder of this section we have to compute polynomials in $L, I(L)$, $I(A)$, and $I\left(A_{i}\right), i=0,1$. We shall distinguish between the operations in $I(A)$ and $I\left(A_{i}\right)$ by superscripting them by A and i, respectively.

The following lemma is a consequence of the solution of the word problems for lattices freely generated by a partial lattice (see, e.g., G. Grätzer, A. Huhn, and H. Lakser [2]).

Lemma 5. Let $x, y \in L$. Then

$$
(x \vee y] \cap A=((x] \cap A) \vee^{A}((y] \cap A), \quad \text { and } \quad(x \wedge y] \cap A=((x] \cap A) \wedge^{A}((y] \cap A)
$$

Lemma 6. Let I and J be ideals of L. Then

$$
(I \vee J)_{A}=(I)_{A} \vee^{A}(J)_{A}
$$

Furthermore, if $I \vee J$ is smooth, then so is $(I)_{A} \vee^{A}(J)_{A}$.

Proof. We prove that $(I V J)_{A} \subseteq(I)_{A} \vee^{A}(J)_{A}$ (the reverse inclusion is obvious). Let $a \in(I \vee J)_{A}$. Then $a \in A$ and there exist $i \in I$ and $j \in J$ such that $a \leqq i \vee j$. From Lemma 5, it follows that

$$
a \in(i \vee j] \cap A \subseteq((i] \cap A) \vee^{A}((j] \cap A) \subseteq(I)_{A} \vee^{A}(J)_{A}
$$

This proves the first half of the lemma.
Assume now that $I \vee J$ is smooth. We have to prove that so is $(I)_{A} \vee^{A}(J)_{A}$. Let $q \in Q$ and let

$$
q \in(I)_{A} \vee A(J)_{A}
$$

Then $q \in I \vee J$; thus, $q \in I$ or $q \in J$, say $q \in I$. Since $q \in Q \subseteq A$, we have $q \in I \cap A=(I)_{A}$. This completes the proof.

Most of the results of this section are summarized in the following two lemmas that show that one can work with smooth representations as if forming lower covers were a homomorphism.

Lemma 7. Let I and J be ideals of A and let us assume that $I V^{A} J$ is smooth. Then

$$
\left(I \vee^{A} J\right)_{i}=(I)_{i} \vee^{i}(J)_{i} \quad \text { for } \quad i=0,1
$$

and the right side of the equation is smooth.
Proof. We claim that

$$
\left((I)_{0} \vee^{0}(J)_{0}\right) \cap Q=\left((I)_{1} \vee^{1}(J)_{1}\right) \cap Q
$$

Indeed, let $q \in Q$ and let $q \in(I)_{0} \vee^{0}(J)_{0}$. Then $q \in I V^{A} J$; therefore, q is in I or J, say, $q \in I$. Then $q \in(I)_{1} \subseteq(I)_{1} V^{1}(J)_{1}$, which verifies that the left side is contained in the right side. Repeating this argument starting with the right side, we verify the claim.

This claim, by Lemma 3, shows that

$$
\left((I)_{0} \vee^{0}(J)_{0}\right) \cup\left((I)_{1} \vee^{1}(J)_{1}\right)
$$

is an ideal of $P\left(A_{0}, A_{1}\right)$; obviously, it is the smallest ideal containing both I and J, that is,

$$
I \vee^{A} J=\left((I)_{0} \vee^{0}(J)_{0}\right) \cup\left((I)_{1} \vee^{1}(J)_{1}\right)
$$

Now we compute (using the above claim again):

$$
\begin{gathered}
\left(I \vee^{A} J\right)_{0}= \\
=\left(\left((I)_{0} \vee^{0}(J)_{0}\right) \cup\left((I)_{1} \vee^{1}(J)\right)_{1}\right) \cap A_{0}= \\
=\left((I)_{0} \vee^{0}(J)_{0}\right) \cup\left(\left((I)_{1} \vee^{1}(J)_{1}\right) \cap Q\right)= \\
=\left((I)_{0} \vee^{0}(J)_{0}\right) \cup\left(\left((I)_{0} \vee^{0}(J)_{0}\right) \cap Q\right)= \\
=(I)_{0} \vee^{0}(J)_{0} .
\end{gathered}
$$

Finally, we can see that $(I)_{0} \vee^{0}(J)_{0}$ is smooth arguing as we did in Lemma 6.
Lemma 8. Let $p=p\left(x_{0}, \ldots, x_{n-1}\right)$ be a lattice polynomial and let I_{0}, \ldots, I_{n-1} be ideals of L, such that $p\left(I_{0}, \ldots, I_{n-1}\right)$ is smooth. Then

$$
\left(p\left(I_{0}, \ldots, I_{n-1}\right)\right)_{i}=p\left(\left(I_{0}\right)_{i}, \ldots,\left(I_{n-1}\right)_{i}\right)
$$

is a smooth representation of $\left(p\left(I_{0}, \ldots, I_{n-1}\right)\right)_{i}$.
Proof. By induction: if $p=x_{i}$ or $p=p_{0} \wedge p_{1}$, then Lemma 8 is trivial; if $p=p_{0} \vee p_{1}$, then Lemma 8 is a combination of Lemmas 6 and 7.
5. Amalgamated free products of sublattices. It was proved in B. Jónsson [5], that, if a variety V has the Amalgamation Property, then the following statement holds: for arbitrary algebras A_{0} and A_{1} in V and subalgebras A_{0}^{\prime} of A_{0} and A_{1}^{\prime} of A_{1} the set $A_{0}^{\prime} \cup A_{1}^{\prime}$ generates a subalgebra in the free product $A_{0} * A_{1}$ canonically isomorphic to $A_{0}^{\prime} * A_{1}^{\prime}$. "Canonically" means that the isomorphism is the identity map on A_{0}^{\prime} and on A_{1}^{\prime}. Jónsson's proof is valid not only for varieties but also for classes closed under the formation of subalgebras and of direct products. Thus the proof works for Q-lattices, that is, lattices containing Q as a sublattice such that the elements of Q are regarded as nullary operations. This yields the following lemma.

Lemma 9. Let $L=A_{0} *{ }_{Q} A_{1}$, let A_{0}^{\prime} and A_{1}^{\prime} be sublattices of A_{0} and A_{1}, respectively, and let $Q \subseteq A_{0}^{\prime}$ and $Q \subseteq A_{1}^{\prime}$. Then the sublattice of $A_{0} *_{Q} A_{1}$ generated by $A_{0}^{\prime} \cup A_{1}^{\prime}$ is canonically isomorphic to $A_{0}^{\prime}{ }_{Q} A_{1}^{\prime}$.

There is an alternative proof by using the solution to the word problem for lattices generated by a partial lattice. For the case $Q=\varnothing$, such a proof appears in G. Grätzer, H. Lakser, and C. R. Platt [3]. (See also G. Grätzer [1].)
6. Proof of the Theorem. We introduce some new notation. For an ideal I of L, let $I_{A_{0}}$ denote the ideal of L generated by $I \cap A_{0}$; we call $I_{A_{0}}$ the lower A_{0}-cover of I. Similarly for $I_{A_{1}}, I_{B_{0}}$, and $I_{B_{1}}$. Note that Lemma 8 holds also for lower A_{i} (resp., B_{j})-covers.

For arbitrary fixed $i, j \in\{0,1\}$, we define $I_{i j}(L)$ as the set of principal ideals of L and the lower A_{i}-covers and lower B_{j}-covers of principal ideals of L.

We prove the main theorem in a stronger form:
Theorem. Let $L=A_{0} *_{Q} A_{1}=B_{0} *_{Q} B_{1}$. Then the following conditions are equivalent.
(i) $L=\left(A_{0} \cap B_{0}\right) *_{Q}\left(A_{0} \cap B_{1}\right) *_{Q}\left(A_{1} \cap B_{0}\right) *_{Q}\left(A_{1} \cap B_{1}\right)$.
(ii) $A_{i}=\left(A_{i} \cap B_{0}\right) *_{Q}\left(A_{i} \cap B_{1}\right)$, for $i=0,1$.
(iii) $B_{j}=\left(A_{0} \cap B_{j}\right) *_{Q}\left(A_{1} \cap B_{j}\right)$, for $j=0,1$.
(iv) For any $i, j \in\{0,1\}, x \in A_{i}$, and $y \in B_{j}, x \leqq y$ in Limplies the existence of a $z \in A_{i} \cap B_{j}$ such that $x \leqq z$ in A_{i} and $z \leqq y$ in B_{j}.
(v) For any $i, j \in\{0,1\}$ and for any ideal I of $L, I=\left(I \cap A_{i}\right]=\left(I \cap B_{j}\right]$ implies that $I=\left(I \cap A_{i} \cap B_{j}\right]$.
(iv) For any $i, j \in\{0,1\}$ and for any ideal $I \in I_{i j}(L), I=\left(I \cap A_{i}\right]=\left(I \cap B_{j}\right]$ implies that $l=\left(I \cap A_{i} \cap B_{j}\right]$.

Proof. We prove the theorem by the following scheme: (i) \leftrightarrow (ii), (i) \leftrightarrow (iii); (i), (ii), and (iii) jointly imply (iv); (iv) \rightarrow (v) \rightarrow (vi) \rightarrow (ii).
(ii) \rightarrow (i) is clear from the definition of the right side of (i) (given after Definition 1).
(i) \rightarrow (ii). Let $a \in A_{0}$. Then, by (i), a can be expressed in the form

$$
a=p\left(x_{00}, x_{00}^{\prime}, \ldots, x_{01}, x_{01}^{\prime}, \ldots, x_{10}, x_{10^{\prime}}, \ldots, x_{11}, x_{11}^{\prime}, \ldots\right)
$$

where $x_{i j}, x_{i j}^{\prime}, \ldots \in A_{i} \cap B_{j}, i, j \in\{0,1\}$ and p is a lattice polynomial. By Lemma 4, (a] has a smooth representation in $I(L)$:

$$
(a]=\tilde{p}\left(\left(x_{00}\right], \ldots,\left(x_{01}\right], \ldots,\left(x_{10}\right], \ldots,\left(x_{11}\right], \ldots,\left(Q_{0}\right], \ldots\right)
$$

where $Q_{0}, \ldots \subseteq Q$. Then, by Lemma 8 ,

$$
(a]=(a]_{A_{0}}=\tilde{p}\left(\left(x_{00}\right]_{A_{0}}, \ldots,\left(x_{10}\right]_{A_{0}}, \ldots,\left(x_{01}\right]_{A_{0}}, \ldots,\left(x_{11}\right]_{A_{0}}, \ldots,\left(Q_{0}\right], \ldots\right)
$$

We claim that, $\left(x_{10}\right)_{A_{0}}$, as well as $\left(x_{11}\right]_{A_{0}}$, is generated as an ideal by elements of Q. Indeed, let ($\left.x_{10}\right]_{A_{0}}$ be generated by $x_{\gamma}, \gamma \in \Gamma$, in A_{0}. By Lemma 2, for every $\gamma \in \Gamma$, there is a $y_{\gamma} \in Q$ with $x_{\gamma} \leqq y_{\gamma} \leqq x_{10}$. Thus $\left\{y_{\gamma} \mid \gamma \in \Gamma\right\}$ generates ($\left.x_{10}\right\}_{A_{0}}$, and $\left\{y_{\gamma} \mid \gamma \in \Gamma\right\}$ is a subset of Q. Summarizing,

$$
(a]=\tilde{p}\left(\left(x_{00}\right], \ldots,\left(x_{10}\right], \ldots,\left(Q_{10}\right], \ldots,\left(Q_{11}\right], \ldots,\left(Q_{0}\right], \ldots\right)
$$

where $Q_{10}, \ldots, Q_{11}, \ldots, Q_{0}, \ldots \subseteq Q$. Hence a can be expressed by $x_{00}, \ldots, x_{10}, \ldots$, and elements of Q. Thus, a is in the sublattice generated by $\left(A_{0} \cap B_{0}\right) \cup\left(A_{0} \cap B_{1}\right)$. Therefore, $A_{0} \cap B_{0}$ and $A_{0} \cap B_{1}$ generate A_{0}. It follows from Lemma 9 that they generate A_{0} freely over Q.
(i) \rightarrow (iii) follows by symmetry.
(i), (ii), and (iii) jointly imply (iv). By (ii) and (iii), the sublattice $\left[A_{0} \cup B_{0}\right]$ generated by $A_{0} \cup B_{0}$ is also generated by $A_{0} \cap B_{0}, A_{0} \cap B_{1}$, and $A_{1} \cap B_{0}$. By (i), $A_{0} \cap B_{0}$, $A_{0} \cap B_{1}, A_{1} \cap B_{0}$ freely generate over Q. Thus $\left[A_{0} \cup B_{0}\right]$ is freely generated by $\left(A_{0} \cap B_{0}\right) \cup\left(A_{0} \cap B_{1}\right) \cup\left(A_{1} \cap B_{0}\right)$. Hence, it is also freely generated by $\left[\left(A_{0} \cap B_{0}\right) \cup\right.$ $\left.\cup\left(A_{0} \cap B_{1}\right)\right] \cup\left[\left(A_{0} \cap B_{0}\right) \cup\left(A_{1} \cap B_{0}\right)\right]$. By (ii) and (iii), this set is $A_{0} \cup B_{0}$, and the relative sublattice of L on this subset is the partial lattice $P\left(A_{0}, B_{0}, A_{0} \cap B_{0}\right)$. Therefore, $\left[A_{0} \cup B_{0}\right]$ is the free $\left(A_{0} \cap B_{0}\right)$-product of A_{0} and B_{0}. Thus, Lemma 2 gives us (iv) for $i=j=0$. Since (i), (ii), and (iii) are symmetric in i and j, condition (iv) now follows.
(iv) $\rightarrow(v)$. Let the ideal I be generated by $\left\{x_{\gamma} \mid \gamma \in \Gamma\right\} \subseteq A_{i}$ and by $\left\{y_{\delta} \mid \delta \in \Delta\right\} \subseteq B_{j}$; we can assume that $\left\{y_{\delta} \mid \delta \in \Delta\right\}$ is closed under finite joins. By (iv), for any $\gamma \in \Gamma$ we can choose a $\gamma^{\prime} \in \Delta$ and a $z_{\gamma^{\prime}} \in A_{i} \cap B_{j}$ satisfying $x, \leqq z_{\gamma^{\prime}} \leqq y_{\gamma^{\prime}}$. Obviously, $\left\{z_{\gamma^{\prime}} \mid \gamma^{\prime} \in \Gamma\right\} \subseteq$ $\subseteq A_{i} \cap B_{j}$ generates I.
$(v) \rightarrow(v i)$ is obvious since (vi) is a special case of (v).
$(v i) \rightarrow(i i)$. By Lemma 9 and by symmetry, it suffices to prove that A_{0} is generated by $\left(A_{0} \cap B_{0}\right) \cup\left(A_{0} \cap B_{1}\right)$.

For $a \in A_{0}$, there exist a polynomial p and elements $b_{0}, b_{0}^{\prime}, \ldots \in B_{0}, b_{1}, b_{1}^{\prime}, \ldots \in$ $\in B_{1}$, such that $a=p\left(b_{0}, b_{0}^{\prime}, \ldots, b_{1}, b_{1}^{\prime}, \ldots\right)$. By Lemma 4, there exist a polynomial \tilde{p} and $Q_{0}, Q_{1}, \ldots \subseteq Q$ such that

$$
(a]=\tilde{p}\left(\left(b_{0}\right],\left(b_{0}^{\prime}\right], \ldots,\left(b_{1}\right],\left(b_{1}^{\prime}\right], \ldots,\left(Q_{0}\right],\left(Q_{1}\right], \ldots\right)
$$

is a smooth representation of (a). Then, by Lemma 8,

$$
(a]=(a]_{A_{0}}=\tilde{p}\left(\left(b_{0}\right]_{A_{0}}, \ldots,\left(b_{1}\right]_{A_{0}}, \ldots,\left(Q_{0}\right]_{A_{0}}, \ldots\right)
$$

In this expression, $\left(Q_{0}\right]_{A_{0}}=\left(Q_{0}\right], \ldots$. Furthermore, we shall prove the claim that $\left(b_{0}\right]_{A_{0}},\left(b_{0}^{\prime}\right]_{A_{0}}, \ldots$, and $\left(b_{1}\right]_{A_{0}},\left(b_{1}^{\prime}\right]_{A_{0}}, \ldots$ are generated by elements of $A_{0} \cap B_{0}$ and $A_{0} \cap B_{1}$, respectively. Thus, each ideal occurring in the representation is generated by elements of $\left(A_{0} \cap B_{0}\right) \cup\left(A_{0} \cap B_{1}\right)$. Therefore, so is (a]. We conclude that $a \in$ $\in\left[\left(A_{0} \cap B_{0}\right) \cup\left(A_{0} \cap B_{1}\right)\right]$, which was to be proved.

To verify the claim, it is sufficient to prove by symmetry that $\left(b_{0}\right]_{\Lambda_{0}}$ is generated by its elements in $A_{0} \cap B_{0}$.

First, we verify that $\left(b_{0}\right]_{A_{0}}$ is generated by its elements in B_{0}.
We start with a smooth representation

$$
\left(b_{0}\right]=q\left(\left(a_{0}\right],\left(a_{0}^{\prime}\right], \ldots,\left(a_{1}\right],\left(a_{1}^{\prime}\right], \ldots,\left(R_{0}\right],\left(R_{1}\right], \ldots\right)
$$

where $a_{0}, a_{0}^{\prime}, \ldots \in A_{0}, a_{1}, a_{1}^{\prime}, \ldots \in A_{1}$ and $R_{0}, R_{1}, \ldots \subseteq Q$. Then

$$
\left(b_{0}\right]_{A_{0}}=q\left(\left(a_{0}\right]_{A_{0}}, \ldots,\left(a_{1}\right]_{A_{0}}, \ldots,\left(R_{0}\right]_{A_{0}}, \ldots\right)=q\left(\left(a_{0}\right], \ldots,\left(a_{1}\right]_{A_{0}}, \ldots,\left(R_{0}\right], \ldots\right)
$$

and, applying Lemma 8 twice, we obtain

$$
\left(b_{0}\right]_{A_{0}}=\left(\left(b_{0}\right]_{B_{0}}\right)_{A_{0}}=q\left(\left(\left(a_{0}\right]_{B_{0}}\right)_{A_{0}}, \ldots,\left(\left(a_{1}\right]_{B_{0}}\right)_{A_{0}}, \ldots,\left(\left(R_{0}\right]_{B_{0}}\right)_{A_{0}}, \ldots\right)
$$

Hence,

$$
\begin{gathered}
\left(b_{0}\right]_{A_{0}}=q\left(\left(a_{0}\right], \ldots,\left(a_{1}\right]_{A_{0}}, \ldots,\left(R_{0}\right], \ldots\right) \supseteqq q\left(\left(a_{0}\right]_{B_{0}}, \ldots,\left(a_{1}\right]_{A_{0}}, \ldots,\left(R_{0}\right], \ldots\right) \supseteqq \\
\supseteqq q\left(\left(\left(a_{0}\right]_{B_{0}}\right)_{A_{0}}, \ldots,\left(\left(a_{1}\right]_{B_{0}}\right)_{A_{0}}, \ldots,\left(\left(R_{0}\right]_{B_{0}}\right)_{A_{0}}, \ldots\right)=\left(b_{0}\right]_{A_{0}}
\end{gathered}
$$

therefore,

$$
\left(b_{0}\right]_{A_{0}}=q\left(\left(a_{0}\right]_{B_{0}}, \ldots,\left(a_{1}\right]_{A_{0}}, \ldots,\left(R_{0}\right], \ldots\right)
$$

The ideals $\left(a_{0}\right]_{B_{0}}, \ldots$ are, by definition, generated by elements of B_{0}; the ideals $\left(a_{1}\right]_{A_{0}}, \ldots$ are generated by elements of Q by Lemma 2 . Since $Q_{0}, \ldots \subseteq Q$, we conclude that $\left(b_{0}\right]_{A_{0}}$ is generated by elements of B_{0}.

Finally, since $\left(b_{0}\right]_{A_{0}}$ has been proved to be generated by its elements in B_{0}, and $\left(b_{0}\right]_{A_{0}}$ is by definition generated by its elements in A_{0}, and $\left(b_{0}\right]_{A_{0}} \in I_{00}(L)$, all the hypotheses of (vi) are satisfied. Condition (vi) yields that ($\left.b_{0}\right]_{A_{0}}$ is generated by elements of $A_{0} \cap B_{0}$, which completes the proof of the claim.

This finishes the proof of the implication (vi) \rightarrow (ii) and of the Theorem.
7. Proof of Corollaries 1-4. Proof of Corollary 1. Let Q satisfy, for example, the Ascending Chain Condition, and let $L=A_{0} *_{Q} A_{1}=B_{0} *_{Q} B_{1}$. We claim that, for any $i, j \in\{0,1\}, I_{i j}(L)$ consists of all principal ideals of L. Indeed, let us take a smooth representation of the principal ideal (x]:

$$
(x]=p\left(\left(a_{0}\right],\left(a_{0}^{\prime}\right], \ldots,\left(a_{1}\right],\left(a_{1}^{\prime}\right], \ldots,\left(Q_{0}\right],\left(Q_{1}\right], \ldots\right)
$$

$a_{0}, a_{0}^{\prime}, \ldots \in A_{0}, a_{1}, a_{1}^{\prime}, \ldots \in A_{1}$, and $Q_{0}, Q_{1}, \ldots \subseteq Q$. Then

$$
(x]_{A_{0}}=p\left(\left(a_{0}\right],\left(a_{0}^{\prime}\right], \ldots,\left(a_{1}\right]_{A_{0}},\left(a_{1}^{\prime}\right]_{A_{0}}, \ldots,\left(Q_{0}\right],\left(Q_{1}\right], \ldots\right) .
$$

It follows from Lemma 2 that the ideals $\left(a_{1}\right]_{A_{0}}, \ldots$, are generated by elements of Q; thus, by the Ascending Chain Condition, these ideals and also $(Q]_{0}, \ldots$ are principal. Therefore, $(x]_{A_{0}}$ is a principal idéal. This proves the claim for $i=j=0$. By symmetry, the claim is proved.

Using this claim, it is easy to establish condition (vi) of the Theorem: if the single generating element of an ideal in $I_{i j}(L)$ is both in A_{i} and in B_{j}, then it is in $A_{i} \cap B_{j}$. Thus the Theorem shows the existence of a common refinement.

Proof of Corollary 2. Let $L=A_{0} *_{Q} A_{1}=B_{0} *_{Q} B_{1}$, and let us assume that the hypotheses of Corollary 2 hold, that is, for any i, j, A_{i} or B_{j} is convex in $A_{i} \cup B_{j}$. We are going to establish condition (v) of the Theorem. Let $i, j \in\{0,1\}$, let, for instance, A_{i} be convex in $A_{i} \cup B_{j}$. Let $I \in I(L)$, such that $I=\left(I \cap A_{i}\right]=\left(I \cap B_{j}\right]$. Let G be a generating set of I in A_{i} and let H be a generating set of I in B_{j}. We can assume that both G and H are closed under finite joins. Then

$$
I=\{x \mid x \leqq g \text { for some } g \in G\}=\{x \mid x \leqq h \text { for some } h \in H\} .
$$

Thus, for any $g \in G$ there exists an $h_{g} \in H$ satisfying $g \leqq h_{g}$ and for $h_{g} \in H$ there exists an $g^{\prime} \in G$ with $h_{g} \leqq g^{\prime}$. Therefore, $g \leqq h_{g} \leqq g^{\prime}$, so by the convexity of A_{i} in $A_{i} \cup B_{j}$, we conclude that $h_{g} \in A_{i}$; since $h_{g} \in G \subseteq B_{j}, h_{g} \in A_{i} \cap B_{j}$. Now it is clear that $K=\left\{h_{g} \mid g \in G\right\}$ generates I and $K \subseteq A_{i} \cap B_{j}$, verifying condition (v) of the Theorem.

Proof of Corollaries 3 and 4. Under the conditions of the Corollaries, [$A_{1} \cup A_{2}$] is the free product of A_{1} and A_{2} amalgamated over $A_{1} \cap A_{2}$. Thus we may apply Lemma 2 to $A_{1} \cup A_{2}$. Therefore, both corollaries follow from the following observation (due to E. Fried):

Let $L=A_{0} *_{Q} A_{1}=A_{0} *_{Q} A_{2}$. If the conclusion of Lemma 2 holds for $A_{1} \cup A_{2}$ (that is, for $x \in A_{1}$ and $y \in A_{2}, x \leqq y$ iff $x \leqq z \leqq y$ for some $z \in A_{1} \cap A_{2}$ and symmetrically for $x \in A_{2}$ and $y \in A_{1}$), then $A_{1}=A_{2}$.

Indeed, under these conditions (iv) of the Theorem holds, hence there is a common refinement. Applying condition (ii) of the Theorem we obtain

$$
A_{1}=\left(A_{0} \cap A_{1}\right) *_{Q}\left(A_{2} \cap A_{1}\right)=Q *_{Q}\left(A_{2} \cap A_{1}\right)
$$

Similarly, $A_{2}=Q *_{Q}\left(A_{1} \cap A_{2}\right)$, hence $A_{1}=A_{2}$.
8. Open problems. We repeat the question already mentioned in Section 2.

Problem 1. Is there a lattice Q such that Q-free products do not always have common refinements?

An equally important question arises in connection with Corollaries 3 and 4. In fact, they suggest, that some sort of a distributive law must be valid for Q-free factors.

Problem 2. Do Q-free factors of a lattice L form a distributive sublattice of the lattice of all sublattices of L ? Does there exist some "natural" generalization of distributivity that holds for Q-free factors and implies Corollaries 3 and 4 ?

A negative answer to Problem 1 would answer both questions of Problem 2 in the affirmative; this can be seen from the following observations.

Let us assume that for a lattice Q, any two Q-free products of a lattice L have a common refinement. Let L be a lattice and let Q be a sublattice of L. Then $L=A *{ }_{Q} A^{\prime}=B *{ }_{Q} B^{\prime}$ implies that

$$
L=(A \cap B) *_{Q}\left[A^{\prime} \cup B^{\prime}\right]
$$

thus the Q-free factors form a sublattice of the lattice of all sublattices of L. Now let A, B, C be Q-free factors of L, that is, let

$$
L=A *{ }_{Q} A^{\prime}=B *{ }_{Q} B^{\prime}=C *{ }_{Q} C^{\prime}
$$

Then

$$
A \cap[B \cup C]=[(A \cap B) \cup(A \cap C)]
$$

since both sides are the Q-free products of $A \cap B \cap C, A \cap B \cap C^{\prime}$, and $A \cap B^{\prime} \cap C$.
9. Appendix: On the definition of amalgamated free products. In Section 3 we defined $A_{0} *_{Q} A_{1}$ as the free lattice generated by the smallest partial lattice on the set $A_{0} \cup A_{1}\left(A_{0} \cap A_{1}=Q\right)$ extending the operations of A_{0} and A_{1}. We denoted this partial lattice by $P\left(A_{0}, A_{1}, Q\right)$. Here we prove the following characterization:
$P\left(A_{0}, A_{1}, Q\right)$ is the smallest weak partial lattice on the set $A_{0} \cup A_{1}$ extending the operations of A_{0} and A_{1}.

By a weak partial lattice (see [1]) we mean a partial algebra $\langle H ; \wedge, \mathrm{V}\rangle$ satisfying conditions (i)-(iv) of Section 3 and their duals.

This result means the following: by definition, $P\left(A_{0}, A_{1}, Q\right)$ is formed by taking $A_{0} \cup A_{1}$; and extending the \wedge and \vee of A_{0} and A_{1} by iterating (i)-(v) and their duals; according to the result of this appendix, condition (v) and its dual are not needed in this process.

Let $W P\left(A_{0}, A_{1}, Q\right)=W P$ be the smallest weak partial lattice on $A_{0} \cup A_{1}$ extending the operations of A_{0} and A_{1}. The existence of $W P$ can be proved along the lines of the proof of Lemma 1 . The proof of Lemma 2 shows that the partial ordering on $W P$ is the same as the partial ordering on $P\left(A_{0}, A_{1}, Q\right)$. We are going to prove that $W P$ is a partial lattice, that is, (v) and its dual hold. Then obviously $W P=$ $=P\left(A_{0}, A_{1}, Q\right)$.

By duality, it is sufficient to verify (v). To do that, let $a, b, c \in A_{0} \cup A_{1}$ such that $(a] \vee(b]=(c]$ in the ideal lattice of $W P$. We have to show that $a \vee b$ exists and $a \vee b=c$ in $W P$.

If $a \vee b$ exists, then $(a \vee b]$ is obviously $(a] \vee(b]$, hence $(a \vee b]=(c]$. We conclude that $a \vee b=c$. Therefore, it is sufficient to show that if $(a] \vee(b]=(c]$, then $a \vee b$ exists.

If $a, b \in A_{0}$ or $a, b \in A_{1}$, then $a \vee b$ exists. Hence we can assume that $a \in A_{0}$ and $b \in A_{1}$. By symmetry, we can also assume that $c \in A_{1}$.

By the $\{$ eneral description of join of ideals in a weak partial lattice (see Exercise 5.22 of $\mid 1]),(a] \vee(b]=(c]$ implies the existence of a natural number n and elements
(1) $\quad a=a_{0} \leqq a_{1} \leqq \ldots \leqq a_{n}$ in A_{0},
(2) $b=b_{0} \leqq b_{1} \leqq \ldots \leqq b_{n}=c$ in A_{1},
(3) $r_{0} \leqq q_{1} \leqq r_{1} \leqq q_{2} \leqq \ldots \leqq q_{n} \leqq q$ in Q such that
(4) $r_{i} \leqq b_{i}, \quad 0 \leqq i \leqq n$,
(5) $\quad q_{i} \leqq a_{i}, \quad 1 \leqq i \leqq n$,
(6) $b_{i+1}=b_{i} \vee q_{i+1}, \quad 0 \leqq i<n$,
(7) $\quad a_{i+1}=a_{i} \vee r_{i+1}, \quad 0 \leqq i<n$,
(8) $a_{n} \leqq q \leqq b_{n}$.
(The symmetric case with $q_{0} \leqq r_{1} \leqq q_{1} \leqq \ldots \leqq q_{n-1}, q_{i} \leqq a_{i}, 0 \leqq i \leqq n, r_{i} \leqq b_{i}, 1 \leqq i \leqq n$, $a_{i+1}=a_{i} \vee r_{i+1}, 0 \leqq i<n, b_{i+1}=b_{i} \vee q_{i}, 0 \leqq i<n$ is handled similarly.)

In the proof we shall utilize the following two properties of weak partial lattices:
(P1) If $x \vee y=z$ and $x \leqq u \leqq z$, then $u \vee y$ exists and $u \vee y=z$.

Indeed, by the associative identity,

$$
u \vee(x \vee y)=(u \vee x) \vee y,
$$

the left side exists and equals $z ; u \vee x$ exist and equals u, hence $u \vee y$ exists and equals z, as claimed.
(P2) If $x \vee y=z, x=x_{1} \vee x_{2}$, and $x_{2} \leqq y$, then $x_{1} \vee y$ exists and $x_{1} \vee y=z$.
Indeed, by the associative identity,

$$
\left(x_{1} \vee x_{2}\right) \vee y=x_{1} \vee\left(x_{2} \vee y\right),
$$

the left side exists and equals z; in the right side $x_{2} \vee y$ exists and equals y, hence by (iii), $x_{1} \vee y$ exists and $x_{1} \vee y=z$, as claimed.

Now we prove $a \vee b=c$ by induction on n. Let $n=1$. Then we have the elements $a_{0}=a, b_{0}=b, b_{1}=c, r_{0}, q_{1}, q$, and $r_{0} \leqq q_{1} \leqq q, r_{0} \leqq b_{0}, r_{0} \leqq q_{1} \leqq a_{1}, a_{1}=a \vee r_{0}, b_{1}=$ $=b_{0} \vee q_{1}, a_{1} \leqq q \leqq b_{1}=c$.
$\mathrm{By}(\mathrm{P} 1), q_{1} \vee b=c$ and $q_{1} \leqq a \leqq c$ implies that $a_{1} \vee b$ exist and $a_{1} \vee b=c$. Since $a_{1}=a \vee r_{0}$ and $r_{0} \leqq b$, by (P 2), $a \vee b$ exists and $a \vee b=c$, as claimed.

Now let $n>1$. It is clear, that the elements $a_{1} \leqq \ldots \leqq a_{n}, b_{1} \leqq \ldots \leqq b_{n}, r_{1} \leqq q_{2} \leqq$ $\leqq \ldots \leqq q_{n} \leqq q$ satisfy (1)-(8) with $n-1$. Therefore, $a_{1} \vee b_{1}$ exists and $a_{1} \vee b_{1}=c$. By (P2), $c=a_{1} \vee b_{1}=a_{1} \vee\left(q_{1} \vee b\right)=a_{1} \vee b$, since $q_{1} \leqq a_{1}$. Again by (P2), $c=a_{1} \vee b=$ $=\left(a \vee r_{0}\right) \vee b=a \vee b_{1}$ since $r_{0} \leqq b$. This proves the theorem.

References

[1] G. Grätzer, General Lattice Theory. Pure and Applied Mathematics Series, Academic Press (New York, N. Y.) Mathematische Reihe, Band 52, Birkhäuser Verlag, (Basel), Akademie Verlag (Berlin, 1978).
[2] G. Grätzer, A. P. Huhn and H. Lakser, On the structure of finitely presented lattices, Canad. J. Math., 33 (1981), 404-411.
[3] G. Grätzer, H. Lakser and C. R. Platt, Free products of lattices, Fund. Math., 69 (1970), 233-240.
[4] G. Grätzer and J. Sichler, Free decompositions of a lattice, Canad. J. Math., 27 (1975), 276285.
[5] B. Jónsson, Sublattices of a free lattice, Canad. J. Math., 13 (1961), 256-264.
[6] B. Jónsson and E. Nelson, Relatively free products in regular varieties, Algebra Universalis, 4 (1974), 14-19.

[^0]: Received May 28, 1981.
 The research of the first author was supported by the NSERC of Canada.

